Skip to main content
Top

2011 | OriginalPaper | Chapter

Heterogeneous Photocatalytic Conversion of Carbon Dioxide

Author : Hisao Yoshida

Published in: Energy Efficiency and Renewable Energy Through Nanotechnology

Publisher: Springer London

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Carbon dioxide is a greenhouse gas, which may contribute to the global warming. The conversion of carbon dioxide to more useful chemicals is not an easy task because of a high thermodynamic barrier, which requires much energy consumption. However, we should not use energy from fossil resources to convert the carbon dioxide because the use of them produces carbon dioxide; therefore, it is desirable to use natural energy for this purpose. Photocatalysis, which can utilize solar energy and break the thermodynamic limitation, is a possible green technology available for the carbon dioxide conversion and many studies have been carried out. In this chapter, after a description of the importance of the photocatalytic system, the physical and chemical basis for carbon dioxide conversion, and the basis for photocatalysis and photocatalysts, we will review a brief history about heterogeneous photocatalytic conversion of carbon dioxide to other compounds, such as methane, methanol and carbon monoxide, by using reducing reagents such as water, hydrogen and methane. The perspectives related to the field of nanotechnology will also be described.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Indrakanti VP, Kubicki JD, Schobert HH (2009) Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook. Energy Environ Sci 2:745–758CrossRef Indrakanti VP, Kubicki JD, Schobert HH (2009) Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook. Energy Environ Sci 2:745–758CrossRef
2.
3.
go back to reference Song C (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115:2–32CrossRef Song C (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115:2–32CrossRef
4.
go back to reference Xiaoding X, Moulijn JA (1996) Mitigation of CO2 by chemical conversion: plausible chemical reactions and promising products. Energy Fuels 10:305–325CrossRef Xiaoding X, Moulijn JA (1996) Mitigation of CO2 by chemical conversion: plausible chemical reactions and promising products. Energy Fuels 10:305–325CrossRef
5.
go back to reference Sakakura T, Choi JC, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107:2365–2387CrossRef Sakakura T, Choi JC, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107:2365–2387CrossRef
6.
go back to reference Aresta M, Dibenedetto A (2007) Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans 2975–2992 Aresta M, Dibenedetto A (2007) Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans 2975–2992
7.
go back to reference Usubharatana P, McMartin D, Veawab A, Tontiwachwuthikul P (2006) Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Ind Eng Chem Res 45:2558–2568CrossRef Usubharatana P, McMartin D, Veawab A, Tontiwachwuthikul P (2006) Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Ind Eng Chem Res 45:2558–2568CrossRef
8.
9.
go back to reference Yuliati L, Yoshida H (2008) Photocatalytic conversion of methane. Chem Soc Rev 37:1592–1602CrossRef Yuliati L, Yoshida H (2008) Photocatalytic conversion of methane. Chem Soc Rev 37:1592–1602CrossRef
11.
go back to reference Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278CrossRef Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278CrossRef
12.
go back to reference The Chemical Society of Japan (1984) Kagakubinran kisohen, 3rd edn. Maruzen, Tokyo The Chemical Society of Japan (1984) Kagakubinran kisohen, 3rd edn. Maruzen, Tokyo
13.
go back to reference Atkins PW (1998) Physical chemistry, 6th edn. Oxford University Press, Oxford Atkins PW (1998) Physical chemistry, 6th edn. Oxford University Press, Oxford
14.
go back to reference Shaw DA, Holland DMP, Hayes MA et al (1995) A study of the absolute photoabsorption, photoionisation and photodissociation cross sections and the photoionisation quantum efficiency of carbon dioxide from the ionisation threshold to 345 Å. Chem Phys 198:381–396CrossRef Shaw DA, Holland DMP, Hayes MA et al (1995) A study of the absolute photoabsorption, photoionisation and photodissociation cross sections and the photoionisation quantum efficiency of carbon dioxide from the ionisation threshold to 345 Å. Chem Phys 198:381–396CrossRef
15.
go back to reference Freund HJ, Roberts MW (1996) Surface chemistry of carbon dioxide. Surf Sci Rep 25:225–273CrossRef Freund HJ, Roberts MW (1996) Surface chemistry of carbon dioxide. Surf Sci Rep 25:225–273CrossRef
16.
go back to reference The CODATA Task Group on key values for thermodynamics (1978) CODATA recommended key values for thermodynamics, 1977. J Chem Thermodyn 10:903–906 The CODATA Task Group on key values for thermodynamics (1978) CODATA recommended key values for thermodynamics, 1977. J Chem Thermodyn 10:903–906
17.
