Skip to main content
Top
Published in: Wireless Personal Communications 1/2021

12-01-2021

Highly Directive Microstrip Array Antenna with FSS for Future Generation Cellular Communication at THz Band

Authors: Uri Nissanov, Ghanshyam Singh, Eliezer Gelbart, Nitin Kumar

Published in: Wireless Personal Communications | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To establish a successful future generation cellular communication system in the Terahertz (THz) regime, there is a need to design high-directivity antennas, which will allow the signal to propagate beyond 0.1 km. Simultaneously, design wide bandwidth (BW) antennas to facilitate transmitting the information at a data rate up to 0.1 Tb/s. Two sets of microstrip array antennas have been designed, optimized, and simulated with the CST MWS simulator, in a hybrid fed with uniform amplitude distribution technique, the \(1{\text{st}}\) one without frequency selective surface (FSS) feature and \(2{\text{nd}}\) one with the FSS feature for further enhancing the antenna gain. To verify the simulation results of the \(1{\text{st}} - 2{\text{nd }}\) antennas design, which simulated with the CST MWS simulator, these designs have been validated with the ANSYS HFSS simulator, and the simulation results obtained out of both simulators were close to each other. These antennas can establish a successful short-range 6G cellular communication system at the THz band.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jha, K. R., & Singh, G. (2011). Analysis of narrow terahertz microstrip transmission-line on multilayered substrate. Journal of Computational Electronics, 10, 186–194.CrossRef Jha, K. R., & Singh, G. (2011). Analysis of narrow terahertz microstrip transmission-line on multilayered substrate. Journal of Computational Electronics, 10, 186–194.CrossRef
2.
go back to reference Federici, J., & Moeller, L. (2010). Review of terahertz and sub-terahertz wireless communications. Applied Physics Letters, 107(11), 111101. Federici, J., & Moeller, L. (2010). Review of terahertz and sub-terahertz wireless communications. Applied Physics Letters, 107(11), 111101.
3.
go back to reference Dai, J., Clough, B., Ho, I. C., Lu, X., Liu, J., & Zhang, X.-C. (2011). Recent progress in terahertz wave air photonics. IEEE Transactions on Terahertz Science and Technology, 1(1), 274–281.CrossRef Dai, J., Clough, B., Ho, I. C., Lu, X., Liu, J., & Zhang, X.-C. (2011). Recent progress in terahertz wave air photonics. IEEE Transactions on Terahertz Science and Technology, 1(1), 274–281.CrossRef
4.
go back to reference Markelz, A. G., & Roitberg, A. (2000). Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 1.0 and 2.0 THz. Chemical Physics Letters, 320, 42–48.CrossRef Markelz, A. G., & Roitberg, A. (2000). Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 1.0 and 2.0 THz. Chemical Physics Letters, 320, 42–48.CrossRef
5.
go back to reference Cavalleri, A., Wall, S., & Pson, C. S. (2006). Tracking the motion of charges in a terahertz light field by femtosecond x-ray diffraction. Nature, 442(7103), 664–666.CrossRef Cavalleri, A., Wall, S., & Pson, C. S. (2006). Tracking the motion of charges in a terahertz light field by femtosecond x-ray diffraction. Nature, 442(7103), 664–666.CrossRef
6.
go back to reference Kemp, M. C., Taday, P. F., Cole, B. E., Cluff, J. A., Fitzgerald, A. J., & Tribe, W. R. (2003). Security applications of terahertz imaging in Terahertz for military and security applications. Proceedings SPIE, 5070, 44–52.CrossRef Kemp, M. C., Taday, P. F., Cole, B. E., Cluff, J. A., Fitzgerald, A. J., & Tribe, W. R. (2003). Security applications of terahertz imaging in Terahertz for military and security applications. Proceedings SPIE, 5070, 44–52.CrossRef
7.
go back to reference Wang, J., Ding, Y., Bian, S., Peng, Y., Liu, M., & Gui, G. (2019). ULCSI data-driven deep learning for predicting DLCSI in cellular FDD systems. IEEE Access, 7(1), 96105–96112.CrossRef Wang, J., Ding, Y., Bian, S., Peng, Y., Liu, M., & Gui, G. (2019). ULCSI data-driven deep learning for predicting DLCSI in cellular FDD systems. IEEE Access, 7(1), 96105–96112.CrossRef
8.
