Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2019

Open Access 01-12-2019 | Research

Hermite–Hadamard-type inequalities for functions whose derivatives are η-convex via fractional integrals

Authors: Young Chel Kwun, Muhammad Shoaib Saleem, Mamoona Ghafoor, Waqas Nazeer, Shin Min Kang

Published in: Journal of Inequalities and Applications | Issue 1/2019

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present research, we develop some integral inequalities of Hermite–Hadamard type for differentiable η-convex functions. Moreover, our results include several new and known results as particular cases.
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

Throughout this paper, let I be an interval in \(\mathbb{R}\). Also consider \(\eta: A\times A \rightarrow B\) for appropriate \(A, B \subseteq\mathbb{R}\).
Let \(f:I \subseteq\mathbb{R} \rightarrow\mathbb{R}\) be a convex function, and let \(a_{1}\), \({a_{2}} \in I\) with \(a_{1}< {a_{2}}\). The following double inequality
$$ f \biggl(\frac{a_{1} + {a_{2}}}{2} \biggr) \leq\frac{1}{{a_{2}} - a_{1}} \int_{a_{1}}^{a_{2}} f(x)\,dx \leq\frac{f(a_{1}) + f({a_{2}})}{2} $$
(1)
is known in the literature as the Hadamard inequality for convex functions. Fejer [1] gave a generalization of (1) as follows. If \(f:[a_{1}, {a_{2}}] \rightarrow\mathbb{R}\) is a convex function and \(g:[a_{1}, {a_{2}}] \rightarrow\mathbb{R}\) is nonnegative, integrable, and symmetric about \(\frac{a_{1} + {a_{2}}}{2}\), then
$$ f \biggl(\frac{a_{1} + {a_{2}}}{2} \biggr) \int_{a_{1}}^{a_{2}} g(x)\,dx \leq \int_{a_{1}}^{a_{2}} f(x)g(x)\,dx \leq\frac{f(a_{1}) + f({a_{2}})}{2} \int _{a_{1}}^{a_{2}} g(x)\,dx. $$
(2)
Since the Hermite–Hadamard inequality and fractional integrals have a wide range of applications, many researchers extend their studies to Hermite–Hadamard-type inequalities involving fractional integrals.
In 2015, Iscan [2] obtained Hermite–Hadamard–Fejér-type inequalities for convex functions via fractional integrals. In 2017, Farid and Tariq [3] developed fractional integral inequalities for m-convex functions. Also, Farid and Abbas [4] established Hermite–Hadamard–Fejér-type inequalities for p-convex functions via generalized fractional integrals. For recent generalizations, we refer to [57], and [8].
Xi and Qi [9], Ozdemir et al. [10], and Sarikaya et al. [5] established Hermite–Hadamard-type inequalities for convex functions. Gordji et al. [11] introduced an important generalization of convexity known as η-convexity.
Definition 1.1
([11])
A function \(f: I \rightarrow\mathbb{R}\) is called η-convex if
$$ f\bigl(\alpha x + (1 - \alpha)y\bigr) \leq f(y) + \alpha\eta \bigl(f(x) , f(y)\bigr) $$
(3)
for all \(x, y \in I\) and \(\alpha\in[0, 1]\).
Theorem 1.1
([10])
Let \(f:I\subseteq[0, \infty) \rightarrow\mathbb{R}\) be a differentiable mapping on the interior \(I^{\circ}\) of I such that \(f'' \in L^{1}[{a_{1}}, {a_{2}}]\), where \({a_{1}}\), \({a_{2}} \in I\) with \({a_{1}}< {a_{2}}\). If \(|f|\) is convex on \([{a_{1}}, {a_{2}}]\), then
$$\begin{aligned} & \biggl\vert f \biggl(\frac{{a_{1}} + {a_{2}}}{2} \biggr) - \frac{1}{{a_{2}} - {a_{1}}} \int_{a_{1}}^{a_{2}} f(x)\,dx \biggr\vert \\ &\quad \leq\frac{({a_{2}} - {a_{1}})^{2}}{192} \biggl\{ \bigl\vert f''({a_{1}}) \bigr\vert + 6 \biggl\vert f'' \biggl( \frac{{a_{1}} + {a_{2}}}{2} \biggr) \biggr\vert + \bigl\vert f''({a_{2}}) \bigr\vert \biggr\} . \end{aligned}$$
(4)
Theorem 1.2
([10])
Let \(f:I\subseteq[0, \infty) \rightarrow\mathbb{R}\) be a differentiable mapping on \(I^{\circ}\) such that \(f'' \in L^{1}[{a_{1}}, {a_{2}}]\), where \({a_{1}}\), \({a_{2}} \in I\) with \({a_{1}}< {a_{2}}\). If \(|f''|^{q}\) for \(q \geq1\) is convex on \([{a_{1}}, {a_{2}}]\), then
$$\begin{aligned} & \biggl\vert f \biggl(\frac{{a_{1}} + {a_{2}}}{2} \biggr) - \frac{1}{{a_{2}} - {a_{1}}} \int_{a_{1}}^{a_{2}} f(x)\,dx \biggr\vert \\ &\quad \leq\frac{({a_{2}} - {a_{1}})^{2}}{48} \biggl(\frac{3}{4} \biggr)^{\frac {1}{q}} \biggl\{ \biggl(\frac{ \vert f''({a_{1}}) \vert ^{q}}{3} + \biggl\vert f'' \biggl(\frac{{a_{1}} + {a_{2}}}{2} \biggr) \biggr\vert ^{q} \biggr)^{\frac{1}{q}} \\ &\qquad {}+ \biggl( \biggl\vert f'' \biggl( \frac{{a_{1}} + {a_{2}}}{2} \biggr) \biggr\vert ^{q} + \frac{ \vert f''({a_{2}}) \vert ^{q}}{3} \biggr)^{\frac{1}{q}}\biggr\} . \end{aligned}$$
(5)
Lemma 1.1
([9])
Let \(f:I\subseteq\mathbb{R} \rightarrow\mathbb{R}\) be a differentiable function on \(I^{\circ}\) such that \(f' \in L^{1}[{a_{1}}, {a_{2}}]\), where \({a_{1}}\), \({a_{2}} \in I\) with \({a_{1}}< {a_{2}}\). If α, \(\beta\in\mathbb{R}\), then
$$\begin{aligned} &\frac{\alpha f({a_{1}}) + \beta f({a_{2}})}{2} + \frac{2 - \alpha- \beta}{2} f\biggl(\frac{{a_{1}} + {a_{2}}}{2}\biggr) - \frac{1}{{a_{2}} - {a_{1}}} \int _{a_{1}}^{a_{2}} f(x)\,dx \\ &\quad = \frac{{a_{2}} - {a_{1}}}{4} \int_{0}^{1} \biggl[(1 - \alpha- t) f' \biggl(t{a_{1}} + (1 - t) \frac{{a_{1}} + {a_{2}}}{2} \biggr) \\ &\qquad {}+ (\beta- t)f' \biggl(t\frac{{a_{1}} + {a_{2}}}{2} + (1 -t){a_{2}} \biggr) \biggr]\,dt. \end{aligned}$$
(6)
Lemma 1.2
([9])
For \(s> 0\) and \(0 \leq\epsilon\leq1\), we have
$$\begin{aligned} \begin{aligned} & \int_{0}^{1} |\epsilon- t|^{s} \,dt = \frac{\epsilon^{s + 1} + (1 - \epsilon)^{s + 1}}{s + 1}, \\ & \int_{0}^{1} t|\epsilon- t|^{s} \,dt = \frac{\epsilon^{s + 2} + (s + 1 + \epsilon)(1 - \epsilon)^{s + 1}}{(s + 1)(s + 2)}. \end{aligned} \end{aligned}$$
(7)
The paper is organized as follows. In Sect. 2, we establish Hermite–Hadamard- and Fejer-type inequalities for η-convex functions. In the last section, we derive Fractional integral inequalities for η-convex functions.