go back to reference Murata C, Yoshida H, Kumagai J, Hattori T (2003) Active sites and active oxygen species for photocatalytic epoxidation of propene by molecular oxygen over TiO2–SiO2 binary oxides. J Phys Chem B 107:4364–4373CrossRef Murata C, Yoshida H, Kumagai J, Hattori T (2003) Active sites and active oxygen species for photocatalytic epoxidation of propene by molecular oxygen over TiO2–SiO2 binary oxides. J Phys Chem B 107:4364–4373CrossRef
18.
go back to reference Yoshida H (2003) Silica-based quantum photocatalysts for selective reactions. Curr Opin Solid State Mater Sci 7:435–442CrossRef Yoshida H (2003) Silica-based quantum photocatalysts for selective reactions. Curr Opin Solid State Mater Sci 7:435–442CrossRef
19.
go back to reference Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRef Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRef
20.
go back to reference Hemminger JC, Carr R, Somorjai GA (1978) The photoassisted reaction of gaseous water and carbon dioxide adsorbed on the SrTiO3 (111) crystal face to form methane. Chem Phys Lett 57:100–104CrossRef Hemminger JC, Carr R, Somorjai GA (1978) The photoassisted reaction of gaseous water and carbon dioxide adsorbed on the SrTiO3 (111) crystal face to form methane. Chem Phys Lett 57:100–104CrossRef
21.
go back to reference Halmann M (1978) Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 275:115–116CrossRef Halmann M (1978) Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 275:115–116CrossRef
22.
go back to reference Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637–638CrossRef Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637–638CrossRef
23.
go back to reference Aurian-Blajeni B, Halmann M, Manassen J (1980) Photoreduction of carbon dioxide and water into formaldehyde and methanol on semiconductor materials. Sol Energy 25:165–170CrossRef Aurian-Blajeni B, Halmann M, Manassen J (1980) Photoreduction of carbon dioxide and water into formaldehyde and methanol on semiconductor materials. Sol Energy 25:165–170CrossRef
24.
go back to reference Halmann M, Ulman M, Aurian-Blajeni B (1983) Photochemical solar collector for the photoassisted reduction of aqueous carbon dioxide. Sol Energy 31:429–431CrossRef Halmann M, Ulman M, Aurian-Blajeni B (1983) Photochemical solar collector for the photoassisted reduction of aqueous carbon dioxide. Sol Energy 31:429–431CrossRef
25.
go back to reference Irvine JTS, Eggins BR, Grimshaw J (1990) Solar energy fixation of carbon dioxide via cadmium sulphide and other semiconductor photocatalysts. Sol Energy 45:27–33CrossRef Irvine JTS, Eggins BR, Grimshaw J (1990) Solar energy fixation of carbon dioxide via cadmium sulphide and other semiconductor photocatalysts. Sol Energy 45:27–33CrossRef
27.
go back to reference Sato S, White JM (1980) Photodecomposition of water over Pt/TiO2 catalysts. Chem Phys Lett 72:83–86CrossRef Sato S, White JM (1980) Photodecomposition of water over Pt/TiO2 catalysts. Chem Phys Lett 72:83–86CrossRef
28.
go back to reference Chandrasekaran K, Thomas JK (1983) Photochemical reduction of carbonate to formaldehyde on TiO2 powder. Chem Phys Lett 99:7–10CrossRef Chandrasekaran K, Thomas JK (1983) Photochemical reduction of carbonate to formaldehyde on TiO2 powder. Chem Phys Lett 99:7–10CrossRef
29.
go back to reference Halmann M, Katzir V, Borgarello E, Kiwi J (1984) Photoassisted carbon dioxide reduction on aqueous suspensions of titanium dioxide. Solar Energy Mater 10:85–91CrossRef Halmann M, Katzir V, Borgarello E, Kiwi J (1984) Photoassisted carbon dioxide reduction on aqueous suspensions of titanium dioxide. Solar Energy Mater 10:85–91CrossRef
30.
go back to reference Tennakone K (1984) Photoreduction of carbonic acid by mercury coated n-titanium dioxide. Solar Energy Mater 10:235–238CrossRef Tennakone K (1984) Photoreduction of carbonic acid by mercury coated n-titanium dioxide. Solar Energy Mater 10:235–238CrossRef
31.