go back to reference Gui, G., Huang, H., Song, Y., & Sari, H. (2018). Deep learning for an effective non-orthogonal multiple access scheme. IEEE Transactions on Vehicular Technology, 67(9), 8440–8450.CrossRef Gui, G., Huang, H., Song, Y., & Sari, H. (2018). Deep learning for an effective non-orthogonal multiple access scheme. IEEE Transactions on Vehicular Technology, 67(9), 8440–8450.CrossRef
9.
go back to reference Wang, Y., Liu, M., Yang, J., & Gui, G. (2019). Data-driven deep learning for automatic modulation recognition in cognitive radios. IEEE Transactions on Vehicular Technology, 68(4), 4074–4077.CrossRef Wang, Y., Liu, M., Yang, J., & Gui, G. (2019). Data-driven deep learning for automatic modulation recognition in cognitive radios. IEEE Transactions on Vehicular Technology, 68(4), 4074–4077.CrossRef
10.
go back to reference Jha, K. R., & Singh, G. (2014). Terahertz planar antennas for next generation communication. Switzerland: Springer International Publishing.CrossRef Jha, K. R., & Singh, G. (2014). Terahertz planar antennas for next generation communication. Switzerland: Springer International Publishing.CrossRef
11.
go back to reference Tekbiyik, K., Ekti, A. R., Kurt, G. K., & Gorcin, A. (2019). Terahertz band communication systems: Challenges, novelties and standardization efforts. ELSEVIER Physical Communication, 35(100700), 1–18. Tekbiyik, K., Ekti, A. R., Kurt, G. K., & Gorcin, A. (2019). Terahertz band communication systems: Challenges, novelties and standardization efforts. ELSEVIER Physical Communication, 35(100700), 1–18.
12.
go back to reference Akyildiz, I. F., Han, C., & Nie, S. (2018). Combating the distance problem in the millimeter-wave and Terahertz frequency bands. IEEE Communications Magazine, 56, 102–108.CrossRef Akyildiz, I. F., Han, C., & Nie, S. (2018). Combating the distance problem in the millimeter-wave and Terahertz frequency bands. IEEE Communications Magazine, 56, 102–108.CrossRef
13.
go back to reference Han, C., & Chen, Y. (June 2018). Propagation modeling for wireless communications in the Terahertz band. IEEE Communications Magazine, 56, 96–101.CrossRef Han, C., & Chen, Y. (June 2018). Propagation modeling for wireless communications in the Terahertz band. IEEE Communications Magazine, 56, 96–101.CrossRef
14.
go back to reference Choudhury, B., Sonde, A. R., & Jha, R. M. (2016). Terahertz antenna technology for space applications. New York: Springer.CrossRef Choudhury, B., Sonde, A. R., & Jha, R. M. (2016). Terahertz antenna technology for space applications. New York: Springer.CrossRef
15.
go back to reference Vettikalladi, H., Sethi, W. T., Abas, A. F. B., Ko, W., Alkanhal, M. A., & Himdi, M. (2019). Sub-THz antenna for high-speed wireless communication systems. Hindawi International Journal of Antennas and Propagation, 2019, 1–9.CrossRef Vettikalladi, H., Sethi, W. T., Abas, A. F. B., Ko, W., Alkanhal, M. A., & Himdi, M. (2019). Sub-THz antenna for high-speed wireless communication systems. Hindawi International Journal of Antennas and Propagation, 2019, 1–9.CrossRef
16.
go back to reference Y. Huang, X. Li, Z. Qi, H. Zhu, J. Xiao, and J. Chu, "A 140-GHz high-gain broadband tapered box-horn array antenna, " IEEE Asia Pacific Microwave Conference, 2017, pp. 765–767. Y. Huang, X. Li, Z. Qi, H. Zhu, J. Xiao, and J. Chu, "A 140-GHz high-gain broadband tapered box-horn array antenna, " IEEE Asia Pacific Microwave Conference, 2017, pp. 765–767.
17.
go back to reference Li, C. H., & Chiu, T. Y. (2017). 340-GHz low-cost and high-gain on-chip higher order mode dielectric resonator antenna for THz applications. IEEE Transactions on Terahertz Science and Technology, 7(3), 284–294.CrossRef Li, C. H., & Chiu, T. Y. (2017). 340-GHz low-cost and high-gain on-chip higher order mode dielectric resonator antenna for THz applications. IEEE Transactions on Terahertz Science and Technology, 7(3), 284–294.CrossRef
18.
go back to reference Miao, Z. W., Hao, Z. C., Wang, Y., Jin, B. B., Wu, J. B., & Hong, W. (2018). A 400-GHz wideband high-gain quartz-based single-layered folded reflectarray antenna for terahertz. IEEE Transactions on Terahertz Science and Technology, 9, 1–11. Miao, Z. W., Hao, Z. C., Wang, Y., Jin, B. B., Wu, J. B., & Hong, W. (2018). A 400-GHz wideband high-gain quartz-based single-layered folded reflectarray antenna for terahertz. IEEE Transactions on Terahertz Science and Technology, 9, 1–11.