2 Hermite–Hadamard- and Fejer-type inequalities

Theorem 2.1
Let \(f:I\subseteq\mathbb{R} \rightarrow\mathbb{R}\) be an η-convex function with \(f \in L^{1}[a_{1}, {a_{2}}]\), where \(a_{1}\), \({a_{2}} \in I\) with \(a_{1}< {a_{2}}\),Then
$$\begin{aligned} &f \biggl(\frac{a_{1} + {a_{2}}}{2} \biggr) - \frac{1}{2({a_{2}} - a_{1})} \int_{a_{1}}^{a_{2}} \eta\bigl(f(a_{1} + {a_{2}} - x) , f(x)\bigr) \,dx \\ &\quad \leq\frac{1}{{a_{2}} - a_{1}} \int_{a_{1}}^{a_{2}} f(x)\,dx \leq f({a_{2}}) + \frac{1}{2}\eta\bigl(f(a_{1}) , f({a_{2}}) \bigr). \end{aligned}$$
(8)
Proof
According to (3), with \(x = ta_{1} + (1 - t){a_{2}}\), \(y = (1 - t)a_{1} + t{a_{2}}\), and \(\alpha= \frac{1}{2}\), where \(t \in[0, 1]\), we find that
$$ f \biggl(\frac{a_{1} + {a_{2}}}{2} \biggr) \leq f\bigl((1 - t)a_{1} + t{a_{2}}\bigr) + \frac{1}{2} \eta\bigl(f\bigl(ta_{1} + (1 - t){a_{2}}\bigr) , f\bigl((1 - t)a_{1} + t{a_{2}}\bigr)\bigr). $$
Thus by integrating we obtain
$$\begin{aligned} f \biggl(\frac{a_{1} + {a_{2}}}{2} \biggr) &\leq \int_{0}^{1}f\bigl((1 - t)a_{1} + t{a_{2}}\bigr)\,dt \\ &\quad {}+ \frac{1}{2} \int_{0}^{1}\eta\bigl(f\bigl(ta_{1} + (1 - t){a_{2}}\bigr) , f\bigl((1 - t)a_{1} + t{a_{2}} \bigr)\bigr)\,dt \\ &\leq\frac{1}{{a_{2}} - a_{1}} \int_{a_{1}}^{a_{2}} f(x)\,dx + \frac {1}{2({a_{2}} - a_{1})} \int_{a_{1}}^{a_{2}}\eta\bigl(f(a_{1} + {a_{2}} - x) , f(x)\bigr)\,dx, \end{aligned}$$
so that
$$ f \biggl(\frac{a_{1} + {a_{2}}}{2} \biggr) - \frac{1}{2({a_{2}} - a_{1})} \int_{a_{1}}^{a_{2}}\eta\bigl(f(a_{1} + {a_{2}} - x) , f(x)\bigr)\,dx \leq\frac {1}{{a_{2}} - a_{1}} \int_{a_{1}}^{a_{2}} f(x)\,dx, $$
(9)
and the first inequality is proved. Taking \(x = a_{1}\) and \(y = {a_{2}}\) in (3), we get
$$ f\bigl(\alpha a_{1} + (1 - \alpha)a_{2}\bigr) \leq f(a_{2}) + \alpha\eta\bigl(f(a_{1}), f(a_{2}) \bigr). $$
Integrating this inequality with respect to α over \([0, 1]\), we get
$$ \frac{1}{{a_{2}} - a_{1}} \int_{a_{1}}^{a_{2}} f(x)\,dx \leq f({a_{2}}) + \frac {1}{2} \eta\bigl(f(a_{1}) , f({a_{2}})\bigr). $$
(10)
Clearly, (9) and (10) yield (8). □
Remark 2.1
Taking \(\eta(x , y) = x - y\), we reduce (8) to inequality (1).
Theorem 2.2
Let f and g be nonnegative η-convex functions with \(fg \in L^{1}[a_{1}, {a_{2}}]\), where \(a_{1}, {a_{2}} \in I\), \(a_{1}< {a_{2}}\). Then
$$ \frac{1}{{a_{2}} - a_{1}} \int_{a_{1}}^{a_{2}} f(x)g(x)\,dx \leq M'(a_{1} , {a_{2}}), $$
(11)
where
$$\begin{aligned} M'(a_{1} , {a_{2}}) &= f({a_{2}})g({a_{2}}) + \frac{1}{2}f({a_{2}})\eta\bigl(g(a_{1}) , g({a_{2}})\bigr) + \frac{1}{2}g({a_{2}})\eta \bigl(f(a_{1}) , f({a_{2}})\bigr) \\ &\quad {}+ \frac{1}{3}\eta\bigl(f(a_{1}) , f({a_{2}}) \bigr) \eta\bigl(g(a_{1}) , g({a_{2}})\bigr). \end{aligned}$$
Proof
Since f and g are η-convex functions, we have
$$\begin{aligned}& f\bigl(ta_{1} + (1 - t){a_{2}}\bigr) \leq f({a_{2}}) + t \eta\bigl(f(a_{1}) , f({a_{2}}) \bigr), \\& g\bigl(ta_{1} + (1 - t){a_{2}}\bigr) \leq g({a_{2}}) + t \eta\bigl(g(a_{1}) , g({a_{2}}) \bigr) \end{aligned}$$
for all \(t \in[0, 1]\). Since f and g are nonnegative, we have
$$\begin{aligned}& f\bigl(ta_{1} + (1 - t){a_{2}}\bigr) g\bigl(ta_{1} + (1 - t){a_{2}}\bigr) \\& \quad \leq f({a_{2}})g({a_{2}}) + tf({a_{2}})\eta \bigl(g(a_{1}) , g({a_{2}})\bigr) \\& \qquad {} + tg({a_{2}})\eta\bigl(f(a_{1}) , f({a_{2}})\bigr) + t^{2} \eta\bigl(f(a_{1}) , f({a_{2}})\bigr) \eta\bigl(g(a_{1}) , g({a_{2}}) \bigr). \end{aligned}$$
Integrating both sides of the inequality over \([0, 1]\), we obtain
$$\begin{aligned}& \int_{0}^{1} f\bigl(ta_{1} + (1 - t){a_{2}}\bigr) g\bigl(ta_{1} + (1 - t){a_{2}} \bigr) \,dt \\& \quad \leq f({a_{2}})g({a_{2}}) + \frac{1}{2}f({a_{2}}) \eta\bigl(g(a_{1}) , g({a_{2}})\bigr) + \frac{1}{2}g({a_{2}}) \eta\bigl(f(a_{1}) , f({a_{2}})\bigr) \\& \qquad {} + \frac{1}{3}\eta\bigl(f(a_{1}) , f({a_{2}})\bigr) \eta\bigl(g(a_{1}) , g({a_{2}}) \bigr). \end{aligned}$$
Then
$$ \frac{1}{{a_{2}} - a_{1}} \int_{a_{1}}^{a_{2}} f(x)g(x)\,dx \leq M'(a_{1} , {a_{2}}). $$
 □
Remark 2.2
By taking \(\eta(x , y) = x - y\) inequality (11) becomes inequality (1.4) in [5].
Theorem 2.3
Let f be an η-convex function with \(f \in L^{1}[a_{1}, {a_{2}}]\), where \({a_{1}}, {a_{2}} \in I\), \(a_{1}< {a_{2}}\), and let \(g: [a_{1}, {a_{2}}] \rightarrow\mathbb{R}\) be nonnegative, integrable, and symmetric about \(\frac{(a_{1} + {a_{2}})}{2}\). Then
$$ \int_{a_{1}}^{a_{2}} f(y)g(y)\,dy \leq\biggl[f({a_{2}}) + \frac{1}{2}\eta\bigl(f(a_{1}), f({a_{2}})\bigr) \biggr] \int_{a_{1}}^{a_{2}} g(y)\,dy. $$
(12)
Proof
Since, f is an η-convex function and g is nonnegative, integrable. and symmetric about \(\frac{(a_{1} + {a_{2}})}{2}\), we find that
$$\begin{aligned} \int_{a_{1}}^{a_{2}} f(y)g(y)\,dy & = \frac{1}{2} \biggl[ \int_{a_{1}}^{a_{2}} f(y)g(y)\,dy + \int_{a_{1}}^{a_{2}} f(a_{1} + {a_{2}} - y)g(a_{1} + {a_{2}} - y)\,dy \biggr] \\ &=\frac{1}{2} \int_{a_{1}}^{a_{2}} \bigl[ \bigl(f(y) + f(a_{1} + {a_{2}} - y) \bigr)g(y)\,dy \bigr] \\ &=\frac{1}{2} \int_{a_{1}}^{a_{2}} \biggl[f \biggl(\frac{{a_{2}} - y}{{a_{2}} - a_{1}} a_{1} + \frac{y - a_{1}}{{a_{2}} - a_{1}} {a_{2}} \biggr) \\ &\quad {}+ f \biggl( \frac {y - a_{1}}{{a_{2}} - a_{1}} a_{1} + \frac{{a_{2}} - y}{{a_{2}} - a_{1}} {a_{2}} \biggr) \biggr]g(y)\,dy \\ &\leq\frac{1}{2} \int_{a_{1}}^{a_{2}} \biggl[ \biggl(f({a_{2}}) + \frac {{a_{2}} - y}{{a_{2}} - a_{1}}\eta\bigl(f(a_{1}), f({a_{2}})\bigr) \biggr) \\ &\quad {}+ \biggl(f({a_{2}}) + \frac{y - a_{1}}{{a_{2}} - a_{1}}\eta \bigl(f(a_{1}), f({a_{2}})\bigr) \biggr) \biggr]g(y)\,dy \\ &\leq\biggl[f({a_{2}}) + \frac{1}{2}\eta\bigl(f(a_{1}), f({a_{2}})\bigr)\biggr] \int_{a_{1}}^{a_{2}} g(y)\,dy. \end{aligned}$$
 □
Remark 2.3
If we choose \(\eta(x, y) = x - y\) and \(g(x) = 1\), then (12) reduces to the second inequality in (1), and if we take \(\eta (x, y) = x - y\), then (12) reduces to the second inequality in (2).