go back to reference Raphael MW, Malati MA (1989) The photocatalysed reduction of aqueous sodium carbonate using platinized titania. J Photochem Photobiol A 46:367–377CrossRef Raphael MW, Malati MA (1989) The photocatalysed reduction of aqueous sodium carbonate using platinized titania. J Photochem Photobiol A 46:367–377CrossRef
32.
go back to reference Hirano K, Inoue K, Yatsu T (1992) Photocatalysed reduction of CO2 in aqueous TiO2 suspension mixed with copper powder. J Photochem Photobiol A 64:255–258CrossRef Hirano K, Inoue K, Yatsu T (1992) Photocatalysed reduction of CO2 in aqueous TiO2 suspension mixed with copper powder. J Photochem Photobiol A 64:255–258CrossRef
33.
go back to reference Ishitani O, Inoue C, Suzuki Y, Ibusuki T (1993) Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2. J Photochem Photobiol A 72:269–271CrossRef Ishitani O, Inoue C, Suzuki Y, Ibusuki T (1993) Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2. J Photochem Photobiol A 72:269–271CrossRef
34.
go back to reference Solymosi F, Tombácz I (1994) Photocatalytic reaction of H2O+CO2 over pure and doped Rh/TiO2. Catal Lett 27:61–65CrossRef Solymosi F, Tombácz I (1994) Photocatalytic reaction of H2O+CO2 over pure and doped Rh/TiO2. Catal Lett 27:61–65CrossRef
35.
go back to reference Yamashita H, Nishiguchi H, Kamada N et al (1994) Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts. Res Chem Intermed 20:815–823CrossRef Yamashita H, Nishiguchi H, Kamada N et al (1994) Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts. Res Chem Intermed 20:815–823CrossRef
36.
go back to reference Tseng IH, Chang WC, Wu JCS (2002) Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Appl Catal B 37:37–48CrossRef Tseng IH, Chang WC, Wu JCS (2002) Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Appl Catal B 37:37–48CrossRef
37.
go back to reference Tseng IH, Wu JCS, Chou HY (2004) Effects of sol-gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. J Catal 221:432–440CrossRef Tseng IH, Wu JCS, Chou HY (2004) Effects of sol-gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. J Catal 221:432–440CrossRef
38.
go back to reference Wu JCS, Lin HM, Lai CL (2005) Photo reduction of CO2 to methanol using optical-fiber photoreactor. Appl Catal A 296:194–200CrossRef Wu JCS, Lin HM, Lai CL (2005) Photo reduction of CO2 to methanol using optical-fiber photoreactor. Appl Catal A 296:194–200CrossRef
39.
go back to reference Nguyen TV, Wu JCS (2008) Photoreduction of CO2 in an optical-fiber photoreactor: effects of metals addition and catalyst carrier. Appl Catal A 335:112–120CrossRef Nguyen TV, Wu JCS (2008) Photoreduction of CO2 in an optical-fiber photoreactor: effects of metals addition and catalyst carrier. Appl Catal A 335:112–120CrossRef
40.
go back to reference Kiwi J, Grätzel M (1984) Optimization of conditions for photochemical water cleavage. Aqueous Pt/TiO2 (anatase) dispersions under ultraviolet light. J Phys Chem 88:1302–1307CrossRef Kiwi J, Grätzel M (1984) Optimization of conditions for photochemical water cleavage. Aqueous Pt/TiO2 (anatase) dispersions under ultraviolet light. J Phys Chem 88:1302–1307CrossRef
41.
go back to reference Kiwi J, Morrison C (1984) Heterogeneous photocatalysis. Dynamics of charge transfer in lithium-doped anatase-based catalyst powders with enhanced water photocleavage under ultraviolet irradiation. J Phys Chem 88:6146–6152CrossRef Kiwi J, Morrison C (1984) Heterogeneous photocatalysis. Dynamics of charge transfer in lithium-doped anatase-based catalyst powders with enhanced water photocleavage under ultraviolet irradiation. J Phys Chem 88:6146–6152CrossRef
42.
go back to reference Yamaguti K, Sato S (1985) Pressure dependence of the rate and stoichiometry of water photolysis over platinized TiO2 catalysts. J Phys Chem 89:5510–5513CrossRef Yamaguti K, Sato S (1985) Pressure dependence of the rate and stoichiometry of water photolysis over platinized TiO2 catalysts. J Phys Chem 89:5510–5513CrossRef
43.