19.
go back to reference P. V. Testa, B. Klein, R. Hahnel, C. Carta1, D. Plettemeier, and F. Ellinger, "140–220-GHz Distributed Antenna and Amplifier Co-Integrated in SiGe BiCMOS Process for UWB Receivers, " IEEE International Microwave Symposium (IMS) conference, Philadelphia, 10–15 June 2018, pp. 1515–1518. P. V. Testa, B. Klein, R. Hahnel, C. Carta1, D. Plettemeier, and F. Ellinger, "140–220-GHz Distributed Antenna and Amplifier Co-Integrated in SiGe BiCMOS Process for UWB Receivers, " IEEE International Microwave Symposium (IMS) conference, Philadelphia, 10–15 June 2018, pp. 1515–1518.
20.
go back to reference Gonzalez, A., Kaneko, K., Kojima, T., Asayama, S., & Uzawa, Y. (2017). Terahertz corrugated horns (1.25–1.57 THz): Design, gaussian modeling, and measurements. IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 7(1), 42–52. Gonzalez, A., Kaneko, K., Kojima, T., Asayama, S., & Uzawa, Y. (2017). Terahertz corrugated horns (1.25–1.57 THz): Design, gaussian modeling, and measurements. IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 7(1), 42–52.
21.
go back to reference Konstantinidis, K., Feresidis, A. P., Constantinou, C. C., Hoare, E., Gashinova, M., Lancaster, M. J., & Gardner, P. (2017). Low-THz dielectric lens antenna with integrated waveguide feed. IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 7(5), 572–581.CrossRef Konstantinidis, K., Feresidis, A. P., Constantinou, C. C., Hoare, E., Gashinova, M., Lancaster, M. J., & Gardner, P. (2017). Low-THz dielectric lens antenna with integrated waveguide feed. IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 7(5), 572–581.CrossRef
22.
go back to reference Nisamol, T. A., Ansha, K. K., & Abdulla, P. (2020). Design of Sub-THz Beam Scanning Antenna Using Luneburg Lens for 5G Communications or Beyond. Progresses In Electromagnetics Research (PIER) C, 99, 179–191.CrossRef Nisamol, T. A., Ansha, K. K., & Abdulla, P. (2020). Design of Sub-THz Beam Scanning Antenna Using Luneburg Lens for 5G Communications or Beyond. Progresses In Electromagnetics Research (PIER) C, 99, 179–191.CrossRef
23.
go back to reference Huang, K. C., & Wang, Z. (2011). Terahertz terabit wireless communication. IEEE microwave magazine, 12, 108–116.CrossRef Huang, K. C., & Wang, Z. (2011). Terahertz terabit wireless communication. IEEE microwave magazine, 12, 108–116.CrossRef
24.
go back to reference Song, H. J., & Nagatsuma, T. (2011). Present and future of Terahertz communication. IEEE Transactions on Terahertz Science and Technology, 1(1), 256–263.CrossRef Song, H. J., & Nagatsuma, T. (2011). Present and future of Terahertz communication. IEEE Transactions on Terahertz Science and Technology, 1(1), 256–263.CrossRef
25.
go back to reference U. Nissanov and G. Singh, " Terahertz Antenna for 5G Cellular Communication Systems: A Holistic Review. Proceedings of IEEE International Conference on Microwave, Communication, Antennas & Electronic System (COMCAS 2019), Tel-Aviv, 4–5 Nov. 2019, pp. 1–6. U. Nissanov and G. Singh, " Terahertz Antenna for 5G Cellular Communication Systems: A Holistic Review. Proceedings of IEEE International Conference on Microwave, Communication, Antennas & Electronic System (COMCAS 2019), Tel-Aviv, 4–5 Nov. 2019, pp. 1–6.
26.
go back to reference Pozar, D. M. (2012). Microwave engineering. Hoboken: Wiley. Pozar, D. M. (2012). Microwave engineering. Hoboken: Wiley.
27.
go back to reference Capolino, F. (2009). Theory and phenomena of metamaterials. FL: CRC Press Taylor & Francis Group. Capolino, F. (2009). Theory and phenomena of metamaterials. FL: CRC Press Taylor & Francis Group.
28.
go back to reference Munk, B. A. (2000). Frequency selective surfaces - theory and design. New York: Wiley.CrossRef Munk, B. A. (2000). Frequency selective surfaces - theory and design. New York: Wiley.CrossRef
Metadata
Title
Highly Directive Microstrip Array Antenna with FSS for Future Generation Cellular Communication at THz Band
Authors
Uri Nissanov
Ghanshyam Singh
Eliezer Gelbart
Nitin Kumar
Publication date
12-01-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 1/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-08034-2

Other articles of this Issue 1/2021

Wireless Personal Communications 1/2021 Go to the issue