Skip to main content
Top

2017 | OriginalPaper | Chapter

2. High-Speed InP-Based Long-Wavelength VCSELs

Authors : Silvia Spiga, Markus C. Amann

Published in: Green Photonics and Electronics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The rapid growth of internet and cloud computing applications drives a huge demand for bandwidth capacity in communication networks, while power consumption, cost, and space density must scale down. This growth leads to an increase in the size of data centers (longer optical links), and of the fibers’ channel data rate, rooted in Moore’s Law. Until now, multi-mode fibers (MMF) have been largely employed in datacom applications due to the large coupling tolerance. However, the data-carrying capability of MMF decreases with the transmission distance due to pulse broadening resulting from modal and chromatic dispersion. In order to overcome those limits, transceivers based on single mode fiber (SMF) are under development and the first systems are on the market. Vertical-cavity surface-emitting lasers (VCSELs) are the transmitters of choice for short-reach applications due to their low cost, energy efficiency, and small footprint. InP-based VCSELs emitting at long wavelengths (i.e. 1.3 and 1.55 µm) have gained large interest due to their intrinsic lower power consumption (lower band gap) and low losses in silicon waveguides and silica-based optical fibers, which allows longer transmission distances. While short-wavelength GaAs-based VCSELs have achieved small-signal modulation bandwidths up to 30 GHz [1], InP-based VCSELs show inferior modulation capabilities [2, 3]. Up to date, the highest small-signal bandwidth demonstrated on InP-based devices is 22 GHz [3]. The distributed Bragg reflectors (DBRs) commonly used for GaAs-based VCSELs are made of binary and ternary semiconductor compounds, which offer several advantages such as high refractive-index contrast between the layers, good electrical conductivity and low thermal resistivity. The inferiority of semiconductor DBRs lattice matched to InP challenges the modulation bandwidth enhancement of InP-based devices which suffer of poor thermal conductivity, and high lateral spreading resistance. A further challenge is the single-mode laser operation that has motivated the transition from MMF to SMF in datacom systems. In this chapter, the challenges related to InP-based VCSELs are discussed with focus on active region design, cavity engineering, and current and optical confinement. These arguments apply to all InP-based VCSELs with emission wavelength between 1.3 and 2.0 µm. Stationary and dynamic characteristics are presented for a 1.55 µm VCSEL. Finally, datacom and telecom transmission experiments are presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. Haglund, P. Westbergh, J.S. Gustavsson, E.P. Haglund, A. Larsson, M. Geen, A. Joel, 30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s. Electron. Lett. 51(14), 1096–1098 (2015)CrossRef E. Haglund, P. Westbergh, J.S. Gustavsson, E.P. Haglund, A. Larsson, M. Geen, A. Joel, 30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s. Electron. Lett. 51(14), 1096–1098 (2015)CrossRef
2.
go back to reference M. Müller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R.D. Nagel, E. Ronneberg, G. Böhm, D. Bimberg, M.-C. Amann, 1550-nm high-speed short-cavity VCSELs. IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1166 (2011). doi:10.1109/JSTQE.2011.2109700 CrossRef M. Müller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R.D. Nagel, E. Ronneberg, G. Böhm, D. Bimberg, M.-C. Amann, 1550-nm high-speed short-cavity VCSELs. IEEE J. Sel. Top. Quantum Electron. 17(5), 1158–1166 (2011). doi:10.​1109/​JSTQE.​2011.​2109700 CrossRef
3.
go back to reference S. Spiga, D. Schoke, A. Andrejew, M. Müller, G. Boehm, M.-C. Amann, Single-Mode 1.5-µm VCSELs with 22-GHz small-signal bandwidth, in Optical Fiber Communication Conference, Anaheim, California, 20 Mar 2016. OSA Technical Digest (online) (Optical Society of America, 2016), p. Tu3D.4. doi:10.1364/OFC.2016.Tu3D.4 S. Spiga, D. Schoke, A. Andrejew, M. Müller, G. Boehm, M.-C. Amann, Single-Mode 1.5-µm VCSELs with 22-GHz small-signal bandwidth, in Optical Fiber Communication Conference, Anaheim, California, 20 Mar 2016. OSA Technical Digest (online) (Optical Society of America, 2016), p. Tu3D.4. doi:10.​1364/​OFC.​2016.​Tu3D.​4
4.