go back to reference Munuera G, Rives-Arnau V, Saucedo A (1979) Photo-adsorption and photo-desorption of oxygen on highly hydroxylated TiO2 surfaces. Part 1.–Role of hydroxyl groups in photoadsorption. J Chem Soc, Faraday Trans 1 75:736–747CrossRef Munuera G, Rives-Arnau V, Saucedo A (1979) Photo-adsorption and photo-desorption of oxygen on highly hydroxylated TiO2 surfaces. Part 1.–Role of hydroxyl groups in photoadsorption. J Chem Soc, Faraday Trans 1 75:736–747CrossRef
44.
go back to reference Gonzalez-Elipe A, Munuera G, Soria J (1979) Photo-adsorption and photo-desorption of oxygen on highly hydroxylated TiO2 surfaces. Part 2.–Study of radical intermediates by electron paramagnetic resonance. J Chem Soc, Faraday Trans 1 75:748–761CrossRef Gonzalez-Elipe A, Munuera G, Soria J (1979) Photo-adsorption and photo-desorption of oxygen on highly hydroxylated TiO2 surfaces. Part 2.–Study of radical intermediates by electron paramagnetic resonance. J Chem Soc, Faraday Trans 1 75:748–761CrossRef
45.
go back to reference Sayama K, Arakawa H (1993) Photocatalytic decomposition of water and photocatalytic reduction of carbon dioxide over ZrO2 catalyst. J Phys Chem 97:531–533CrossRef Sayama K, Arakawa H (1993) Photocatalytic decomposition of water and photocatalytic reduction of carbon dioxide over ZrO2 catalyst. J Phys Chem 97:531–533CrossRef
46.
go back to reference Adachi K, Ohta K, Mizuno T (1994) Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide. Sol Energy 53:187–190CrossRef Adachi K, Ohta K, Mizuno T (1994) Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide. Sol Energy 53:187–190CrossRef
47.
go back to reference Mizuno T, Adachi K, Ohta K, Saji A (1996) Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions. J Photochem Photobiol A 98:87–90CrossRef Mizuno T, Adachi K, Ohta K, Saji A (1996) Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions. J Photochem Photobiol A 98:87–90CrossRef
48.
go back to reference Pathak P, Meziani MJ, Li Y et al (2004) Improving photoreduction of CO2 with homogeneously dispersed nanoscale TiO2 catalysts. Chem Commun 1234–1235 Pathak P, Meziani MJ, Li Y et al (2004) Improving photoreduction of CO2 with homogeneously dispersed nanoscale TiO2 catalysts. Chem Commun 1234–1235
49.
go back to reference Pathak P, Meziani MJ, Castillo L, Sun YP (2005) Metal-coated nanoscale TiO2 catalysts for enhanced CO2 photoreduction. Green Chem 7:667–670CrossRef Pathak P, Meziani MJ, Castillo L, Sun YP (2005) Metal-coated nanoscale TiO2 catalysts for enhanced CO2 photoreduction. Green Chem 7:667–670CrossRef
50.
go back to reference Saladin F, Alxneit I (1997) Temperature dependence of the photochemical reduction of CO2 in the presence of H2O at the solid/gas interface of TiO2. J Chem Soc, Faraday Trans 93:4159–4163CrossRef Saladin F, Alxneit I (1997) Temperature dependence of the photochemical reduction of CO2 in the presence of H2O at the solid/gas interface of TiO2. J Chem Soc, Faraday Trans 93:4159–4163CrossRef
51.
go back to reference Mizuno T, Tsutsumi H, Ohta K, et al. (1994) Photocatalytic reduction of CO2 with dispersed TiO2/Cu powder mixtures in supercritical CO2. Chem Lett 1533–1536 Mizuno T, Tsutsumi H, Ohta K, et al. (1994) Photocatalytic reduction of CO2 with dispersed TiO2/Cu powder mixtures in supercritical CO2. Chem Lett 1533–1536
52.
go back to reference Kaneco S, Kurimoto H, Ohta K et al (1997) Photocatalytic reduction of CO2 using TiO2 powders in liauid CO2 medium. J Photochem Photobiol A 109:59–63CrossRef Kaneco S, Kurimoto H, Ohta K et al (1997) Photocatalytic reduction of CO2 using TiO2 powders in liauid CO2 medium. J Photochem Photobiol A 109:59–63CrossRef
53.
go back to reference Yahaya AH, Gondal MA, Hameed A (2004) Selective laser enhanced photocatalytic conversion of CO2 into methanol. Chem Phys Lett 400:206–212CrossRef Yahaya AH, Gondal MA, Hameed A (2004) Selective laser enhanced photocatalytic conversion of CO2 into methanol. Chem Phys Lett 400:206–212CrossRef
54.