3 Fractional integral inequalities

Theorem 3.1
Let \(f:I \rightarrow\mathbb{R}\), \(I\subseteq\mathbb{R}\) be a differentiable mapping on \(I^{0}\) with \(f' \in L^{1}[{a_{1}}, {a_{2}}]\), where \({a_{1}}\), \({a_{2}} \in I\), \({a_{1}}< {a_{2}}\). If \(|f' (x)|^{q}\) for \(q \geq1\) is η-convex on \([{a_{1}}, {a_{2}}]\) and \(0 \leq\alpha\), \(\beta\leq1\), then
$$\begin{aligned}& \biggl\vert \frac{\alpha f({a_{1}}) + \beta f({a_{2}})}{2} +\frac{2 - \alpha - \beta}{2} f \biggl(\frac{{a_{1}} + {a_{2}}}{2} \biggr) - \frac{1}{{a_{2}} - {a_{1}}} \int_{a_{1}}^{a_{2}} f(x)\,dx \biggr\vert \\& \quad \leq\frac{{a_{2}} - {a_{1}}}{8} \biggl(\frac{1}{6} \biggr)^{\frac {1}{q}}\bigl\{ \bigl(1 - 2\alpha+ 2\alpha^{2}\bigr)^{1 - \frac{1}{q}} \bigl[ \bigl(6 - 12\alpha+ 12\alpha^{2} \bigr) \bigl\vert f'({a_{2}}) \bigr\vert ^{q} \\& \qquad {} + \bigl(4 - 9\alpha+ 12\alpha^{2} - 2\alpha^{3} \bigr) \eta \bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr) \bigr]^{\frac{1}{q}} \\& \qquad {} + \bigl(1 - 2\beta+ 2\beta^{2} \bigr)^{1 - \frac{1}{q}} \bigl[ \bigl(6 - 12\beta+ 12\beta^{2} \bigr) \bigl\vert f'({a_{2}}) \bigr\vert ^{q} \\& \qquad {} + \bigl(2 - 3\beta+ 2\beta^{3} \bigr) \eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr) \bigr]^{\frac{1}{q}} \bigr\} . \end{aligned}$$
(13)
Proof
For \(q> 1\), by Lemma 1.1, the η-convexity of \(|f' (x)|^{q}\) on \([{a_{1}}, {a_{2}}]\), and the Hölder integral inequality, we have
$$\begin{aligned}& \biggl\vert \frac{\alpha f({a_{1}}) + \beta f({a_{2}})}{2} + \frac{2 - \alpha - \beta}{2} f\biggl(\frac{{a_{1}} + {a_{2}}}{2} \biggr) - \frac{1}{{a_{2}} - {a_{1}}} \int_{a_{1}}^{a_{2}} f(x)\,dx \biggr\vert \\& \quad \leq\frac{{a_{2}} - {a_{1}}}{4} \biggl[ \int_{0}^{1} \vert 1 - \alpha- t \vert \biggl\vert f' \biggl(t{a_{1}} + (1 - t) \frac{{a_{1}} + {a_{2}}}{2} \biggr) \biggr\vert \,dt \\& \qquad {} + \int_{0}^{1} \vert \beta- t \vert \biggl\vert f' \biggl(t\frac{{a_{1}} + {a_{2}}}{2} + (1 -t){a_{2}} \biggr) \biggr\vert \,dt\biggr] \\& \quad \leq\frac{{a_{2}} - {a_{1}}}{4} \biggl\{ \biggl( \int_{0}^{1} \vert 1 - \alpha- t \vert \,dt \biggr)^{1 - \frac{1}{q}} \biggl[ \int_{0}^{1} \vert 1 - \alpha- t \vert \biggl( \bigl\vert f'({a_{2}}) \bigr\vert ^{q} \\& \qquad {} + \biggl(\frac{1 + t}{2}\biggr) \eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr) \biggr) \,dt \biggr]^{\frac{1}{q}} +\biggl( \int_{0}^{1} \vert \beta- t \vert \,dt \biggr)^{1 - \frac {1}{q}} \\& \qquad {} \times\biggl[ \int_{0}^{1} \vert \beta- t \vert \biggl( \bigl\vert f'({a_{2}}) \bigr\vert ^{q} + \biggl( \frac{t}{2}\biggr) \eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert \bigr)\biggr) \,dt\biggr]^{\frac {1}{q}}\biggr\} . \end{aligned}$$
(14)
Using Lemma 1.2, by a direct calculation we get
$$\begin{aligned}& \int_{0}^{1} \vert 1 - \alpha- t \vert \biggl( \bigl\vert f'({a_{2}}) \bigr\vert ^{q} + \biggl(\frac{1 + t}{2} \biggr) \eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr) \biggr) \,dt \\& \quad = \biggl( \bigl\vert f'({a_{2}}) \bigr\vert ^{q} + \frac{1}{2} \eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr) \biggr) \int_{0}^{1} \vert 1 - \alpha- t \vert \,dt \\& \qquad {} + \frac{1}{2} \eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr) \int_{0}^{1} t \vert 1 - \alpha- t \vert \,dt \\& \quad = \biggl( \bigl\vert f'({a_{2}}) \bigr\vert ^{q} + \frac{1}{2} \eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr) \biggr) \biggl(\frac{1}{2} - \alpha+ \alpha^{2} \biggr) \\& \qquad {} + \frac{1}{12} \eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr) \bigl[(1 - \alpha)^{3} + \alpha^{2}(3 - \alpha)\bigr] \\& \quad = \frac{1}{2} \bigl(1 - 2 \alpha+ 2 \alpha^{2}\bigr) \bigl\vert f'({a_{2}}) \bigr\vert ^{q} + \frac {1}{12} \bigl(4 - 9\alpha+ 12\alpha^{2} - 2 \alpha^{3}\bigr) \\& \qquad {} \times\eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr) \end{aligned}$$
and
$$\begin{aligned}& \int_{0}^{1} \vert \beta- t \vert \biggl( \bigl\vert f'({a_{2}}) \bigr\vert ^{q} + \biggl( \frac{t}{2}\biggr) \eta \bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr) \biggr) \,dt \\& \quad = \bigl\vert f'({a_{2}}) \bigr\vert ^{q} \int_{0}^{1} \vert \beta- t \vert \,dt + \frac{1}{2} \eta \bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr) \int_{0}^{1} t \vert \beta- t \vert \,dt \\& \quad = \bigl\vert f'({a_{2}}) \bigr\vert ^{q} \biggl(\frac{1}{2} - \beta- \beta^{2} \biggr) + \frac {1}{12} \eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr) \bigl(\beta^{3} + (2 + \beta) (1 - \beta)^{2}\bigr) \\& \quad =\frac{1}{2} \bigl(1 - 2\beta+ 2\beta^{2}\bigr) \bigl\vert f'({a_{2}}) \bigr\vert ^{q} + \frac{1}{12} \bigl(2 - 3\beta+ 2\beta^{3}\bigr) \eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr). \end{aligned}$$
Substituting these two inequalities into inequality (14) and using Lemma 1.2 result in inequality (13) for \(q> 1\).
For \(q = 1\), from Lemmas 1.1 and 1.2 it follows that
$$\begin{aligned}& \biggl\vert \frac{\alpha f({a_{1}}) + \beta f({a_{2}})}{2} + \frac{2 - \alpha - \beta}{2} f \biggl(\frac{{a_{1}} + {a_{2}}}{2} \biggr) - \frac{1}{{a_{2}} - {a_{1}}} \int_{a_{1}}^{a_{2}} f(x)\,dx \biggr\vert \\& \quad \leq\frac{{a_{2}} - {a_{1}}}{4} \biggl\{ \int_{0}^{1} \vert 1 - \alpha- t \vert \biggl( \bigl\vert f'({a_{2}}) \bigr\vert + \biggl( \frac{1 + t}{2} \biggr) \eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert , \bigl\vert f'({a_{2}}) \bigr\vert \bigr) \biggr)\,dt \\& \qquad {} + \int_{0}^{1} \vert \beta- t \vert \biggl( \bigl\vert f'({a_{2}}) \bigr\vert + \frac{t}{2} \eta \bigl( \bigl\vert f'({a_{1}}) \bigr\vert , \bigl\vert f'({a_{2}}) \bigr\vert \bigr) \biggr)\,dt\biggr\} \\& \quad = \frac{{a_{2}} - {a_{1}}}{48} \bigl\{ \bigl(6 - 12\alpha+ 12\alpha ^{2} \bigr) \bigl\vert f'({a_{2}}) \bigr\vert + \bigl(4 - 9 \alpha+ 12\alpha^{2} - 2\alpha ^{3} \bigr) \\& \qquad {} \times\eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert , \bigl\vert f'({a_{2}}) \bigr\vert \bigr) + \bigl(6 - 12\beta+ 12\beta ^{2} \bigr) \bigl\vert f'({a_{2}}) \bigr\vert \\& \qquad {} + \bigl(2 - 3\beta+ 2\beta^{3} \bigr) \eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert , \bigl\vert f'({a_{2}}) \bigr\vert \bigr)\bigr\} . \end{aligned}$$
(15)
 □
Remark 3.1
If we take \(\eta(x , y) = x - y\), then inequality (13) reduces to inequality (3.1) in [9].
Taking \(\alpha= \beta\) in Theorem 3.1, we derive the following corollary.
Corollary 3.1
Let \(f:I \rightarrow\mathbb{R}\), \(I\subseteq\mathbb{R}\) be a differentiable mapping on \(I^{0}\) with \(f'\in L^{1}[{a_{1}}, {a_{2}}]\), where \({a_{1}}, {a_{2}} \in I\), \({a_{1}}< {a_{2}}\). If \(|f' (x)|^{q}\) for \(q \geq1\) is η-convex on \([{a_{1}}, {a_{2}}]\) and \(0 \leq\alpha\leq1\), then