go back to reference P. Sundgren, R. Marcks von Wurtemberg, J. Berggren, M. Hammar, M. Ghisoni, V. Oscarsson, E. Odling, J. Malmquist, High-performance 1.3 µm InGaAs vertical cavity surface emitting lasers. Electron. Lett. 39(15), 1128–1129 (2003). doi:10.1049/el:20030733 CrossRef P. Sundgren, R. Marcks von Wurtemberg, J. Berggren, M. Hammar, M. Ghisoni, V. Oscarsson, E. Odling, J. Malmquist, High-performance 1.3 µm InGaAs vertical cavity surface emitting lasers. Electron. Lett. 39(15), 1128–1129 (2003). doi:10.​1049/​el:​20030733 CrossRef
5.
go back to reference H. Riechert, A. Ramakrishnan, G. Steinle, Development of InGaAsN-based 1.3 μm VCSELs. Semicond. Sci. Technol. 17(8), 892 (2002)CrossRef H. Riechert, A. Ramakrishnan, G. Steinle, Development of InGaAsN-based 1.3 μm VCSELs. Semicond. Sci. Technol. 17(8), 892 (2002)CrossRef
6.
go back to reference J.A. Lott, N.N. Ledentsov, V.M. Ustinov, N.A. Maleev, A.E. Zhukov, A.R. Kovsh, M.V. Maximov, B.V. Volovik, Z.I. Alferov, D. Bimberg, InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 µm. Electron. Lett. 36(16), 1384–1385 (2000). doi:10.1049/el:20000988 CrossRef J.A. Lott, N.N. Ledentsov, V.M. Ustinov, N.A. Maleev, A.E. Zhukov, A.R. Kovsh, M.V. Maximov, B.V. Volovik, Z.I. Alferov, D. Bimberg, InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 µm. Electron. Lett. 36(16), 1384–1385 (2000). doi:10.​1049/​el:​20000988 CrossRef
8.
10.
go back to reference G. Böhm, R. Shau, R. Meyer, M.C. Amann, M. Ortsiefer, J. Rosskopf, F. Mederer, InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0 µm. Paper presented at the 2002 International Conference on Molecular Beam Epitaxy, 15–20 Sept 2002 G. Böhm, R. Shau, R. Meyer, M.C. Amann, M. Ortsiefer, J. Rosskopf, F. Mederer, InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0 µm. Paper presented at the 2002 International Conference on Molecular Beam Epitaxy, 15–20 Sept 2002
11.
go back to reference B. Zhao, T.R. Chen, A. Yariv, The extra differential gain enhancement in multiple-quantum-well lasers. IEEE Photonics Technol. Lett. 4(2), 124–126 (1992). doi:10.1109/68.122336 CrossRef B. Zhao, T.R. Chen, A. Yariv, The extra differential gain enhancement in multiple-quantum-well lasers. IEEE Photonics Technol. Lett. 4(2), 124–126 (1992). doi:10.​1109/​68.​122336 CrossRef
12.
go back to reference M. Gendry, V. Drouot, C. Santinelli, G. Hollinger, Critical thicknesses of highly strained InGaAs layers grown on InP by molecular beam epitaxy. Appl. Phys. Lett. 60(18), 2249–2251 (1992). doi:10.1063/1.107045 CrossRef M. Gendry, V. Drouot, C. Santinelli, G. Hollinger, Critical thicknesses of highly strained InGaAs layers grown on InP by molecular beam epitaxy. Appl. Phys. Lett. 60(18), 2249–2251 (1992). doi:10.​1063/​1.​107045 CrossRef
13.
go back to reference D. Ellafi, V. Iakovlev, A. Sirbu, S. Grigore, Z. Mickovic, A. Caliman, A. Mereuta, E. Kapon, Effect of cavity lifetime variation on the static and dynamic properties of 1.3-µm wafer-fused VCSELs. IEEE J. Sel. Top. Quantum Electron. 21(6), 1–9 (2015). doi:10.1109/JSTQE.2015.2412495 D. Ellafi, V. Iakovlev, A. Sirbu, S. Grigore, Z. Mickovic, A. Caliman, A. Mereuta, E. Kapon, Effect of cavity lifetime variation on the static and dynamic properties of 1.3-µm wafer-fused VCSELs. IEEE J. Sel. Top. Quantum Electron. 21(6), 1–9 (2015). doi:10.​1109/​JSTQE.​2015.​2412495
14.
