Skip to main content
Top
Published in: Steel in Translation 12/2019

01-12-2019

High-Power Current-Pulse Generator Based on a Reverse Thyristor Converter

Authors: V. A. Kuznetsov, G. D. Polkovnikov, V. E. Gromov, E. S. Kuznetsova, O. A. Peregudov

Published in: Steel in Translation | Issue 12/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In metal processing by powerful current pulses, there is a need for adjustment of both the pulse repetition rate and amplitude. This paper describes a powerful current-pulse generator with a controlled thyristor converter, which is used as a power source for a charging device for regulating the voltage (pulse amplitude) of a capacitor charge. The disadvantages of the generators associated with the current spike in the capacitor charge modes that reduces the supply network quality are discussed. The application of a reverse thyristor converter (RTC) as a power supply is considered to reduce the transient time at a voltage decrease on the capacitors. The generator’s structural diagram that consists of a reversible thyristor converter with separate control, a power unit, a capacitor recharge device, an automatic control system (ACS) for the charger parameters, and a capacitor charging control system is presented. The regulator parameters of the ACS are calculated. To obtain optimal transients, a standard methodology for regulator tuning according to a modular optimum is employed. In order to reduce overadjustment at the disturbance time reaching 100% and higher, the so-called logical device is introduced into the ACS. The latter blocks the control pulses on the converter thyristors and simultaneously reduces the signal at the output of the current regulator to zero. A simulation model of a powerful current pulse generator is synthesized in the MatLab-Simulink environment. The model is analyzed, and plots explaining the device’s operation principle and transients in various operating modes are shown. The use of a generator will allow high-performance adjustments of the current pulse amplitude and obtain sufficiently high-quality capacitor charge (discharge) transients, which will have a beneficial effect on the power supply network. The application of higher quality converters will significantly increase the current pulse repetition rate.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Spitsyn, V.I. and Troitskii, O.A., Elektroplasticheskaya deformatsiya metalla (Electroplastic Deformation of Metal), Moscow: Nauka, 1985. Spitsyn, V.I. and Troitskii, O.A., Elektroplasticheskaya deformatsiya metalla (Electroplastic Deformation of Metal), Moscow: Nauka, 1985.
2.
go back to reference Klimov, K.M. and Nevikov, I.I., The “electroplastic effect,” Strength Mater., 1984, vol. 16, no. 2, pp. 270–276.CrossRef Klimov, K.M. and Nevikov, I.I., The “electroplastic effect,” Strength Mater., 1984, vol. 16, no. 2, pp. 270–276.CrossRef
3.
go back to reference Beklemishev, N.N., Working of conducting materials by means of a locally nonuniform pulsed electromagnetic field, Sov. Electr. Eng., 1982, vol. 53, no. 11, pp. 113–117. Beklemishev, N.N., Working of conducting materials by means of a locally nonuniform pulsed electromagnetic field, Sov. Electr. Eng., 1982, vol. 53, no. 11, pp. 113–117.
4.
go back to reference Klimov, K.M., Shnyrev, G.D., and Novikov, I.I., Change in the ductility of tungsten under the influence of electric current, Met. Sci. Heat Treat., 1977, vol. 19, no. 1, pp. 58–59.CrossRef Klimov, K.M., Shnyrev, G.D., and Novikov, I.I., Change in the ductility of tungsten under the influence of electric current, Met. Sci. Heat Treat., 1977, vol. 19, no. 1, pp. 58–59.CrossRef
5.
go back to reference Klimov, K.M., Shnyrev, G.D., Novikov, I.I., and Isaev, A.V., Electrostimulated rolling into a tape of micron sections of tungsten and its alloys, Izv. Akad, Nauk SSSR, Met., 1975, no. 4, pp. 143–144. Klimov, K.M., Shnyrev, G.D., Novikov, I.I., and Isaev, A.V., Electrostimulated rolling into a tape of micron sections of tungsten and its alloys, Izv. Akad, Nauk SSSR, Met., 1975, no. 4, pp. 143–144.
