Skip to main content
Top
Published in: Measurement Techniques 5/2020

15-09-2020 | MEDICAL AND BIOLOGICAL MEASUREMENTS

High-Precision Temperature Measurement System for Magnetic Resonance Imaging

Authors: D. S. Semenov, V. A. Yatseev, E. S. Akhmad, Yu. A. Vasilev, K. A. Sergunova, A. V. Petraikin

Published in: Measurement Techniques | Issue 5/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To determine the compliance of an implantable medical device with the safety requirements in magnetic resonance imaging, an experimental assessment of the heating of this device during a study is necessary. The use of traditional methods, such as thermocouple measurements or radiation thermometry, is difficult in the conditions of a magnetic resonance imaging room. A spectrometric system for measuring temperature in conditions of a magnetic resonance imaging room is proposed. The developed system has a sensitivity of 0.01°C and an error of 0.1% in the range of 10–50°C. The temperature sensors used in the system are Fabry–Perot interferometers. The design of the sensors and the method of calibration are described. The system was tested in determining the heating of two passive implants during the study in a magnetic resonance imager with a magnetic field induction of 1.5 T. The compliance of the developed system with the recommendations adopted in magnetic resonance imaging for evaluating the heating of implantable medical devices is demonstrated. The temperature value obtained is comparable with the value found during testing of this implant according to ASTM F 2182. The presented measuring system can be used to assess the magnetic resonance compatibility of implantable medical devices, to develop scanning protocols for patients with metal structures, as well as to confirm or refi ne mathematical models of heat transfer.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. A. Elder and D. F. Cahill, Biological Effects of Radiofrequency Radiation, Health Effects Research Laboratory, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park N. C. (1984). J. A. Elder and D. F. Cahill, Biological Effects of Radiofrequency Radiation, Health Effects Research Laboratory, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park N. C. (1984).
2.
go back to reference F. G. Shellock, D. J. Schaefer, and C. J. Gordon, Magn. Reson. Med., 3, No. 4, 644–647 (1986).CrossRef F. G. Shellock, D. J. Schaefer, and C. J. Gordon, Magn. Reson. Med., 3, No. 4, 644–647 (1986).CrossRef
3.
go back to reference F. G. Shellock, Magn. Reson. Quart., 5, No. 4, 243–261 (1989). F. G. Shellock, Magn. Reson. Quart., 5, No. 4, 243–261 (1989).
14.
go back to reference V. A. Korolev and V. T. Potapov, “Biomedical fiber optic temperature and pressure sensors,” Med. Tekhn., 272, No. 2, 38–42 (2012). V. A. Korolev and V. T. Potapov, “Biomedical fiber optic temperature and pressure sensors,” Med. Tekhn., 272, No. 2, 38–42 (2012).
15.
go back to reference A. N. Sokolov and V. A. Yatseev, “Fiber-optic sensors and systems: principles of construction, capabilities and prospects,” LightWave Russ., No. 4, 44–46 (2006). A. N. Sokolov and V. A. Yatseev, “Fiber-optic sensors and systems: principles of construction, capabilities and prospects,” LightWave Russ., No. 4, 44–46 (2006).
16.
go back to reference A. M. Zotov, P. V. Korolenko, and V. A. Yatseev, “Algorithms for fast signal processing of a fi ber-optic Fabry–Perot interferometer,” Datch. Sistemy, No. 4, 29–33 (2018). A. M. Zotov, P. V. Korolenko, and V. A. Yatseev, “Algorithms for fast signal processing of a fi ber-optic Fabry–Perot interferometer,” Datch. Sistemy, No. 4, 29–33 (2018).
Metadata
Title
High-Precision Temperature Measurement System for Magnetic Resonance Imaging
Authors
D. S. Semenov
V. A. Yatseev
E. S. Akhmad
Yu. A. Vasilev
K. A. Sergunova
A. V. Petraikin
Publication date
15-09-2020
Publisher
Springer US
Published in
Measurement Techniques / Issue 5/2020
Print ISSN: 0543-1972
Electronic ISSN: 1573-8906
DOI
https://doi.org/10.1007/s11018-020-01801-4

Other articles of this Issue 5/2020

Measurement Techniques 5/2020 Go to the issue