$$\begin{aligned}& \biggl\vert \frac{\alpha}{2}\bigl[f({a_{1}}) + f({a_{2}})\bigr] + (1 - \alpha) f \biggl(\frac{{a_{1}} + {a_{2}}}{2} \biggr) - \frac{1}{{a_{2}} - {a_{1}}} \int _{a_{1}}^{a_{2}} f(x)\,dx \biggr\vert \\& \quad \leq\frac{{a_{2}} - {a_{1}}}{8} \biggl(\frac{1}{6} \biggr)^{\frac {1}{q}}\bigl(1 - 2\alpha+ 2\alpha^{2}\bigr)^{1 - \frac{1}{q}} \bigl[ \bigl(6 - 12\alpha+ 12\alpha^{2}\bigr) \bigl\vert f'({a_{2}}) \bigr\vert ^{q} \\& \qquad {} + \bigl(4 - 9\alpha+ 12\alpha^{2} - 2\alpha^{3} \bigr) \eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr)\bigr]^{\frac{1}{q}} \\& \qquad {} + \bigl[\bigl(6 - 12\alpha+ 12\alpha^{2}\bigr) \bigl\vert f'({a_{2}}) \bigr\vert ^{q} + \bigl(2 - 3 \alpha +2\alpha^{3}\bigr) \eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr)\bigr]^{\frac{1}{q}}. \end{aligned}$$
(16)
Remark 3.2
If we take \(\eta(x , y) = x - y\), then inequality (16) reduces to inequality (3.5) in [9].
By choosing \(\alpha= \beta= \frac{1}{2}, \frac{1}{3}\), respectively, in Theorem 3.1 we can deduce the following inequalities.
Corollary 3.2
Let \(f:I \rightarrow\mathbb{R}\), \(I\subseteq\mathbb{R}\), be a differentiable mapping on \(I^{0}\) with \(f' \in L^{1}[{a_{1}} , {a_{2}}]\), where \({a_{1}}, {a_{2}} \in\) I, \({a_{1}}<{a_{2}}\). If \(|f' (x)|^{q}\) for \(q \geq1\) is η-convex on \([{a_{1}} , {a_{2}}]\) and \(0 \leq\alpha, \beta\leq1\), then
$$\begin{aligned} \begin{aligned} & \biggl\vert \frac{1}{2} \biggl[ \frac{f({a_{1}}) + f({a_{2}})}{2} + f \biggl(\frac{{a_{1}} + {a_{2}}}{2} \biggr) \biggr] - \frac{1}{{a_{2}} - {a_{1}}} \int_{a_{1}}^{a_{2}} f(x)\,dx \biggr\vert \\ &\quad \leq\frac{{a_{2}} - {a_{1}}}{16} \biggl(\frac{1}{12} \biggr)^{\frac {1}{q}} \bigl\{ \bigl[12 \bigl\vert f'({a_{2}}) \bigr\vert ^{q} + 9\eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr)\bigr]^{\frac{1}{q}} \\ &\qquad {} + \bigl[12 \bigl\vert f'({a_{2}}) \bigr\vert ^{q} + 3\eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr)\bigr]^{\frac {1}{q}}\bigr\} , \\ & \biggl\vert \frac{1}{6} \biggl[f({a_{1}}) + f({a_{2}}) + 4f \biggl(\frac{{a_{1}} + {a_{2}}}{2} \biggr) \biggr] - \frac{1}{{a_{2}} - {a_{1}}} \int _{a_{1}}^{a_{2}} f(x)\,dx \biggr\vert \\ &\quad \leq\frac{5({a_{2}} - {a_{1}})}{72} \biggl(\frac{1}{90} \biggr)^{\frac {1}{q}}\bigl\{ \bigl[90 \bigl\vert f'({a_{2}}) \bigr\vert ^{q} + 61\eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr)\bigr]^{\frac{1}{q}} \\ &\qquad {} + \bigl[90 \bigl\vert f'({a_{2}}) \bigr\vert ^{q} + 29\eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr)\bigr]^{\frac {1}{q}}\bigr\} . \end{aligned} \end{aligned}$$
(17)
Setting \(q = 1\) in Corollary 3.2, we have the following:
Corollary 3.3
Let \(f:I \rightarrow\mathbb{R}\), \(I\subseteq\mathbb{R}\), be a differentiable mapping on \(I^{0}\) with \(f' \in L^{1}[{a_{1}}, {a_{2}}]\), where \({a_{1}}, {a_{2}} \in I\), \({a_{1}}<{a_{2}}\). If \(|f' (x)|\) is η-convex on \([{a_{1}}, {a_{2}}]\), then
$$\begin{aligned} \begin{aligned} & \biggl\vert \frac{1}{2} \biggl[ \frac{f({a_{1}}) + f({a_{2}})}{2} + f \biggl(\frac{{a_{1}} + {a_{2}}}{2} \biggr)\biggr] - \frac{1}{{a_{2}} - {a_{1}}} \int_{a_{1}}^{a_{2}} f(x)\,dx \biggr\vert \\ &\quad \leq\frac{{a_{2}} - {a_{1}}}{16} \bigl[2 \bigl\vert f'({a_{2}}) \bigr\vert + \eta \bigl( \bigl\vert f'({a_{1}}) \bigr\vert , \bigl\vert f'({a_{2}}) \bigr\vert \bigr) \bigr], \\ & \biggl\vert \frac{1}{6} \biggl[f({a_{1}}) + f({a_{2}}) + 4f \biggl(\frac{{a_{1}} + {a_{2}}}{2} \biggr)\biggr] - \frac{1}{{a_{2}} - {a_{1}}} \int_{a_{1}}^{a_{2}} f(x)\,dx \biggr\vert \\ &\quad \leq\frac{5({a_{2}} - {a_{1}})}{72} \bigl[2 \bigl\vert f'({a_{2}}) \bigr\vert + \eta \bigl( \bigl\vert f'({a_{1}}) \bigr\vert , \bigl\vert f'({a_{2}}) \bigr\vert \bigr) \bigr]. \end{aligned} \end{aligned}$$
(18)
Remark 3.3
If we take \(\eta(x , y) = x - y\), then inequalities (17) and (18) reduce to inequalities (3.6) and (3.7) in [9].
Theorem 3.2
Let \(f:I \rightarrow\mathbb{R}\), \(I\subseteq\mathbb{R}\), be a differentiable mapping on \(I^{0}\) with \(f' \in L^{1}[{a_{1}}, {a_{2}}]\), where \({a_{1}}, {a_{2}} \in\) I, \({a_{1}}<{a_{2}}\). If \(|f' (x)|^{q}\) for \(q \geq1\) is η-convex on \([{a_{1}}, {a_{2}}]\) and \(0 \leq\alpha, \beta\leq1\), then
$$\begin{aligned}& \biggl\vert \frac{\alpha f({a_{1}}) + \beta f({a_{2}})}{2} + \frac{2 - \alpha- \beta}{2} f \biggl(\frac{{a_{1}} + {a_{2}}}{2} \biggr) - \frac {1}{{a_{2}} - {a_{1}}} \int_{a_{1}}^{a_{2}} f(x)\,dx \biggr\vert \\& \quad \leq\frac{{a_{2}} - {a_{1}}}{4} \biggl[\frac{1}{2(q + 1)(q + 2)} \biggr]^{\frac{1}{q}} \\& \qquad {} \times\bigl\{ \bigl[\bigl(\bigl[2(q + 2) (1 - \alpha)^{q + 1}+ 2(q + 2) \alpha^{q + 1}\bigr]\bigr) \bigl\vert f'({a_{2}}) \bigr\vert ^{q} \\& \qquad {} + \bigl[(q + 3 - \alpha) (1 - \alpha)^{q + 1} + (2q + 4 - \alpha)\alpha ^{q + 1}\bigr] \eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr)\bigr]^{\frac{1}{q}} \\& \qquad {} + \bigl[\bigl(2(q + 2) (1 - \beta)^{q + 1} + 2(q + 2) \beta^{q + 1}\bigr) \bigl\vert f'({a_{2}}) \bigr\vert ^{q} \\& \qquad {} + \bigl(\beta^{q + 2} + (q + 1 + \beta) (1 - \beta)^{q + 1}\bigr) \eta \bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr)\bigr]^{\frac{1}{q}}\bigr\} . \end{aligned}$$
(19)
Proof
For \(q> 1\), by the η-convexity of \(|f'(x)|^{q}\) on \([{a_{1}}, {a_{2}}]\) and Hölder’s integral inequality it follows that
$$\begin{aligned}& \biggl\vert \frac{\alpha f({a_{1}}) + \beta f({a_{2}})}{2} + \frac{2 - \alpha - \beta}{2} f\biggl(\frac{{a_{1}} + {a_{2}}}{2} \biggr) - \frac{1}{{a_{2}} - {a_{1}}} \int_{a_{1}}^{a_{2}} f(x)\,dx \biggr\vert \\& \quad \leq\frac{{a_{2}} - {a_{1}}}{4} \biggl[ \int_{0}^{1} \vert 1 - \alpha- t \vert \biggl\vert f' \biggl(t{a_{1}} + (1 - t) \frac{{a_{1}} + {a_{2}}}{2} \biggr) \biggr\vert \,dt \\& \qquad {} + \int_{0}^{1} \vert \beta- t \vert \biggl\vert f' \biggl(t\frac{{a_{1}} + {a_{2}}}{2} + (1 -t){a_{2}} \biggr) \biggr\vert \,dt\biggr] \\& \quad \leq\frac{{a_{2}} - {a_{1}}}{4} \biggl\{ \biggl( \int_{0}^{1} \,dt\biggr)^{1 - \frac{1}{q}} \biggl[ \int_{0}^{1} \vert 1 - \alpha- t \vert ^{q} \biggl( \bigl\vert f'({a_{2}}) \bigr\vert ^{q} + \biggl(\frac{1 + t}{2}\biggr) \\& \qquad {} \times\eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr)\biggr) \,dt \biggr]^{\frac {1}{q}}+ \biggl( \int_{0}^{1} \,dt\biggr)^{1 - \frac{1}{q}} \biggl[ \int_{0}^{1} \vert \beta- t \vert ^{q} \\& \qquad {} \times\biggl( \bigl\vert f'({a_{2}}) \bigr\vert ^{q} + \biggl(\frac{t}{2}\biggr) \eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert \bigr)\biggr) \,dt \biggr]^{\frac{1}{q}}\biggr\} \\& \quad \leq\frac{{a_{2}} - {a_{1}}}{4} \biggl\{ \biggl[ \int_{0}^{1} \vert 1 - \alpha- t \vert ^{q} \biggl( \bigl\vert f'({a_{2}}) \bigr\vert ^{q} + \biggl(\frac{1 + t}{2}\biggr) \eta \bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr)\biggr)\,dt \biggr]^{\frac{1}{q}} \\& \qquad {} + \biggl[ \int_{0}^{1} \vert \beta- t \vert ^{q} \biggl( \bigl\vert f'({a_{2}}) \bigr\vert ^{q} + \biggl(\frac {t}{2}\biggr) \eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert \bigr)\biggr)\,dt \biggr]^{\frac {1}{q}}\biggr\} . \end{aligned}$$
(20)
By Lemma 1.2 we have