6.
go back to reference Ye, Y., Kure-Chu, S.-Z., Sun, Z., Li, X., Wang, H., and Tang, G., Nanocrystallization and enhanced surface mechanical properties of commercial pure titanium by electropulsing-assisted ultrasonic surface rolling, Mater. Des., 2018, vol. 149, no. 5, pp. 214–227.CrossRef Ye, Y., Kure-Chu, S.-Z., Sun, Z., Li, X., Wang, H., and Tang, G., Nanocrystallization and enhanced surface mechanical properties of commercial pure titanium by electropulsing-assisted ultrasonic surface rolling, Mater. Des., 2018, vol. 149, no. 5, pp. 214–227.CrossRef
7.
go back to reference Chen, L., Wang, H., Liu, D., Ye, X., Li, X., and Tang, G., Effects of electropulsing cutting on the quenched and tempered 45 steel rods, J. Wuhan Univ. Technol.-Mater., 2018, vol. 33, pp. 204–211. Chen, L., Wang, H., Liu, D., Ye, X., Li, X., and Tang, G., Effects of electropulsing cutting on the quenched and tempered 45 steel rods, J. Wuhan Univ. Technol.-Mater., 2018, vol. 33, pp. 204–211.
8.
go back to reference Zhang, R., Li, X., Kuang, J., Li, X., and Tang, G., Texture modification of magnesium alloys during electropulse treatment, Mater. Sci. Technol., 2017, vol. 33, pp. 1421–1427.CrossRef Zhang, R., Li, X., Kuang, J., Li, X., and Tang, G., Texture modification of magnesium alloys during electropulse treatment, Mater. Sci. Technol., 2017, vol. 33, pp. 1421–1427.CrossRef
9.
go back to reference Li, X., Li, X., Ye, Y., Zhang, R., Kure-Chu, S.-Z., and Tang, G., Deformation mechanisms and recrystallization behavior of Mg–3Al–1Zn and Mg–1Gd alloys deformed by electroplastic-asymmetric rolling, Mater. Sci. Eng., A, 2019, vol. 742, pp. 722–733.CrossRef Li, X., Li, X., Ye, Y., Zhang, R., Kure-Chu, S.-Z., and Tang, G., Deformation mechanisms and recrystallization behavior of Mg–3Al–1Zn and Mg–1Gd alloys deformed by electroplastic-asymmetric rolling, Mater. Sci. Eng., A, 2019, vol. 742, pp. 722–733.CrossRef
10.
go back to reference Ye, Y.-D., Li, X.-P., Sun, Z.-Y., Wang, H.-B., and Tang, G.-Y., Enhanced surface mechanical properties and microstructure evolution of commercial pure titanium under electropulsing-assisted ultrasonic surface rolling process, Acta Metall. Sin. (Engl. Lett.), 2018, vol. 31, no. 12, pp. 1272–1280. Ye, Y.-D., Li, X.-P., Sun, Z.-Y., Wang, H.-B., and Tang, G.-Y., Enhanced surface mechanical properties and microstructure evolution of commercial pure titanium under electropulsing-assisted ultrasonic surface rolling process, Acta Metall. Sin. (Engl. Lett.), 2018, vol. 31, no. 12, pp. 1272–1280.