16.
go back to reference D.I. Babic, S.W. Corzine, Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors. IEEE J. Quantum Electron. 28(2), 514–524 (1992). doi:10.1109/3.123281 CrossRef D.I. Babic, S.W. Corzine, Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors. IEEE J. Quantum Electron. 28(2), 514–524 (1992). doi:10.​1109/​3.​123281 CrossRef
17.
go back to reference S. Nakagawa, E. Hall, G. Almuneau, J.K. Kim, D.A. Buell, H. Kroemer, L.A. Coldren, 1.55-µm InP-lattice-matched VCSELs with AlGaAsSb-AlAsSb DBRs. IEEE J. Sel. Top. Quantum Electron. 7(2), 224–230 (2001). doi:10.1109/2944.954134 S. Nakagawa, E. Hall, G. Almuneau, J.K. Kim, D.A. Buell, H. Kroemer, L.A. Coldren, 1.55-µm InP-lattice-matched VCSELs with AlGaAsSb-AlAsSb DBRs. IEEE J. Sel. Top. Quantum Electron. 7(2), 224–230 (2001). doi:10.​1109/​2944.​954134
18.
go back to reference L. Chao-Kun, D.P. Bour, Z. Jintian, W.H. Perez, M.H. Leary, A. Tandon, S.W. Corzine, M.R.T. Tan, High temperature continuous-wave operation of 1.3- and 1.55-µm VCSELs with InP/air-gap DBRs. IEEE J. Sel. Top. Quantum Electron. 9(5), 1415–1421 (2003). doi:10.1109/JSTQE.2003.820924 L. Chao-Kun, D.P. Bour, Z. Jintian, W.H. Perez, M.H. Leary, A. Tandon, S.W. Corzine, M.R.T. Tan, High temperature continuous-wave operation of 1.3- and 1.55-µm VCSELs with InP/air-gap DBRs. IEEE J. Sel. Top. Quantum Electron. 9(5), 1415–1421 (2003). doi:10.​1109/​JSTQE.​2003.​820924
19.
go back to reference A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, E. Kapon, 1.5-mW single-mode operation of wafer-fused 1550-nm VCSELs. IEEE Photonics Technol. Lett. 16(5), 1230–1232 (2004). doi:10.1109/LPT.2004.826099 A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, E. Kapon, 1.5-mW single-mode operation of wafer-fused 1550-nm VCSELs. IEEE Photonics Technol. Lett. 16(5), 1230–1232 (2004). doi:10.​1109/​LPT.​2004.​826099
20.
go back to reference R. Yi, Y. Weijian, C. Chase, M.C.Y. Huang, D.D.P. Worland, S. Khaleghi, M.R. Chitgarha, M. Ziyadi, A.E. Willner, C.J. Chang-Hasnain, Long-wavelength VCSEL using high-contrast grating. IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311–1701311 (2013). doi:10.1109/JSTQE.2013.2246780 CrossRef R. Yi, Y. Weijian, C. Chase, M.C.Y. Huang, D.D.P. Worland, S. Khaleghi, M.R. Chitgarha, M. Ziyadi, A.E. Willner, C.J. Chang-Hasnain, Long-wavelength VCSEL using high-contrast grating. IEEE J. Sel. Top. Quantum Electron. 19(4), 1701311–1701311 (2013). doi:10.​1109/​JSTQE.​2013.​2246780 CrossRef
21.
go back to reference K.D. Choquette, K.M. Geib, H.C. Chui, H.Q. Hou, R. Hull, Selective oxidation of buried AlGaAs for fabrication of vertical-cavity lasers. MRS Online Proc. Libr. Arch. 421, 53 (1996). doi:10.1557/PROC-421-53 CrossRef K.D. Choquette, K.M. Geib, H.C. Chui, H.Q. Hou, R. Hull, Selective oxidation of buried AlGaAs for fabrication of vertical-cavity lasers. MRS Online Proc. Libr. Arch. 421, 53 (1996). doi:10.​1557/​PROC-421-53 CrossRef
22.
go back to reference K.D. Choquette, R.P. Schneider Jr., K.L. Lear, K.M. Geib, Low threshold voltage vertical-cavity lasers fabricated by selective oxidation. Electron. Lett. 30(24), 2043–2044 (1994). doi:10.1049/el:19941421 CrossRef K.D. Choquette, R.P. Schneider Jr., K.L. Lear, K.M. Geib, Low threshold voltage vertical-cavity lasers fabricated by selective oxidation. Electron. Lett. 30(24), 2043–2044 (1994). doi:10.​1049/​el:​19941421 CrossRef
23.
go back to reference P. Petit, P. Legay, G. Le Roux, G. Patriarche, G. Post, M. Quillec, Controlled steam oxidation of AlInAs for microelectronics and optoelectronics applications. J. Electron. Mater. 26(12), L32–L35 (1997). doi:10.1007/s11664-997-0065-0 CrossRef P. Petit, P. Legay, G. Le Roux, G. Patriarche, G. Post, M. Quillec, Controlled steam oxidation of AlInAs for microelectronics and optoelectronics applications. J. Electron. Mater. 26(12), L32–L35 (1997). doi:10.​1007/​s11664-997-0065-0 CrossRef
24.