$$\begin{aligned}& \int_{0}^{1} \vert 1 - \alpha- t \vert ^{q} \biggl( \bigl\vert f'({a_{2}}) \bigr\vert ^{q} + \biggl(\frac{1 + t}{2} \biggr) \eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr) \biggr)\,dt \\& \quad = \biggl( \bigl\vert f'({a_{2}}) \bigr\vert ^{q} + \frac{1}{2}\eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr) \biggr) \int_{0}^{1} \vert 1 - \alpha- t \vert ^{q} \,dt \\& \qquad {} + \frac{1}{2}\eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr) \int_{0}^{1} t \vert 1 - \alpha- t \vert ^{q} \,dt \\& \quad = \biggl( \bigl\vert f'({a_{2}}) \bigr\vert ^{q} + \frac{1}{2}\eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr) \biggr) \biggl(\frac{(1 - \alpha)^{q + 1} + \alpha^{q + 1}}{q + 1} \biggr) \\& \qquad {} + \frac{1}{2}\eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr) \biggl( \frac{(1 - \alpha)^{q +2} + (q + 2 - \alpha) \alpha^{q + 1}}{(q + 1)(q + 2)} \biggr) \\& \quad = \frac{1}{2(q + 1)(q + 2)} \bigl[2(q + 2) (1 - \alpha)^{q + 1} + 2(q + 2) \alpha^{q + 1} \bigr] \bigl\vert f'({a_{2}}) \bigr\vert ^{q} \\& \qquad {} + \bigl[2(q + 2) (1 - \alpha)^{q + 1} + (q + 2) \alpha^{q + 1} + (1 - \alpha)^{q +2} + (q + 2 - \alpha) \alpha^{q + 1} \bigr] \\& \qquad {} \times\eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr) \\& \quad = \frac{1}{2(q + 1)(q + 2)} \bigl[2(q + 2) (1 - \alpha)^{q + 1} + 2(q + 2) \alpha^{q + 1} \bigr] \bigl\vert f'({a_{2}}) \bigr\vert ^{q} \\& \qquad {} + \bigl[(q + 3 - \alpha) (1 - \alpha)^{q +1} + (2q + 4 - \alpha )\alpha^{q + 1} \bigr]\eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr) \end{aligned}$$
and
$$\begin{aligned}& \int_{0}^{1} \vert \beta- t \vert ^{q} \biggl( \bigl\vert f'({a_{2}}) \bigr\vert ^{q} + \biggl(\frac {t}{2} \biggr) \eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr) \biggr)\,dt \\& \quad = \bigl\vert f'({a_{2}}) \bigr\vert ^{q} \int_{0}^{1} \vert \beta- t \vert ^{q} \,dt + \frac{1}{2}\eta \bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr) \int_{0}^{1} t \vert \beta- t \vert ^{q} \,dt \\& \quad = \bigl\vert f'({a_{2}}) \bigr\vert ^{q} \biggl(\frac{\beta^{q + 1} + (1 - \beta)^{q + 1}}{q + 1} \biggr) + \frac{1}{2}\eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr) \\& \qquad {} \times \biggl(\frac{\beta^{q + 2} + (q + 1 + \beta)(1 - \beta)^{q + 1}}{(q + 1)(q + 2)} \biggr) \\& \quad = \frac{1}{2(q + 1)(q + 2)} \bigl\{ \bigl[2(q + 2) (1 - \beta)^{q + 1} + 2(q + 2)\beta^{q + 1} \bigr] \bigl\vert f'({a_{2}}) \bigr\vert ^{q} \\& \qquad {} + \bigl[\beta^{q + 2}+ (q + 1 + \beta) (1 - \beta)^{q + 1} \bigr] \eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr) \bigr\} . \end{aligned}$$
Substituting the last two equalities into inequality (20) yields inequality (19) for \(q> 1\).
For \(q = 1\), the proof is the same as that of (15), and the theorem is proved. □
Remark 3.4
If we take \(\eta(x , y) = x - y\), then inequality (19) reduces to inequality (3.8) in [9].
Similarly to corollaries of Theorem 3.1, we can obtain the following corollaries of Theorem 3.2.
Corollary 3.4
Let \(f:I\subseteq\mathbb{R} \rightarrow\mathbb{R}\) be a differentiable mapping on \(I^{\circ}\) with \(f' \in L^{1}[{a_{1}}, {a_{2}}]\), where \({a_{1}}, {a_{2}} \in I\), \({a_{1}}< {a_{2}}\). If \(|f' (x)|^{q}\) for \(q \geq1\) is η-convex on \([{a_{1}}, {a_{2}}]\) and \(0 \leq\alpha\leq 1\), then
$$\begin{aligned}& \biggl\vert \frac{\alpha}{2}\bigl[f({a_{1}}) + f({a_{2}})\bigr] + (1 - \alpha) f \biggl(\frac{{a_{1}} + {a_{2}}}{2} \biggr) - \frac{1}{{a_{2}} - {a_{1}}} \int _{a_{1}}^{a_{2}} f(x)\,dx \biggr\vert \\& \quad \leq\frac{{a_{2}} - {a_{1}}}{4} \biggl[\frac{1}{2(q + 1)(q + 2)} \biggr]^{\frac{1}{q}} \\& \qquad {} \times\bigl\{ \bigl[ \bigl(2(q + 2) (1 - \alpha)^{q + 1} + 2(q + 2) \alpha^{q + 1} \bigr) \bigl\vert f'({a_{2}}) \bigr\vert ^{q} \\& \qquad {} + \bigl((q + 3 - \alpha) (1 - \alpha)^{q + 1} + (2q + 4 - \alpha )\alpha^{q + 1}\bigr) \eta\bigl( \bigl\vert f'(a) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr) \bigr]^{\frac {1}{q}} \\& \qquad {} +\bigl[ \bigl(2(q + 2) (1 - \alpha)^{q + 1} + 2(q + 2) \alpha^{q + 1} \bigr) \bigl\vert f'({a_{2}}) \bigr\vert ^{q} \\& \qquad {} + \bigl(\alpha^{q + 2} + (q + 1 + \alpha) (1 - \alpha)^{q + 1} \bigr) \eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr)\bigr]^{\frac {1}{q}}\bigr\} . \end{aligned}$$
(21)
Remark 3.5
If we take \(\eta(x , y) = x - y\), then inequality (21) reduces to inequality (3.11) in [9].
Corollary 3.5
Let \(f:I\subseteq\mathbb{R} \rightarrow\mathbb{R}\) be a differentiable mapping on \(I^{\circ}\) with \(f' \in L^{1}[{a_{1}}, {a_{2}}]\), where \({a_{1}}, {a_{2}} \in I\), \({a_{1}}< {a_{2}}\). If \(|f' (x)|^{q}\) for \(q \geq1\) is η-convex on \([{a_{1}}, {a_{2}}]\) and \(0 \leq\alpha\), \(\beta\leq1\), then
$$\begin{aligned} \begin{aligned} & \biggl\vert \frac{1}{2} \biggl[\frac{f({a_{1}}) + f({a_{2}})}{2} + f \biggl(\frac{{a_{1}} + {a_{2}}}{2} \biggr) \biggr] - \frac{1}{{a_{2}} - {a_{1}}} \int_{a_{1}}^{a_{2}} f(x)\,dx \biggr\vert \\ &\quad \leq\frac{{a_{2}} - {a_{1}}}{8} \biggl[\frac{1}{4(q + 1)(q + 2)} \biggr]^{\frac{1}{q}} \\ &\qquad {} \times\bigl\{ \bigl[ \bigl((4q + 8) \bigl\vert f'({a_{2}}) \bigr\vert ^{q} + (3q + 6) \eta \bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr) \bigr) \bigr]^{\frac{1}{q}} \\ &\qquad {} + \bigl[ \bigl((4q + 8) \bigl\vert f'({a_{2}}) \bigr\vert ^{q} + (q + 2) \eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr) \bigr) \bigr]^{\frac{1}{q}}\bigr\} , \\ & \biggl\vert \frac{1}{6} \biggl[f({a_{1}}) + f({a_{2}}) + 4f \biggl(\frac{{a_{1}} + {a_{2}}}{2} \biggr) \biggr] - \frac{1}{{a_{2}} - {a_{1}}} \int _{a_{1}}^{a_{2}} f(x)\,dx \biggr\vert \\ &\quad \leq\frac{{a_{2}} - {a_{1}}}{12} \biggl[\frac{1}{18(q + 1)(q + 2)} \biggr]^{\frac{1}{q}} \bigl\{ \bigl[ \bigl((3q + 6) (2)^{q + 2} + 6(q + 2) \bigr) \bigl\vert f'({a_{2}}) \bigr\vert ^{q} \\ &\qquad {} + \bigl((3q + 8) (2)^{q + 1} + (6q + 11)\eta\bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q}\bigr) \bigr)\bigr]^{\frac{1}{q}}+\bigl[\bigl((3q + 6) (2)^{q + 2} \\ &\qquad {} + 6(q + 2)\bigr) \bigl\vert f'({a_{2}}) \bigr\vert ^{q} + \bigl(1 + (3q + 4) (2)^{q + 1} \bigr) \eta \bigl( \bigl\vert f'({a_{1}}) \bigr\vert ^{q} , \bigl\vert f'({a_{2}}) \bigr\vert ^{q} \bigr)\bigr]^{\frac{1}{q}}\bigr\} . \end{aligned} \end{aligned}$$
(22)
Remark 3.6
If we take \(\eta(x , y) = x - y\), then inequality (22) reduces to inequality (3.12) in [9] respectively.
If we take \(q = 1\) in Corollary 3.5, then we get Corollary 3.3.
To prove our next results, we consider the following lemma proved in [10].
Lemma 3.1
Let \(f:I \rightarrow\mathbb{R}\), \(I\subseteq\mathbb{R}\) be a differentiable mapping on \(I^{0}\) with \(f'' \in L^{1}[{a_{1}}, {a_{2}}]\), where \({a_{1}}, {a_{2}} \in\) I and \({a_{1}}<{a_{2}}\). Then
$$\begin{aligned}& \frac{1}{{a_{2}} -{a_{1}}} \int_{a_{1}}^{a_{2}} f(x)\,dx - f \biggl(\frac {{a_{1}} + {a_{2}}}{2} \biggr) \\& \quad = \frac{({a_{2}} - {a_{1}})^{2}}{16} \biggl[ \int_{0}^{1} t^{2}f'' \biggl(t\frac {{a_{1}} + {a_{2}}}{2} + (1 - t){a_{1}} \biggr)\,dt \\& \qquad {} + \int_{0}^{1} (t - 1)^{2} f'' \biggl(t{a_{2}} + (1 - t) \frac{{a_{1}} + {a_{2}}}{2} \biggr)\,dt \biggr]. \end{aligned}$$
(23)
Theorem 3.3