11.
go back to reference Tang, G., Zhang, J., Yan, Y., Zhou, H., and Fang, W., The engineering application of the electroplastic effect in the cold-drawing of stainless steel wire, J. Mater. Process. Technol., 2003, vol. 137, no. 1, pp. 96–99.CrossRef Tang, G., Zhang, J., Yan, Y., Zhou, H., and Fang, W., The engineering application of the electroplastic effect in the cold-drawing of stainless steel wire, J. Mater. Process. Technol., 2003, vol. 137, no. 1, pp. 96–99.CrossRef
12.
go back to reference Kozlov, A., Mordyuk, B., and Chemyashevsky, A., On the additivity of acoustoplastic and electroplastic effects, Mater. Sci. Eng., A, 1995, vol. 190, no. 1, pp. 75–79.CrossRef Kozlov, A., Mordyuk, B., and Chemyashevsky, A., On the additivity of acoustoplastic and electroplastic effects, Mater. Sci. Eng., A, 1995, vol. 190, no. 1, pp. 75–79.CrossRef
13.
go back to reference Ruszkiewicz, B.J., Grimm, T., Ragai, I., Mears, L., and Roth, J.T., A review of electrically-assisted manufacturing with emphasis on modeling and understanding of the electroplastic effect, J. Manuf. Sci. Eng., 2017, vol. 139, no. 11, pp. 110801-1–110801-15.CrossRef Ruszkiewicz, B.J., Grimm, T., Ragai, I., Mears, L., and Roth, J.T., A review of electrically-assisted manufacturing with emphasis on modeling and understanding of the electroplastic effect, J. Manuf. Sci. Eng., 2017, vol. 139, no. 11, pp. 110801-1–110801-15.CrossRef
14.
go back to reference Fan, G., Sun, F., Meng, X., Gao, L., and Tong, G., Electric hot incremental forming of Ti–6A1–4V titanium sheet, Int. J. Adv. Manuf. Technol., 2010, vol. 49, nos. 9–12, pp. 941–947.CrossRef Fan, G., Sun, F., Meng, X., Gao, L., and Tong, G., Electric hot incremental forming of Ti–6A1–4V titanium sheet, Int. J. Adv. Manuf. Technol., 2010, vol. 49, nos. 9–12, pp. 941–947.CrossRef
15.
go back to reference Fan, G., Gao, L., Hussain, G., and Wu, Z., Electric hot incremental forming: a novel technique, Int. J. Mach. Tools Manuf., 2008, vol. 48, no. 15, pp. 1688–1692.CrossRef Fan, G., Gao, L., Hussain, G., and Wu, Z., Electric hot incremental forming: a novel technique, Int. J. Mach. Tools Manuf., 2008, vol. 48, no. 15, pp. 1688–1692.CrossRef
16.
go back to reference Shi, X., Gao, L., Khalatbari, H., Xu, Y., Wang, H., and Jin, L., Electric hot incremental forming of low carbon steel sheet: accuracy improvement, Int. J. Adv. Manuf. Technol., 2013, vol. 68, nos. 1–4, pp. 241–247.CrossRef Shi, X., Gao, L., Khalatbari, H., Xu, Y., Wang, H., and Jin, L., Electric hot incremental forming of low carbon steel sheet: accuracy improvement, Int. J. Adv. Manuf. Technol., 2013, vol. 68, nos. 1–4, pp. 241–247.CrossRef
17.
go back to reference Bao, W., Chu, X., Lin, S., and Gao, J., Experimental investigation on formability and microstructure of AZ31B alloy in electropulse-assisted incremental forming, Mater. Des., 2015, vol. 87, pp. 632–639.CrossRef Bao, W., Chu, X., Lin, S., and Gao, J., Experimental investigation on formability and microstructure of AZ31B alloy in electropulse-assisted incremental forming, Mater. Des., 2015, vol. 87, pp. 632–639.CrossRef
18.
go back to reference Honarpisheh, M., Abdolhoseini, M., and Amini, S., Experimental and numerical investigation of the hot incremental forming of Ti–6A1–4V sheet using electrical current, Int. J. Adv. Manuf. Technol., 2016, vol. 83, nos. 9–12, pp. 2027–2037.CrossRef Honarpisheh, M., Abdolhoseini, M., and Amini, S., Experimental and numerical investigation of the hot incremental forming of Ti–6A1–4V sheet using electrical current, Int. J. Adv. Manuf. Technol., 2016, vol. 83, nos. 9–12, pp. 2027–2037.CrossRef
19.