go back to reference Kočí K, Obalová L, Matějová L et al (2009) Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl Catal B 89:494–502CrossRef Kočí K, Obalová L, Matějová L et al (2009) Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl Catal B 89:494–502CrossRef
55.
go back to reference Yang HC, Lin HY, Chien YS et al (2009) Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 composite photocatalysts for photoreduction of CO2 to methanol. Catal Lett 131:381–387CrossRef Yang HC, Lin HY, Chien YS et al (2009) Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 composite photocatalysts for photoreduction of CO2 to methanol. Catal Lett 131:381–387CrossRef
56.
go back to reference Yoneyama H (1997) Photoreduction of carbon dioxide on quantized semiconductor nanoparticles in solution. Catal Today 39:169–175CrossRef Yoneyama H (1997) Photoreduction of carbon dioxide on quantized semiconductor nanoparticles in solution. Catal Today 39:169–175CrossRef
57.
go back to reference Yamashita H, Kamada N, He H et al (1994) Reduction of CO2 with H2O on TiO2(100) and TiO2(110) single crystals under UV-irradiation. Chem Lett 23:855–858CrossRef Yamashita H, Kamada N, He H et al (1994) Reduction of CO2 with H2O on TiO2(100) and TiO2(110) single crystals under UV-irradiation. Chem Lett 23:855–858CrossRef
58.
go back to reference Zhang QH, Han WD, Hong YJ, Yu JG (2009) Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal Today 148:335–340CrossRef Zhang QH, Han WD, Hong YJ, Yu JG (2009) Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal Today 148:335–340CrossRef
59.
go back to reference Ozcan O, Yukruk F, Akkaya EU, Uner D (2007) Dye sensitized CO2 reduction over pure and platinized TiO2. Top Catal 44:523–528CrossRef Ozcan O, Yukruk F, Akkaya EU, Uner D (2007) Dye sensitized CO2 reduction over pure and platinized TiO2. Top Catal 44:523–528CrossRef
60.
go back to reference Nguyen TV, Wu JCS, Chiou CH (2008) Photoreduction of CO2 over ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight. Catal Commun 9:2073–2076CrossRef Nguyen TV, Wu JCS, Chiou CH (2008) Photoreduction of CO2 over ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight. Catal Commun 9:2073–2076CrossRef
61.
go back to reference Wang C, Thompson RL, Baltrus J, Matranga C (2010) Visible light photoreduction of CO2 using CdSe/Pt/TiO2 heterostructured catalysts. J Phys Chem Lett 1:48–53CrossRef Wang C, Thompson RL, Baltrus J, Matranga C (2010) Visible light photoreduction of CO2 using CdSe/Pt/TiO2 heterostructured catalysts. J Phys Chem Lett 1:48–53CrossRef
62.
go back to reference Matsumoto Y, Obata M, Hombo J (1994) Photocatalytic reduction of carbon dioxide on p-type CaFe2O4 powder. J Phys Chem 98:2950–2951CrossRef Matsumoto Y, Obata M, Hombo J (1994) Photocatalytic reduction of carbon dioxide on p-type CaFe2O4 powder. J Phys Chem 98:2950–2951CrossRef
63.
go back to reference Pan PW, Chen YW (2007) Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation. Catal Commun 8:1546–1549CrossRef Pan PW, Chen YW (2007) Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation. Catal Commun 8:1546–1549CrossRef
64.
go back to reference Jia L, Li J, Fang W (2009) Enhanced visible-light active C and Fe co-doped LaCoO3 for reduction of carbon dioxide. Catal Commun 11:87–90CrossRef Jia L, Li J, Fang W (2009) Enhanced visible-light active C and Fe co-doped LaCoO3 for reduction of carbon dioxide. Catal Commun 11:87–90CrossRef
65.
go back to reference Miseki Y, Iizuka K, Saito K et al (2009) Water splitting and CO2 reduction over ALa4Ti4O15 (A=Ca, Sr, Ba) photocatalysts layered perovskite structure. Catal Catal 51:84–86 Miseki Y, Iizuka K, Saito K et al (2009) Water splitting and CO2 reduction over ALa4Ti4O15 (A=Ca, Sr, Ba) photocatalysts layered perovskite structure. Catal Catal 51:84–86
66.
go back to reference Iizuka K, Kojima Y, Kudo A (2009) CO2 reduction using heterogeneous photocatalysts aiming at artificial photosynthesis. Catal Catal 51:228–233 Iizuka K, Kojima Y, Kudo A (2009) CO2 reduction using heterogeneous photocatalysts aiming at artificial photosynthesis. Catal Catal 51:228–233
67.