Let \(f : I \subset[0, \infty) \rightarrow\mathbb{R}\) be a differentiable mapping on \(I^{\circ}\) with \(f'' \in L^{1}[{a_{1}}, {a_{2}}]\), where \({a_{1}}, {a_{2}} \in I\) and \({a_{1}}< {a_{2}}\). If \(|f''|\) is η-convex on \([{a_{1}}, {a_{2}}]\), then
$$\begin{aligned}& \biggl\vert f \biggl(\frac{{a_{1}} + {a_{2}}}{2} \biggr) - \frac{1}{{a_{2}} -{a_{1}}} \int_{a_{1}}^{a_{2}} f(x)\,dx \biggr\vert \\& \quad \leq\frac{({a_{2}} - {a_{1}})^{2}}{16} \biggl[\frac{1}{3} \biggl( \bigl\vert f''({a_{1}}) \bigr\vert + \biggl\vert f'' \biggl(\frac{{a_{1}} + {a_{2}}}{2} \biggr) \biggr\vert \biggr) \\& \qquad {} +\frac{1}{4} \biggl(\eta \biggl( \biggl\vert f'' \biggl(\frac{{a_{1}} + {a_{2}}}{2} \biggr) \biggr\vert , \bigl\vert f''({a_{1}}) \bigr\vert \biggr) + \frac{1}{3} \eta \biggl( \bigl\vert f''({a_{2}}) \bigr\vert , \biggl\vert f'' \biggl( \frac{{a_{1}} + {a_{2}}}{2} \biggr) \biggr\vert \biggr) \biggr) \biggr]. \end{aligned}$$
(24)
Proof
From Lemma 3.1 we have
$$\begin{aligned}& \biggl\vert f\biggl(\frac{{a_{1}} + {a_{2}}}{2}\biggr) - \frac{1}{{a_{2}} -{a_{1}}} \int_{a_{1}}^{a_{2}} f(x)\,dx \biggr\vert \\& \quad \leq\frac{({a_{2}} - {a_{1}})^{2}}{16}\biggl[ \int_{0}^{1} t^{2} \biggl\vert f'' \biggl(t\frac{{a_{1}} + {a_{2}}}{2} + (1 - t){a_{1}}\biggr) \biggr\vert \,dt \\& \qquad {} + \int_{0}^{1} (t - 1)^{2} \biggl\vert f''\biggl(t{a_{2}} + (1 - t) \frac{{a_{1}} + {a_{2}}}{2}\biggr) \biggr\vert \,dt\biggr] \\& \quad \leq\frac{({a_{2}} - {a_{1}})^{2}}{16}\biggl[ \int_{0}^{1} t^{2} \biggl( \bigl\vert f''({a_{1}}) \bigr\vert + t\eta\biggl( \biggl\vert f''\biggl(\frac{{a_{1}} + {a_{2}}}{2}\biggr) \biggr\vert , \bigl\vert f''({a_{1}}) \bigr\vert \biggr)\biggr)\,dt \biggr] \\& \qquad {} + \frac{({a_{2}} - {a_{1}})^{2}}{16}\biggl[ \int_{0}^{1}(t - 1)^{2}\biggl( \biggl\vert f''\biggl(\frac{{a_{1}} + {a_{2}}}{2}\biggr) \biggr\vert \\& \qquad {}+ t\eta\biggl( \bigl\vert f''({a_{2}}) \bigr\vert , \biggl\vert f''\biggl(\frac{{a_{1}} + {a_{2}}}{2} \biggr) \biggr\vert \biggr)\biggr)\,dt\biggr] \\& \quad = \frac{({a_{2}} - {a_{1}})^{2}}{16}\biggl[\frac{1}{3} \bigl\vert f''({a_{1}}) \bigr\vert + \frac {1}{3} \biggl\vert f''\biggl( \frac{{a_{1}} + {a_{2}}}{2}\biggr) \biggr\vert + \frac {1}{4}\eta\biggl( \biggl\vert f''\biggl(\frac{{a_{1}} + {a_{2}}}{2} \biggr) \biggr\vert , \bigl\vert f''({a_{1}}) \bigr\vert \biggr) \\& \qquad {} + \frac{1}{12}\eta\biggl( \bigl\vert f''({a_{2}}) \bigr\vert , \biggl\vert f''\biggl( \frac {{a_{1}} + {a_{2}}}{2}\biggr) \biggr\vert \biggr)\biggr] \\& \quad = \frac{({a_{2}} - {a_{1}})^{2}}{16}\biggl[\frac{1}{3} \biggl( \bigl\vert f''({a_{1}}) \bigr\vert + \biggl\vert f''\biggl(\frac{{a_{1}} + {a_{2}}}{2}\biggr) \biggr\vert \biggr) \\& \qquad {} +\frac{1}{4}\biggl(\eta\biggl( \biggl\vert f''\biggl(\frac{{a_{1}} + {a_{2}}}{2}\biggr) \biggr\vert , \bigl\vert f''({a_{1}}) \bigr\vert \biggr)+\frac{1}{3} \eta \biggl( \bigl\vert f''({a_{2}}) \bigr\vert , \biggl\vert f''\biggl( \frac{{a_{1}} + {a_{2}}}{2} \biggr) \biggr\vert \biggr)\biggr)\biggr]. \end{aligned}$$
This proves inequality (24). □
Remark 3.7
If we take \(\eta(x, y) = x - y\), then inequality (24) reduces to inequality (4).
Theorem 3.4
Let \(f : I \subset[0, \infty) \rightarrow\mathbb{R}\) be a differentiable mapping on \(I^{\circ}\) with \(f''\in L^{1}[{a_{1}}, {a_{2}}]\), where \({a_{1}}, {a_{2}} \in I\) and \({a_{1}}< {a_{2}}\). If \(|f''|^{q}\) for \(q \geq1\) with \(\frac{1}{p} + \frac{1}{q}= 1\) is η-convex on \([{a_{1}}, {a_{2}}]\), then
$$\begin{aligned}& \biggl\vert f \biggl(\frac{{a_{1}} + {a_{2}}}{2} \biggr) - \frac{1}{{a_{2}} -{a_{1}}} \int_{a_{1}}^{a_{2}} f(x)\,dx \biggr\vert \\& \quad \leq\frac{({a_{2}} - {a_{1}})^{2}}{16} \biggl(\frac{1}{3} \biggr)^{\frac {1}{p}} \biggl[ \biggl(\frac{1}{3} \bigl\vert f''({a_{1}}) \bigr\vert ^{q} + \frac{1}{4}\eta \biggl( \biggl\vert f'' \biggl(\frac{{a_{1}} + {a_{2}}}{2} \biggr) \biggr\vert ^{q}, \bigl\vert f''({a_{1}}) \bigr\vert ^{q} \biggr) \biggr)^{\frac{1}{q}} \\& \qquad {} + \biggl(\frac{1}{3} \biggl\vert f'' \biggl(\frac{{a_{1}} + {a_{2}}}{2} \biggr) \biggr\vert ^{q} + \frac{1}{12}\eta \biggl( \bigl\vert f''({a_{2}}) \bigr\vert ^{q} , \biggl\vert f'' \biggl( \frac{{a_{1}} + {a_{2}}}{2} \biggr) \biggr\vert ^{q} \biggr) \biggr)^{\frac{1}{q}}\biggr]. \end{aligned}$$
(25)
Proof
Suppose that \(p \geq1\). From Lemma 3.1, using the power mean inequality, we have
$$\begin{aligned}& \biggl\vert f\biggl(\frac{{a_{1}} + {a_{2}}}{2}\biggr) - \frac{1}{{a_{2}} -{a_{1}}} \int_{a_{1}}^{a_{2}} f(x)\,dx \biggr\vert \\& \quad \leq\frac{({a_{2}} - {a_{1}})^{2}}{16}\biggl[ \int_{0}^{1} t^{2} \biggl\vert f'' \biggl(t\frac{{a_{1}} + {a_{2}}}{2} + (1 - t){a_{1}}\biggr) \biggr\vert \,dt \\& \qquad {} + \int_{0}^{1} (t - 1)^{2} \biggl\vert f''\biggl(t{a_{2}} + (1 - t) \frac{{a_{1}} + {a_{2}}}{2}\biggr) \biggr\vert \,dt\biggr] \\& \quad \leq\frac{({a_{2}} - {a_{1}})^{2}}{16}\biggl( \int_{0}^{1} t^{2} \,dt \biggr)^{\frac{1}{p}}\biggl( \int_{0}^{1} t^{2} \biggl\vert f''\biggl(t\frac{{a_{1}} + {a_{2}}}{2} + (1 - t){a_{1}}\biggr) \biggr\vert ^{q} \,dt\biggr)^{\frac {1}{q}} \\& \qquad {} + \frac{({a_{2}} - {a_{1}})^{2}}{16}\biggl( \int_{0}^{1} (t - 1)^{2} \,dt \biggr)^{\frac{1}{p}}\biggl( \int_{0}^{1}(t - 1)^{2} \biggl\vert f''\biggl(t{a_{2}} + (1 - t)\frac{{a_{1}} + {a_{2}}}{2} \biggr) \biggr\vert ^{q} \,dt\biggr)^{\frac {1}{q}}. \end{aligned}$$
Because \(|f''|^{q}\) is η-convex, we have
$$\begin{aligned}& \int_{0}^{1} t^{2} \biggl\vert f'' \biggl(t\frac{{a_{1}} + {a_{2}}}{2} + (1 - t){a_{1}} \biggr) \biggr\vert ^{q} \,dt \\& \quad \leq\frac{1}{3} \bigl\vert f''({a_{1}}) \bigr\vert ^{q} + \frac{1}{4} \biggl(\eta \biggl( \biggl\vert f'' \biggl(\frac{{a_{1}} + {a_{2}}}{2} \biggr) \biggr\vert ^{q}, \bigl\vert f''({a_{1}}) \bigr\vert ^{q} \biggr) \biggr) \end{aligned}$$
and
$$\begin{aligned}& \int_{0}^{1}(t - 1)^{2} \biggl\vert f'' \biggl(t{a_{2}} + (1 - t) \frac{{a_{1}} + {a_{2}}}{2} \biggr) \biggr\vert ^{q} \,dt \\& \quad \leq\frac{1}{3} \biggl\vert f'' \biggl( \frac{{a_{1}} + {a_{2}}}{2} \biggr) \biggr\vert ^{q} + \frac{1}{12}\eta \biggl( \bigl\vert f''({a_{2}}) \bigr\vert ^{q} , \biggl\vert f'' \biggl( \frac{{a_{1}} + {a_{2}}}{2} \biggr) \biggr\vert ^{q} \biggr). \end{aligned}$$
Therefore we have
$$\begin{aligned}& \biggl\vert f \biggl(\frac{{a_{1}} + {a_{2}}}{2} \biggr) - \frac{1}{{a_{2}} -{a_{1}}} \int_{a_{1}}^{a_{2}} f(x)\,dx \biggr\vert \\& \quad \leq\frac{({a_{2}} - {a_{1}})^{2}}{16} \biggl(\frac{1}{3} \biggr)^{\frac {1}{p}} \biggl\{ \biggl(\frac{1}{3} \bigl\vert f''({a_{1}}) \bigr\vert ^{q} + \frac{1}{4}\eta \biggl( \biggl\vert f'' \biggl(\frac{{a_{1}} + {a_{2}}}{2} \biggr) \biggr\vert ^{q}, \bigl\vert f''({a_{1}}) \bigr\vert ^{q} \biggr) \biggr)^{\frac{1}{q}} \\& \qquad {}+ \frac{1}{3} \biggl\vert f'' \biggl( \frac{{a_{1}} + {a_{2}}}{2} \biggr) \biggr\vert ^{q} + \frac{1}{12}\eta \biggl( \bigl\vert f''({a_{2}}) \bigr\vert ^{q} , \biggl\vert f'' \biggl( \frac {{a_{1}} + {a_{2}}}{2} \biggr) \biggr\vert ^{q} \biggr)^{\frac{1}{q}} \biggr\} . \end{aligned}$$
 □
Remark 3.8
If we take \(\eta(x, y) = x - y\), then inequality (25) reduces to inequality (5).