go back to reference Xu, D., Lu, B., Cao, T., Zhang, H., Chen, J., Long, H., and Cao, J., Enhancement of process capabilities in electrically-assisted double sided incremental forming, Mater. Des., 2016, vol. 92, pp. 268–280.CrossRef Xu, D., Lu, B., Cao, T., Zhang, H., Chen, J., Long, H., and Cao, J., Enhancement of process capabilities in electrically-assisted double sided incremental forming, Mater. Des., 2016, vol. 92, pp. 268–280.CrossRef
20.
go back to reference Liu, R., Lu, B., Xu, D., Chen, J., Chen, F., Ou, H., and Long, H., Development of novel tools for electricity-assisted incremental sheet forming of titanium alloy, Int. J. Adv. Manuf. Technol., 2016, vol. 85, nos. 5–8, pp. 1137–1144.CrossRef Liu, R., Lu, B., Xu, D., Chen, J., Chen, F., Ou, H., and Long, H., Development of novel tools for electricity-assisted incremental sheet forming of titanium alloy, Int. J. Adv. Manuf. Technol., 2016, vol. 85, nos. 5–8, pp. 1137–1144.CrossRef
21.
go back to reference Xie, H., Dong, X., Peng, F., Wang, Q., Liu, K., Wang, X., and Chen, F., Investigation on the electrically-assisted stress relaxation of AZ31B magnesium alloy sheet, J. Mater. Process. Technol., 2016, vol. 227, pp. 88–95.CrossRef Xie, H., Dong, X., Peng, F., Wang, Q., Liu, K., Wang, X., and Chen, F., Investigation on the electrically-assisted stress relaxation of AZ31B magnesium alloy sheet, J. Mater. Process. Technol., 2016, vol. 227, pp. 88–95.CrossRef
22.
go back to reference Adams, D. and Jeswiet, J., Single-point incremental forming of 6061-T6 using electrically assisted forming methods, Proc. Inst. Mech. Eng., 2014, vol. 228, no. 7, pp. 757–764.CrossRef Adams, D. and Jeswiet, J., Single-point incremental forming of 6061-T6 using electrically assisted forming methods, Proc. Inst. Mech. Eng., 2014, vol. 228, no. 7, pp. 757–764.CrossRef
23.
go back to reference Valoppi, B., Egea, A.J.S., Zhang, Z., Rojas, H.A.G., Ghiotti, A., Bruschi, S., and Cao, J., A hybrid mixed double-sided incremental forming method for forming Ti6A14V alloy, CIRP Ann., 2016, vol. 65, no. 1, pp. 309–312.CrossRef Valoppi, B., Egea, A.J.S., Zhang, Z., Rojas, H.A.G., Ghiotti, A., Bruschi, S., and Cao, J., A hybrid mixed double-sided incremental forming method for forming Ti6A14V alloy, CIRP Ann., 2016, vol. 65, no. 1, pp. 309–312.CrossRef
24.
go back to reference Nguyen-Tran, H., Oh, H., Hong, S., Han, H.N., Cao, J., Ahn, S., and Chun, D., A review of electrically-assisted manufacturing, Int. J. Precis.: Eng. Manuf. Green Technol., 2015, vol. 2, no. 4, pp. 365–376. Nguyen-Tran, H., Oh, H., Hong, S., Han, H.N., Cao, J., Ahn, S., and Chun, D., A review of electrically-assisted manufacturing, Int. J. Precis.: Eng. Manuf. Green Technol., 2015, vol. 2, no. 4, pp. 365–376.