go back to reference Iwase A, Kato H, Okutomi H, Kudo A (2004) Formation of surface nano-step structures and improvement of photocatalytic activities of NaTaO3 by doping of alkaline earth metal ions. Chem Lett 33:1260–1261CrossRef Iwase A, Kato H, Okutomi H, Kudo A (2004) Formation of surface nano-step structures and improvement of photocatalytic activities of NaTaO3 by doping of alkaline earth metal ions. Chem Lett 33:1260–1261CrossRef
68.
go back to reference Miseki Y, Kato H, Kudo A (2009) Water splitting into H2 and O2 over niobate and titanate photocatalysts with (111) plane-type layered perovskite structure. Energy Environ Sci 2:306–314CrossRef Miseki Y, Kato H, Kudo A (2009) Water splitting into H2 and O2 over niobate and titanate photocatalysts with (111) plane-type layered perovskite structure. Energy Environ Sci 2:306–314CrossRef
69.
go back to reference Liu Y, Huang B, Dai Y et al (2009) Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst. Catal Commun 11:210–213CrossRef Liu Y, Huang B, Dai Y et al (2009) Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst. Catal Commun 11:210–213CrossRef
70.
go back to reference Anpo M, Chiba K (1992) Photocatalytic reduction of CO2 on anchored titanium oxide catalysts. J Mol Catal 74:207–212CrossRef Anpo M, Chiba K (1992) Photocatalytic reduction of CO2 on anchored titanium oxide catalysts. J Mol Catal 74:207–212CrossRef
71.
go back to reference Zhang SG, Fujii Y, Yamashita H et al (1997) Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolites at 328 K. Chem Lett 26:659–660CrossRef Zhang SG, Fujii Y, Yamashita H et al (1997) Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolites at 328 K. Chem Lett 26:659–660CrossRef
72.
go back to reference Anpo M, Yamashita H, Ichihashi Y et al (1997) Photocatalytic reduction of CO2 with H2O on titanium oxide anchored within micropores of zeolites: Effects of the structure of the active sites and the addition of Pt. J Phys Chem B 101:2632–2636CrossRef Anpo M, Yamashita H, Ichihashi Y et al (1997) Photocatalytic reduction of CO2 with H2O on titanium oxide anchored within micropores of zeolites: Effects of the structure of the active sites and the addition of Pt. J Phys Chem B 101:2632–2636CrossRef
73.
go back to reference Ikeue K, Yamashita H, Anpo M, Takewaki T (2001) Photocatalytic reduction of CO2 with H2O on Ti-β zeolite photocatalysts: effect of the hydrophobic and hydrophilic properties. J Phys Chem B 105:8350–8355CrossRef Ikeue K, Yamashita H, Anpo M, Takewaki T (2001) Photocatalytic reduction of CO2 with H2O on Ti-β zeolite photocatalysts: effect of the hydrophobic and hydrophilic properties. J Phys Chem B 105:8350–8355CrossRef
74.
go back to reference Ikeue K, Nozaki S, Ogawa M, Anpo M (2002) Characterization of self-standing Ti-containing porous silica thin films and their reactivity for the photocatalytic reduction of CO2 with H2O. Catal Today 74:241–248CrossRef Ikeue K, Nozaki S, Ogawa M, Anpo M (2002) Characterization of self-standing Ti-containing porous silica thin films and their reactivity for the photocatalytic reduction of CO2 with H2O. Catal Today 74:241–248CrossRef
75.
go back to reference Lin W, Han H, Frei H (2004) CO2 splitting by H2O to CO and O2 under UV light in TiMCM-41 silicate sieve. J Phys Chem B 108:18269–18273CrossRef Lin W, Han H, Frei H (2004) CO2 splitting by H2O to CO and O2 under UV light in TiMCM-41 silicate sieve. J Phys Chem B 108:18269–18273CrossRef
76.
go back to reference Lin W, Frei H (2006) Bimetallic redox sites for photochemical CO2 splitting in mesoporous silicate sieve. C R Chimie 9:207–213CrossRef Lin W, Frei H (2006) Bimetallic redox sites for photochemical CO2 splitting in mesoporous silicate sieve. C R Chimie 9:207–213CrossRef
77.
go back to reference Thampi KR, Kiwi J, Grätzel M (1987) Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure. Nature 327:506–508CrossRef Thampi KR, Kiwi J, Grätzel M (1987) Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure. Nature 327:506–508CrossRef
78.