go back to reference C.W. Wilmsen, H. Temkin, Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications, vol. 24 (Cambridge University Press, 2001) C.W. Wilmsen, H. Temkin, Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications, vol. 24 (Cambridge University Press, 2001)
25.
go back to reference M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, G. Abstreiter, M. Christian-Amann, Low-resistance InGa(Al)As tunnel junctions for long wavelength vertical-cavity Surface-emitting Lasers. Jpn. J. Appl. Phys. 39(4R), 1727 (2000)CrossRef M. Ortsiefer, R. Shau, G. Böhm, F. Köhler, G. Abstreiter, M. Christian-Amann, Low-resistance InGa(Al)As tunnel junctions for long wavelength vertical-cavity Surface-emitting Lasers. Jpn. J. Appl. Phys. 39(4R), 1727 (2000)CrossRef
26.
go back to reference G. Hadley, K. Lear, M. Warren, K. Choquette, J. Scott, S. Corzine, Comprehensive numerical modeling of vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 32(4), 607–616 (1996)CrossRef G. Hadley, K. Lear, M. Warren, K. Choquette, J. Scott, S. Corzine, Comprehensive numerical modeling of vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 32(4), 607–616 (1996)CrossRef
27.
go back to reference L.A. Coldren, S.W. Corzine, M.L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, vol. 218 (Wiley, 2012) L.A. Coldren, S.W. Corzine, M.L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, vol. 218 (Wiley, 2012)
28.
go back to reference R. Burton, M. Stern, P. Kendall, P. Robson, Modelling of diffraction in pillar vertical cavity surface-emitting lasers with embedded Bragg layers. Opt. Quant. Electron. 28(11), 1677–1684 (1996)CrossRef R. Burton, M. Stern, P. Kendall, P. Robson, Modelling of diffraction in pillar vertical cavity surface-emitting lasers with embedded Bragg layers. Opt. Quant. Electron. 28(11), 1677–1684 (1996)CrossRef
29.
go back to reference R.S. Tucker, High-speed modulation of semiconductor lasers. IEEE Trans. Electron Devices 32(12), 2572–2584 (1985)CrossRef R.S. Tucker, High-speed modulation of semiconductor lasers. IEEE Trans. Electron Devices 32(12), 2572–2584 (1985)CrossRef
30.
go back to reference M.C. Amann, E. Wong, M. Müller, Energy-efficient high-speed short-cavity VCSELs. Paper presented at the Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference, 4–8 Mar 2012 M.C. Amann, E. Wong, M. Müller, Energy-efficient high-speed short-cavity VCSELs. Paper presented at the Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference, 4–8 Mar 2012
31.
go back to reference W. Soenen, R. Vaernewyck, Y. Xin, S. Spiga, M.C. Amann, K.S. Kaur, P. Bakopoulos, J. Bauwelinck, 40 Gb/s PAM-4 transmitter IC for long-wavelength VCSEL links. IEEE Photonics Technol. Lett. 27(4), 344–347 (2015). doi:10.1109/LPT.2014.2372041 CrossRef W. Soenen, R. Vaernewyck, Y. Xin, S. Spiga, M.C. Amann, K.S. Kaur, P. Bakopoulos, J. Bauwelinck, 40 Gb/s PAM-4 transmitter IC for long-wavelength VCSEL links. IEEE Photonics Technol. Lett. 27(4), 344–347 (2015). doi:10.​1109/​LPT.​2014.​2372041 CrossRef
32.
go back to reference C. Xie, S. Spiga, P. Dong, P. Winzer, M. Bergmann, B. Kögel, C. Neumeyr, M.C. Amann, 400-Gb/s PDM-4PAM WDM system using a monolithic 2 × 4 VCSEL array and coherent detection. J. Lightwave Technol. 33(3), 670–677 (2015). doi:10.1109/JLT.2014.2363017 CrossRef C. Xie, S. Spiga, P. Dong, P. Winzer, M. Bergmann, B. Kögel, C. Neumeyr, M.C. Amann, 400-Gb/s PDM-4PAM WDM system using a monolithic 2 × 4 VCSEL array and coherent detection. J. Lightwave Technol. 33(3), 670–677 (2015). doi:10.​1109/​JLT.​2014.​2363017 CrossRef
33.