4 Application to means

For two positive numbers \(a_{1} > 0\) and \(a_{2} > 0\), define
$$ \begin{aligned} &A(a_{1}, a_{2}) = \frac{a_{1} + a_{2}}{2}, \qquad G(a_{1}, a_{2}) = \sqrt{a_{1}a_{2}}, \qquad H(a_{1}, a_{2}) = \frac{2a_{1}a_{2}}{a_{1} + a_{2}}, \\ &L(a_{1}, a_{2}) = \textstyle\begin{cases} [\frac{a_{2}^{s+1} - a_{1}^{s+1}}{(s + 1)(a_{2} - a_{1})} ]^{\frac {1}{s}}, & a_{1} \neq a_{2}, \\ a_{1}, & a_{1} = a_{2}, \end{cases}\displaystyle \\ &I(a_{1}, a_{2}) = \textstyle\begin{cases} \frac{1}{e} (\frac{a_{2}^{a_{2}}}{a_{1}^{a_{1}}} )^{\frac{1}{a_{2} - a_{1}}}, & a_{1} \neq a_{2}, \\ a_{1}, & a_{1} = a_{2}, \end{cases}\displaystyle \\ &H_{w,s}(a_{1}, a_{2}) = \textstyle\begin{cases} [\frac{a_{1}^{s} + w(a_{1}a_{2})^{\frac{s}{2}} + a_{2}^{s}}{w + 2} ]^{\frac{1}{s}}, & s\neq0, \\ \sqrt{a_{1}a_{2}}, & s = 0, \end{cases}\displaystyle \end{aligned} $$
(26)
for \(0 \leq w < \infty\). These means are respectively called the arithmetic, geometric, harmonic, generalized logarithmic, identric, and Heronian means of two positive numbers \(a_{1}\) and \(a_{2}\).
Applying Theorems 3.1 and 3.2 to \(f(x) = x^{s}\) for \(s \neq0\) and \(x > 0\) results in the following inequalities for means.
Theorem 4.1
Let \(a_{1} > 0\), \(a_{2} > 0\), \(a_{1} \neq a_{2}\), \(q\geq1 \), and either \(s> 1\) and \((s -1)q \geq1\) or \(s < 0\). Then
$$\begin{aligned}& \biggl\vert A\bigl(\alpha a_{1}^{s}, \beta a_{2}^{s}\bigr) + \frac{2 - \alpha- \beta}{2} A^{s}(a_{1}, a_{2}) - L^{s}(a_{1}, a_{2}) \biggr\vert \\& \quad \leq\frac{{a_{2}} - {a_{1}}}{8} \biggl(\frac{1}{6} \biggr)^{\frac {1}{q}}\bigl\{ \bigl(1 - 2\alpha+ 2\alpha^{2}\bigr)^{1 - \frac{1}{q}} \bigl[ \bigl(6 - 12\alpha+ 12\alpha^{2} \bigr) \bigl\vert sa_{2}^{s - 1} \bigr\vert ^{q} \\& \qquad {} + \bigl(4 - 9\alpha+ 12\alpha^{2} - 2\alpha^{3} \bigr) \eta\bigl( \bigl\vert sa_{1}^{s - 1} \bigr\vert ^{q} , \bigl\vert sa_{2}^{s - 1} \bigr\vert ^{q}\bigr) \bigr]^{\frac{1}{q}} \\& \qquad {} + \bigl(1 - 2\beta+ 2\beta^{2} \bigr)^{1 - \frac{1}{q}} \bigl[ \bigl(6 - 12\beta+ 12\beta^{2} \bigr) \bigl\vert sa_{2}^{s - 1} \bigr\vert ^{q} \\& \qquad {} + \bigl(2 - 3\beta+ 2\beta^{3} \bigr) \eta\bigl( \bigl\vert sa_{1}^{s - 1} \bigr\vert ^{q} , \bigl\vert sa_{2}^{s - 1} \bigr\vert ^{q}\bigr) \bigr]^{\frac{1}{q}} \bigr\} . \end{aligned}$$
(27)
Theorem 4.2
Let \(a_{1} > 0\), \(a_{2} > 0\), \(a_{1} \neq a_{2}\), \(q\geq1 \), and either \(s> 1\) and \((s -1)q \geq1\) or \(s < 0\). Then
$$\begin{aligned}& \biggl\vert A\bigl(\alpha a_{1}^{s}, \beta a_{2}^{s}\bigr) + \frac{2 - \alpha- \beta}{2} A^{s}(a_{1}, a_{2}) - L^{s}(a_{1}, a_{2}) \biggr\vert \\& \quad \leq\frac{{a_{2}} - {a_{1}}}{4} \biggl[\frac{1}{2(q + 1)(q + 2)} \biggr]^{\frac{1}{q}} \\& \qquad {} \times\bigl\{ \bigl[\bigl(\bigl[2(q + 2) (1 - \alpha)^{q + 1}+ 2(q + 2) \alpha^{q + 1}\bigr]\bigr) \bigl\vert sa_{2}^{s-1} \bigr\vert ^{q} \\& \qquad {} + \bigl[(q + 3 - \alpha) (1 - \alpha)^{q + 1} + (2q + 4 - \alpha)\alpha ^{q + 1}\bigr] \eta\bigl( \bigl\vert sa_{1}^{s-1} \bigr\vert ^{q} , \bigl\vert sa_{2}^{s-1} \bigr\vert ^{q}\bigr)\bigr]^{\frac{1}{q}} \\& \qquad {} + \bigl[\bigl(2(q + 2) (1 - \beta)^{q + 1} + 2(q + 2) \beta^{q + 1}\bigr) \bigl\vert sa_{2}^{s-1} \bigr\vert ^{q} \\& \qquad {} + \bigl(\beta^{q + 2} + (q + 1 + \beta) (1 - \beta)^{q + 1}\bigr) \eta \bigl( \bigl\vert sa_{1}^{s-1} \bigr\vert ^{q} , \bigl\vert sa_{2}^{s-1} \bigr\vert ^{q}\bigr)\bigr]^{\frac{1}{q}}\bigr\} . \end{aligned}$$
(28)
Taking \(f(x) = \ln x\) for \(x>0\) in Theorems 3.1 and 3.2 results in the following inequalities for means.
Theorem 4.3
For \(a_{1} > 0\), \(a_{2} > 0\), \(a_{1} \neq a_{2}\) and \(q\geq1\), we have
$$\begin{aligned}& \biggl\vert \frac{\ln G^{2}(a_{1}^{\alpha}, a_{2}^{\beta})}{2} + \frac{2 - \alpha - \beta}{2}\ln A(a_{1}, a_{2}) - \ln I(a_{1}, a_{2}) \biggr\vert \\& \quad \leq\frac{{a_{2}} - {a_{1}}}{8} \biggl(\frac{1}{6} \biggr)^{\frac {1}{q}}\biggl\{ \bigl(1 - 2\alpha+ 2\alpha^{2}\bigr)^{1 - \frac{1}{q}} \biggl[ \bigl(6 - 12\alpha+ 12\alpha^{2} \bigr) \biggl( \frac{1}{a_{2}} \biggr)^{q} \\& \qquad {} + \bigl(4 - 9\alpha+ 12\alpha^{2} - 2\alpha^{3} \bigr) \eta \biggl( \biggl(\frac{1}{a_{1}} \biggr)^{q} , \biggl( \frac{1}{a_{2}} \biggr)^{q} \biggr) \biggr]^{\frac{1}{q}} \\& \qquad {} + \bigl(1 - 2\beta+ 2\beta^{2} \bigr)^{1 - \frac{1}{q}} \biggl[ \bigl(6 - 12\beta+ 12\beta^{2} \bigr) \biggl(\frac{1}{a_{2}} \biggr)^{q} \\& \qquad {} + \bigl(2 - 3\beta+ 2\beta^{3} \bigr) \eta \biggl( \biggl( \frac {1}{a_{1}} \biggr)^{q} , \biggl(\frac{1}{a_{2}} \biggr)^{q} \biggr) \biggr]^{\frac{1}{q}} \biggr\} . \end{aligned}$$
(29)
Theorem 4.4
For \(a_{1} > 0\), \(a_{2} > 0\), \(a_{1} \neq a_{2}\) and \(q\geq1\), we have
$$\begin{aligned}& \biggl\vert \frac{\ln G^{2}(a_{1}^{\alpha}, a_{2}^{\beta})}{2} + \frac{2 - \alpha- \beta}{2}\ln A(a_{1}, a_{2}) - \ln I(a_{1}, a_{2}) \biggr\vert \\& \quad \leq\frac{{a_{2}} - {a_{1}}}{4} \biggl[\frac{1}{2(q + 1)(q + 2)} \biggr]^{\frac{1}{q}} \\& \qquad {} \times\biggl\{ \biggl[\bigl(\bigl[2(q + 2) (1 - \alpha)^{q + 1}+ 2(q + 2) \alpha^{q + 1}\bigr]\bigr) \biggl(\frac{1}{a_{2}} \biggr)^{q} \\& \qquad {} + \bigl[(q + 3 - \alpha) (1 - \alpha)^{q + 1} + (2q + 4 - \alpha)\alpha ^{q + 1}\bigr] \eta \biggl( \biggl(\frac{1}{a_{1}} \biggr)^{q}, \biggl(\frac {1}{a_{2}} \biggr)^{q} \biggr) \biggr]^{\frac{1}{q}} \\& \qquad {} + \biggl[\bigl(2(q + 2) (1 - \beta)^{q + 1} + 2(q + 2) \beta^{q + 1}\bigr) \biggl(\frac{1}{a_{2}} \biggr)^{q} \\& \qquad {} + \bigl(\beta^{q + 2} + (q + 1 + \beta) (1 - \beta)^{q + 1}\bigr) \eta \biggl( \biggl(\frac{1}{a_{1}} \biggr)^{q}, \biggl(\frac{1}{a_{2}} \biggr)^{q} \biggr) \biggr]^{\frac{1}{q}}\biggr\} . \end{aligned}$$
(30)
Finally, we can establish an inequality for the Heronian mean as follows.
Theorem 4.5
For \(a_{2}> a_{1}> 0\), \(a_{1} \neq a_{2}\), \(w \geq0\), and \(s \geq4\) or \(0 \neq s<1\), we have
$$\begin{aligned}& \biggl\vert \frac{H^{s}_{w, s} (a_{1}, a_{2})}{H(a_{1}^{s}, a_{2}^{s})} + H^{\frac {s}{2} + 1}_{w, (\frac{s}{2} + 1)} \biggl( \frac{a_{2}}{a_{1}} + \frac {a_{1}}{a_{2}}, 1 \biggr) - H^{s}_{w, s} \biggl(\frac{L(a_{1}^{2}, a_{2}^{2})}{G^{2}(a_{1}, a_{2})}, 1 \biggr) \biggr\vert \\& \quad \leq \frac{(a_{2} - a_{1})A(a_{1}, a_{2})}{8G^{2}(a_{1}, a_{2})}\biggl[\frac {2|s|}{w + 2} \biggl(G^{2(s-1)} \biggl(a_{2}, \frac{1}{a_{1}} \biggr) + \frac{w}{2}G^{s - \frac{1}{2}} \biggl(a_{2}, \frac{1}{a_{1}} \biggr) \biggr) \\& \qquad {} + \eta \biggl(\frac{|s|}{w + 2} \biggl(G^{2(s-1)} \biggl(a_{1}, \frac {1}{a_{2}} \biggr) + \frac{w}{2}G^{s - \frac{1}{2}} \biggl(a_{1}, \frac {1}{a_{2}} \biggr) \biggr), \\& \qquad \frac{|s|}{w + 2} \biggl(G^{2(s-1)} \biggl(a_{2}, \frac{1}{a_{1}} \biggr) + \frac{w}{2}G^{s - \frac{1}{2}} \biggl(a_{2}, \frac{1}{a_{1}} \biggr) \biggr) \biggr)\biggr]. \end{aligned}$$
(31)
Proof
Let \(f(x) = \frac{x^{s} + wx^{\frac{s}{2}} + 1}{w + 2}\) for \(x>0\) and \(s \notin(1, 4)\). Then
$$ f'(x) = \frac{s}{w + 2} \biggl(x^{s - 1} + \frac{w}{2}x^{\frac{s}{2} - 1} \biggr). $$
(32)
By Corollary 3.3 it follows that
$$\begin{aligned}& \biggl\vert \frac{1}{2}\biggl[\frac{f (\frac{a_{2}}{a_{1}} ) + f (\frac{a_{1}}{a_{2}} )}{2} + f \biggl( \frac{\frac{a_{2}}{a_{1}} + \frac{a_{1}}{a_{2}} }{2} \biggr)\biggr] - \frac{1}{\frac{a_{2}}{a_{1}} - \frac{a_{1}}{a_{2}}} \int_{\frac{a_{1}}{a_{2}}}^{\frac{a_{2}}{a_{1}}}f(x)\,dx \biggr\vert \\& \quad = \biggl\vert \frac{1}{2}\biggl\{ \frac{1}{2}\biggl[ \frac{a_{2}^{s} + w(a_{1}a_{2})^{\frac{s}{2}} + a_{1}^{s}}{a_{1}^{s}(w + 2)} + \frac{a_{1}^{s} + w(a_{1}a_{2})^{\frac{s}{2}} + a_{2}^{s}}{a_{2}^{s}(w + 2)}\biggr] \\& \qquad {} + \frac{ (\frac{a_{2}}{a_{1}} + \frac{a_{1}}{a_{2}} )^{s} + w (\frac{a_{2}}{a_{1}} + \frac{a_{1}}{a_{2}} )^{\frac{s}{2}} + 1}{w + 2}\biggr\} \\& \qquad {} - \frac{1}{w + 2}\biggl[\frac{ (\frac{a_{2}}{a_{1}} )^{s + 1} - (\frac{a_{1}}{a_{2}} )^{s + 1}}{(s + 1) (\frac {a_{2}}{a_{1}} - \frac{a_{1}}{a_{2}} )} + w \frac{ (\frac {a_{2}}{a_{1}} )^{\frac{s}{2} + 1} - (\frac{a_{1}}{a_{2}} )^{ \frac{s}{2} + 1}}{ (\frac{s}{2} + 1 ) (\frac {a_{2}}{a_{1}} - \frac{a_{1}}{a_{2}} )} + 1\biggr] \biggr\vert \\& \quad = \biggl\vert \frac{H^{s}_{w, s} (a_{1}, a_{2})}{H(a_{1}^{s}, a_{2}^{s})} + H^{\frac {s}{2} + 1}_{w, (\frac{s}{2} + 1)} \biggl(\frac{a_{2}}{a_{1}} + \frac {a_{1}}{a_{2}}, 1 \biggr) - H^{s}_{w, s} \biggl(\frac{L(a_{1}^{2}, a_{2}^{2})}{G^{2}(a_{1}, a_{2})}, 1 \biggr) \biggr\vert . \end{aligned}$$
(33)
On the other hand, we have
$$\begin{aligned}& \frac{\frac{a_{2}}{a_{1}} - \frac{a_{1}}{a_{2}}}{16} \biggl[2 \biggl\vert f' \biggl( \frac{a_{2}}{a_{1}} \biggr) \biggr\vert + \eta \biggl( \biggl\vert f' \biggl(\frac{a_{1}}{a_{2}} \biggr) \biggr\vert , \biggl\vert f' \biggl(\frac {a_{2}}{a_{1}} \biggr) \biggr\vert \biggr) \biggr] \\& \quad = \frac{a_{2}^{2} - a_{1}^{2}}{16a_{1}a_{2}} \biggl[2 \biggl\vert \frac{s}{w + 2} \biggl( \biggl(\frac{a_{2}}{a_{1}} \biggr)^{s - 1} + \frac{w}{2} \biggl( \frac {a_{2}}{a_{1}} \biggr)^{\frac{s}{2} - 1} \biggr) \biggr\vert \\& \qquad {} + \eta \biggl( \biggl\vert \frac{s}{w + 2} \biggl( \biggl( \frac {a_{1}}{a_{2}} \biggr)^{s - 1} + \frac{w}{2} \biggl( \frac{a_{1}}{a_{2}} \biggr)^{\frac{s}{2} - 1} \biggr) \biggr\vert , \biggl\vert \frac{s}{w + 2} \biggl( \biggl(\frac{a_{2}}{a_{1}} \biggr)^{s - 1} + \frac{w}{2} \biggl(\frac {a_{2}}{a_{1}} \biggr)^{\frac{s}{2} - 1} \biggr) \biggr\vert \biggr) \biggr] \\& \quad = \frac{(a_{2} - a_{1})A(a_{1}, a_{2})}{8G^{2}(a_{1}, a_{2})} \biggl[\frac{2|s|}{w + 2} \biggl(G^{2(s-1)} \biggl(a_{2}, \frac{1}{a_{1}} \biggr) + \frac {w}{2}G^{s - \frac{1}{2}} \biggl(a_{2}, \frac{1}{a_{1}} \biggr) \biggr) \\& \qquad {} + \eta \biggl(\frac{|s|}{w + 2} \biggl(G^{2(s-1)} \biggl(a_{1}, \frac {1}{a_{2}} \biggr) + \frac{w}{2}G^{s - \frac{1}{2}} \biggl(a_{1}, \frac {1}{a_{2}} \biggr) \biggr), \\& \qquad {}\frac{|s|}{w + 2} \biggl(G^{2(s-1)} \biggl(a_{2}, \frac{1}{a_{1}} \biggr) + \frac{w}{2}G^{s - \frac{1}{2}} \biggl(a_{2}, \frac{1}{a_{1}} \biggr) \biggr) \biggr) \biggr]. \end{aligned}$$
(34)
Obviously (33) and (34) yield (31). □