go back to reference Kohno Y, Hayashi H, Takenaka S et al (1999) Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2. J Photochem Photobiol A 126:117–123CrossRef Kohno Y, Hayashi H, Takenaka S et al (1999) Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2. J Photochem Photobiol A 126:117–123CrossRef
79.
go back to reference Kohno Y, Yamamoto T, Tanaka T, Funabiki T (2001) Photoenhanced reduction of CO2 by H2 over Rh/TiO2. Characterization of supported Rh species by means of infrared and X-ray absorption spectroscopy. J Mol Catal A 175:173–178CrossRef Kohno Y, Yamamoto T, Tanaka T, Funabiki T (2001) Photoenhanced reduction of CO2 by H2 over Rh/TiO2. Characterization of supported Rh species by means of infrared and X-ray absorption spectroscopy. J Mol Catal A 175:173–178CrossRef
80.
go back to reference Kohno Y, Tanaka T, Funabiki T, Yoshida S (1997) Photoreduction of carbon dioxide with hydrogen over ZrO2. Chem Commun 841–842 Kohno Y, Tanaka T, Funabiki T, Yoshida S (1997) Photoreduction of carbon dioxide with hydrogen over ZrO2. Chem Commun 841–842
81.
go back to reference Kohno Y, Tanaka T, Funabiki T, Yoshida S (1998) Identification and reactivity of a surface intermediate in the photoreduction of CO2 with H2 over ZrO2. J Chem Soc, Faraday Trans 94:1875–1880CrossRef Kohno Y, Tanaka T, Funabiki T, Yoshida S (1998) Identification and reactivity of a surface intermediate in the photoreduction of CO2 with H2 over ZrO2. J Chem Soc, Faraday Trans 94:1875–1880CrossRef
82.
go back to reference Kohno Y, Tanaka T, Funabiki T, Yoshida S (2000) Photoreduction of CO2 with H2 over ZrO2. A study on interaction of hydrogen with photoexcited CO2. Phys Chem Chem Phys 2:2635–2639CrossRef Kohno Y, Tanaka T, Funabiki T, Yoshida S (2000) Photoreduction of CO2 with H2 over ZrO2. A study on interaction of hydrogen with photoexcited CO2. Phys Chem Chem Phys 2:2635–2639CrossRef
83.
go back to reference Yoshida S, Kohno Y (2000) A new type of photocatalysis initiated by photoexcitation of adsorbed carbon dioxide on ZrO2. Catal Surv Jpn 4:107–114CrossRef Yoshida S, Kohno Y (2000) A new type of photocatalysis initiated by photoexcitation of adsorbed carbon dioxide on ZrO2. Catal Surv Jpn 4:107–114CrossRef
84.
go back to reference Lunsford JH, Jayne JP (1965) Formation of CO2 − radical ions when CO2 is adsorbed on irradiated magnesium oxide. J Phys Chem 69:2182–2184CrossRef Lunsford JH, Jayne JP (1965) Formation of CO2 radical ions when CO2 is adsorbed on irradiated magnesium oxide. J Phys Chem 69:2182–2184CrossRef
85.
go back to reference Kohno Y, Ishikawa H, Tanaka T, Funabiki T, Yoshida S (2001) Photoreduction of carbon dioxide by hydrogen over magnesium oxide. Phys Chem Chem Phys 3:1108–1113CrossRef Kohno Y, Ishikawa H, Tanaka T, Funabiki T, Yoshida S (2001) Photoreduction of carbon dioxide by hydrogen over magnesium oxide. Phys Chem Chem Phys 3:1108–1113CrossRef
86.
go back to reference Teramura K, Tanaka T, Ishikawa H et al (2004) Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO. J Phys Chem B 108:346–354CrossRef Teramura K, Tanaka T, Ishikawa H et al (2004) Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO. J Phys Chem B 108:346–354CrossRef
87.
go back to reference Kohno Y, Tanaka T, Funabiki T, Yoshida S (1997) Photoreduction of carbon dioxide with methane over ZrO2. Chem Lett 993–994 Kohno Y, Tanaka T, Funabiki T, Yoshida S (1997) Photoreduction of carbon dioxide with methane over ZrO2. Chem Lett 993–994
88.
go back to reference Kohno Y, Tanaka T, Funabiki T, Yoshida S (2000) Reaction mechanism in the photoreduction of CO2 with CH4 over ZrO2. Phys Chem Chem Phys 2:5302–5307CrossRef Kohno Y, Tanaka T, Funabiki T, Yoshida S (2000) Reaction mechanism in the photoreduction of CO2 with CH4 over ZrO2. Phys Chem Chem Phys 2:5302–5307CrossRef
89.