go back to reference C. Xie, P. Dong, P. Winzer, C. Gréus, M. Ortsiefer, C. Neumeyr, S. Spiga, M. Müller, M.C. Amann, 960-km SSMF transmission of 105.7-Gb/s PDM 3-PAM using directly modulated VCSELs and coherent detection. Opt. Express 21(9), 11585–11589 (2013). doi:10.1364/OE.21.011585 CrossRef C. Xie, P. Dong, P. Winzer, C. Gréus, M. Ortsiefer, C. Neumeyr, S. Spiga, M. Müller, M.C. Amann, 960-km SSMF transmission of 105.7-Gb/s PDM 3-PAM using directly modulated VCSELs and coherent detection. Opt. Express 21(9), 11585–11589 (2013). doi:10.​1364/​OE.​21.​011585 CrossRef
34.
go back to reference D.M. Kuchta, F.E. Doany, L. Schares, C. Neumeyr, A. Daly, B. Kögel, J. Rosskopf, M. Ortsiefer, Error-free 56 Gb/s NRZ modulation of a 1530 nm VCSEL link, in 2015 European Conference on Optical Communication (ECOC), 27 Sept 2015–1 Oct 2015, pp. 1–3. doi:10.1109/ECOC.2015.7341677 D.M. Kuchta, F.E. Doany, L. Schares, C. Neumeyr, A. Daly, B. Kögel, J. Rosskopf, M. Ortsiefer, Error-free 56 Gb/s NRZ modulation of a 1530 nm VCSEL link, in 2015 European Conference on Optical Communication (ECOC), 27 Sept 2015–1 Oct 2015, pp. 1–3. doi:10.​1109/​ECOC.​2015.​7341677
35.
go back to reference C. Xie, P. Dong, S. Randel, D. Pilori, P.J. Winzer, S. Spiga, B. Kögel, C. Neumeyr, M. Amann, Single-VCSEL 100-Gb/s short-reach system using discrete multi-tone modulation and direct detection, in Optical Fiber Communication Conference, Los Angeles, California, 22 Mar 2015. OSA Technical Digest (online) (Optical Society of America, 2015), p. Tu2H.2. doi:10.1364/OFC.2015.Tu2H.2 C. Xie, P. Dong, S. Randel, D. Pilori, P.J. Winzer, S. Spiga, B. Kögel, C. Neumeyr, M. Amann, Single-VCSEL 100-Gb/s short-reach system using discrete multi-tone modulation and direct detection, in Optical Fiber Communication Conference, Los Angeles, California, 22 Mar 2015. OSA Technical Digest (online) (Optical Society of America, 2015), p. Tu2H.2. doi:10.​1364/​OFC.​2015.​Tu2H.​2
36.
go back to reference A. Vahdat, H. Liu, X. Zhao, C. Johnson, The emerging optical data center, in Optical Fiber Communication Conference (Optical Society of America, 2011), p. OTuH2 A. Vahdat, H. Liu, X. Zhao, C. Johnson, The emerging optical data center, in Optical Fiber Communication Conference (Optical Society of America, 2011), p. OTuH2
37.
go back to reference D. Apostolopoulos, P. Bakopoulos, D. Kalavrouziotis, G. Giannoulis, G. Kanakis, N. Iliadis, C. Spatharakis, J. Bauwelinck, H. Avramopoulos, Photonic integration enabling new multiplexing concepts in optical board-to-board and rack-to-rack interconnects, in SPIE OPTO (International Society for Optics and Photonics, 2014), pp. 89910D-89910D-89915 D. Apostolopoulos, P. Bakopoulos, D. Kalavrouziotis, G. Giannoulis, G. Kanakis, N. Iliadis, C. Spatharakis, J. Bauwelinck, H. Avramopoulos, Photonic integration enabling new multiplexing concepts in optical board-to-board and rack-to-rack interconnects, in SPIE OPTO (International Society for Optics and Photonics, 2014), pp. 89910D-89910D-89915
38.
go back to reference L.G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, S.-W. Wong, Next-generation optical access networks. J. Lightwave Technol. 25(11), 3428–3442 (2007)CrossRef L.G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, S.-W. Wong, Next-generation optical access networks. J. Lightwave Technol. 25(11), 3428–3442 (2007)CrossRef
39.
go back to reference M.H. Eiselt, B.T. Teipen, Requirements for 100 Gb/s Metro Networks. Paper presented at the Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, San Diego, California, 22 Mar 2009 M.H. Eiselt, B.T. Teipen, Requirements for 100 Gb/s Metro Networks. Paper presented at the Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, San Diego, California, 22 Mar 2009
Metadata
Title
High-Speed InP-Based Long-Wavelength VCSELs
Authors
Silvia Spiga
Markus C. Amann
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-67002-7_2