Acknowledgements

This work was presented at the 6th International Conference on Education (ICE), which was organized by Division of Science and Technology, University of Education, Lahore, Pakistan.

Availability of data and materials

All data required for this research are available in this paper.

Competing interests

The authors have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Fejer, L.: Uber die Fourierreihen II. Math. Naturwiss., Anz. Ungar. Akad. Wiss. 24, 369–390 (1960) (in Hungarian) Fejer, L.: Uber die Fourierreihen II. Math. Naturwiss., Anz. Ungar. Akad. Wiss. 24, 369–390 (1960) (in Hungarian)
2.
go back to reference Iscan, I.: Hermite–Hadamard–Fejér type inequalities for convex functions via fractional integrals. Stud. Univ. Babeş–Bolyai, Math. 60(3), 355–366 (2015) MathSciNetMATH Iscan, I.: Hermite–Hadamard–Fejér type inequalities for convex functions via fractional integrals. Stud. Univ. Babeş–Bolyai, Math. 60(3), 355–366 (2015) MathSciNetMATH
3.
go back to reference Farid, G., Tariq, B.: Some integral inequalities for m-convex functions via fractional integrals. J. Inequal. Spec. Funct. 8(1), 170–185 (2017) MathSciNet Farid, G., Tariq, B.: Some integral inequalities for m-convex functions via fractional integrals. J. Inequal. Spec. Funct. 8(1), 170–185 (2017) MathSciNet
4.
go back to reference Farid, G., Abbas, G.: Generalizations of some Hermite–Hadamard–Fejér type inequalities for p-convex functions via generalized fractional integrals. J. Fract. Calc. Appl. 9(2), 56–76 (2018) MathSciNet Farid, G., Abbas, G.: Generalizations of some Hermite–Hadamard–Fejér type inequalities for p-convex functions via generalized fractional integrals. J. Fract. Calc. Appl. 9(2), 56–76 (2018) MathSciNet
5.
go back to reference Sarikaya, M.Z., Saglam, A., Yildirim, H.: On some Hadamard type inequalities for h-convex functions. J. Math. Anal. 2(3), 335–341 (2008) MathSciNetMATH Sarikaya, M.Z., Saglam, A., Yildirim, H.: On some Hadamard type inequalities for h-convex functions. J. Math. Anal. 2(3), 335–341 (2008) MathSciNetMATH
6.
go back to reference Kirmaci, U.S., Bakula, M.K., Ozdemir, M.E., Pecaric, J.: Hadamard type inequalities for s-convex functions. Appl. Math. Comput. 193, 26–35 (2007) MathSciNetMATH Kirmaci, U.S., Bakula, M.K., Ozdemir, M.E., Pecaric, J.: Hadamard type inequalities for s-convex functions. Appl. Math. Comput. 193, 26–35 (2007) MathSciNetMATH
7.
go back to reference Dragomir, S.S., Pecaric, J., Persson, L.E.: Some inequalities of Hadamard type. Soochow J. Math. 21, 335–341 (1995) MathSciNetMATH Dragomir, S.S., Pecaric, J., Persson, L.E.: Some inequalities of Hadamard type. Soochow J. Math. 21, 335–341 (1995) MathSciNetMATH
8.
go back to reference Dragomir, S.S., Fitzpatrik, S.: The Hadamard’s inequality for s-convex functions in the second sense. Demonstr. Math. 32(4), 687–696 (1999) Dragomir, S.S., Fitzpatrik, S.: The Hadamard’s inequality for s-convex functions in the second sense. Demonstr. Math. 32(4), 687–696 (1999)
10.
go back to reference Ozdemir, M.E., Yildiz, C., Akdemir, A.C., Set, E.: On some inequalities for s-convex functions and applications. J. Inequal. Appl. 2013, Article ID 333 (2013) MathSciNetCrossRef Ozdemir, M.E., Yildiz, C., Akdemir, A.C., Set, E.: On some inequalities for s-convex functions and applications. J. Inequal. Appl. 2013, Article ID 333 (2013) MathSciNetCrossRef
11.
Metadata
Title
Hermite–Hadamard-type inequalities for functions whose derivatives are η-convex via fractional integrals
Authors
Young Chel Kwun
Muhammad Shoaib Saleem
Mamoona Ghafoor
Waqas Nazeer
Shin Min Kang
Publication date
01-12-2019
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2019
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-019-1993-y

Other articles of this Issue 1/2019

Journal of Inequalities and Applications 1/2019 Go to the issue

Premium Partner