25.
go back to reference Guan, L., Tang, G., and Chu, P.K., Recent advances and challenges in electroplastic manufacturing processing of metals, J. Mater. Res., 2010, vol. 25, no. 7, pp. 1215–1224.CrossRef Guan, L., Tang, G., and Chu, P.K., Recent advances and challenges in electroplastic manufacturing processing of metals, J. Mater. Res., 2010, vol. 25, no. 7, pp. 1215–1224.CrossRef
26.
go back to reference Kuznetsov, V.A., Gromov, V.E., and Simakov, V.P., USSR Inventor’s Certificate no. 884092, Byull. Izobret., 1981, no. 43. Kuznetsov, V.A., Gromov, V.E., and Simakov, V.P., USSR Inventor’s Certificate no. 884092, Byull. Izobret., 1981, no. 43.
27.
go back to reference Kuznetsov, V.A. and Gromov, V.E., Effective high power pulse generator, Izv. Vyssh. Uchebn. Zaved., Elektromekh., 1986, no. 6, pp. 122–124. Kuznetsov, V.A. and Gromov, V.E., Effective high power pulse generator, Izv. Vyssh. Uchebn. Zaved., Elektromekh., 1986, no. 6, pp. 122–124.
28.
go back to reference Zhmakin, Yu.D., Zagulyaev, D.V., Konovalov, S.V., Kuznetsov, V.A., and Gromov, V.E., High power current pulse generator for intensification of metal forming, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2008, no. 8, pp. 42–44. Zhmakin, Yu.D., Zagulyaev, D.V., Konovalov, S.V., Kuznetsov, V.A., and Gromov, V.E., High power current pulse generator for intensification of metal forming, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2008, no. 8, pp. 42–44.
29.
go back to reference Kuznetsov, V.A., Polkovnikov, G.D., Kuznetsova, E.S., and Gromov, V.E., Development of automatic control system for electrostimulated drawing using high power current pulses, Trudy Vos’moi Vserossiiskoi nauchno-prakticheskoi konferentsii “Avtomatizirovannyi elektroprivod i promyshlennaya elektronika” (Proc Eight All-Russ. Sci.-Pract. Conf. “Automated Electric Drive and Industrial Electronics”), Ostrovlyanchik, V.Yu., Ed., Novokuznetsk: Sib. Gos. Ind. Univ., 2018, pp. 132–138. Kuznetsov, V.A., Polkovnikov, G.D., Kuznetsova, E.S., and Gromov, V.E., Development of automatic control system for electrostimulated drawing using high power current pulses, Trudy Vos’moi Vserossiiskoi nauchno-prakticheskoi konferentsii “Avtomatizirovannyi elektroprivod i promyshlennaya elektronika” (Proc Eight All-Russ. Sci.-Pract. Conf. “Automated Electric Drive and Industrial Electronics”), Ostrovlyanchik, V.Yu., Ed., Novokuznetsk: Sib. Gos. Ind. Univ., 2018, pp. 132–138.
30.
go back to reference Onishchenko, G.B., Aksenov, M.I., and Grekhov, V.P., Avtomatizirovannyi elektroprivod promyshlennykh ustanovok (Automated Electric Drive of Industrial Units), Onishchenko, G.B., Ed., Moscow: Ross. Akad. S-kh. Nauk, 2001. Onishchenko, G.B., Aksenov, M.I., and Grekhov, V.P., Avtomatizirovannyi elektroprivod promyshlennykh ustanovok (Automated Electric Drive of Industrial Units), Onishchenko, G.B., Ed., Moscow: Ross. Akad. S-kh. Nauk, 2001.
Metadata
Title
High-Power Current-Pulse Generator Based on a Reverse Thyristor Converter
Authors
V. A. Kuznetsov
G. D. Polkovnikov
V. E. Gromov
E. S. Kuznetsova
O. A. Peregudov
Publication date
01-12-2019
Publisher
Pleiades Publishing
Published in
Steel in Translation / Issue 12/2019
Print ISSN: 0967-0912
Electronic ISSN: 1935-0988
DOI
https://doi.org/10.3103/S0967091219120064

Other articles of this Issue 12/2019

Steel in Translation 12/2019 Go to the issue

Premium Partners