go back to reference Lo CC, Hung CH, Yuan CS, Wu JF (2007) Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Solar Energy Mater Solar Cells 91:1765–1774CrossRef Lo CC, Hung CH, Yuan CS, Wu JF (2007) Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Solar Energy Mater Solar Cells 91:1765–1774CrossRef
90.
go back to reference Teramura K, Tsuneoka H, Shishido T, Tanaka T (2008) Effect of H2 gas as a reductant on photoreduction of CO2 over a Ga2O3 photocatalyst. Chem Phys Lett 467:191–194CrossRef Teramura K, Tsuneoka H, Shishido T, Tanaka T (2008) Effect of H2 gas as a reductant on photoreduction of CO2 over a Ga2O3 photocatalyst. Chem Phys Lett 467:191–194CrossRef
91.
go back to reference Collins SE, Baltanás MA, Bonivardi AL (2005) Hydrogen chemisorption on gallium oxide polymorphs. Langmuir 21:962–970CrossRef Collins SE, Baltanás MA, Bonivardi AL (2005) Hydrogen chemisorption on gallium oxide polymorphs. Langmuir 21:962–970CrossRef
92.
go back to reference Collins SE, Baltanás MA, Bonivardi AL (2006) Infrared spectroscopic study of the carbon dioxide adsorption on the surface of Ga2O3 polymorphs. J Phys Chem B 110:5498–5507CrossRef Collins SE, Baltanás MA, Bonivardi AL (2006) Infrared spectroscopic study of the carbon dioxide adsorption on the surface of Ga2O3 polymorphs. J Phys Chem B 110:5498–5507CrossRef
93.
go back to reference Guan G, Kida T, Yoshida A (2003) Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst. Appl Catal B 41:387–396CrossRef Guan G, Kida T, Yoshida A (2003) Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst. Appl Catal B 41:387–396CrossRef
94.
go back to reference Forster P, Ramaswamy V, Artaxo P et al (2007) Changes in atmospheric constituents and radiative forcing. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 129–234 Forster P, Ramaswamy V, Artaxo P et al (2007) Changes in atmospheric constituents and radiative forcing. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 129–234
95.
go back to reference Hu YH, Ruckenstein E (2002) Binary MgO-based solid solution catalysts for methane conversion to syngas. Catal Rev 44:423–453 and references thereinCrossRef Hu YH, Ruckenstein E (2002) Binary MgO-based solid solution catalysts for methane conversion to syngas. Catal Rev 44:423–453 and references thereinCrossRef
96.
go back to reference Shi D, Feng Y, Zhong S (2004) Photocatalytic conversion of CH4 and CO2 to oxygenated compounds over Cu/CdS–TiO2/SiO2 catalyst. Catal Today 98:505–509CrossRef Shi D, Feng Y, Zhong S (2004) Photocatalytic conversion of CH4 and CO2 to oxygenated compounds over Cu/CdS–TiO2/SiO2 catalyst. Catal Today 98:505–509CrossRef
97.
go back to reference Yuliati L, Itoh H, Yoshida H (2008) Photocatalytic conversion of methane and carbon dioxide over gallium oxide. Chem Phys Lett 452:178–182CrossRef Yuliati L, Itoh H, Yoshida H (2008) Photocatalytic conversion of methane and carbon dioxide over gallium oxide. Chem Phys Lett 452:178–182CrossRef
98.
go back to reference Yuliati L, Hattori T, Itoh H, Yoshida H (2008) Photocatalytic nonoxidative coupling of methane on gallium oxide and silica-supported gallium oxide. J Catal 257:396–402CrossRef Yuliati L, Hattori T, Itoh H, Yoshida H (2008) Photocatalytic nonoxidative coupling of methane on gallium oxide and silica-supported gallium oxide. J Catal 257:396–402CrossRef
99.
go back to reference Yoshida H, Maeda K (2010) Preparation of gallium oxide photocatalysts for reduction of carbon dioxide. Stud Surf Sci Catal 175:351–354CrossRef Yoshida H, Maeda K (2010) Preparation of gallium oxide photocatalysts for reduction of carbon dioxide. Stud Surf Sci Catal 175:351–354CrossRef
Metadata
Title
Heterogeneous Photocatalytic Conversion of Carbon Dioxide
Author
Hisao Yoshida
Copyright Year
2011
Publisher
Springer London
DOI
https://doi.org/10.1007/978-0-85729-638-2_15