Skip to main content
Top
Published in: Journal of Materials Science 10/2019

13-02-2019 | Chemical routes to materials

Highly thermally conductive graphene film produced using glucose under low-temperature thermal annealing

Authors: Jing Li, Xu-Yang Chen, Ru-Bai Lei, Jin-Feng Lai, Tong-Mei Ma, Yang Li

Published in: Journal of Materials Science | Issue 10/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Graphene films have attracted much attention as a heat dissipation material due to their unique thermal transfer behavior that exceeds that the performance of graphite. However, the very high thermal annealing temperature (~ 3000 °C) required to reduce the graphene oxide (GO) films leads to high manufacturing costs and restricts its broader application in thermal management applications. In this study, a modified-graphene (m-Gr) film was fabricated by vacuum-filtering GO suspensions with added glucose, followed by thermal annealing at 1000 °C. Oxygen-containing functional groups were effectively eliminated during annealing and activated carbon atoms from the decomposition of glucose molecules repaired defects in the graphene sheets to restore large areas of the π-conjugated structure. The as-obtained m-Gr films showed excellent in-plane thermal conductivity ~ 1300 Wm−1 K−1 and much more efficient heat removal than pristine-reduced graphene oxide films. This high thermal conductivity of m-Gr films provides opportunities for their use in next-generation commercial electronics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10(8):569–581CrossRef Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10(8):569–581CrossRef
2.
go back to reference Sukhadolau AV, Ivakin EV, Ralchenko VG, Khomich AV, Vlasov AV, Popovich AF (2005) Thermal conductivity of CVD diamond at elevated temperatures. Diam Relat Mater 14:589–593CrossRef Sukhadolau AV, Ivakin EV, Ralchenko VG, Khomich AV, Vlasov AV, Popovich AF (2005) Thermal conductivity of CVD diamond at elevated temperatures. Diam Relat Mater 14:589–593CrossRef
3.
go back to reference Malekpour H, Chang KH, Chen JC, Lu CY, Nika DL, Novoselov KS et al (2014) Thermal conductivity of graphene laminate. Nano Lett 14(9):5155–5161CrossRef Malekpour H, Chang KH, Chen JC, Lu CY, Nika DL, Novoselov KS et al (2014) Thermal conductivity of graphene laminate. Nano Lett 14(9):5155–5161CrossRef
4.
go back to reference Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
5.
go back to reference Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907CrossRef Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907CrossRef
6.
go back to reference Nika DL, Balandin AA (2017) Phonons and thermal transport in graphene and graphene-based materials. Rep Prog Phys 80(3):036502CrossRef Nika DL, Balandin AA (2017) Phonons and thermal transport in graphene and graphene-based materials. Rep Prog Phys 80(3):036502CrossRef
7.
go back to reference Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G et al (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460CrossRef Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G et al (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460CrossRef
8.
go back to reference Gao X, Jang J, Nagase S (2010) Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C 114(2):832–842CrossRef Gao X, Jang J, Nagase S (2010) Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C 114(2):832–842CrossRef
9.
go back to reference Kargar F, Barani Z, Balinskiy M, Magana AS, Lewis JS, Balandin AA (2019) Dual-functional graphene composites for electromagnetic shielding and thermal management. Adv. Electron. Mater. 5(1):1800558CrossRef Kargar F, Barani Z, Balinskiy M, Magana AS, Lewis JS, Balandin AA (2019) Dual-functional graphene composites for electromagnetic shielding and thermal management. Adv. Electron. Mater. 5(1):1800558CrossRef
10.
go back to reference Shen B, Zhai W, Zheng W (2014) Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv Funct Mater 24(28):4542–4548CrossRef Shen B, Zhai W, Zheng W (2014) Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv Funct Mater 24(28):4542–4548CrossRef
11.
go back to reference Xin G, Sun H, Hu T, Fard HR, Sun X, Koratkar N et al (2014) Large-area freestanding graphene paper for superior thermal management. Adv Mater 26(26):4521–4526CrossRef Xin G, Sun H, Hu T, Fard HR, Sun X, Koratkar N et al (2014) Large-area freestanding graphene paper for superior thermal management. Adv Mater 26(26):4521–4526CrossRef
12.
go back to reference Peng L, Xu Z, Liu Z, Guo Y, Li P, Gao C (2017) Ultrahigh thermal conductive yet superflexible graphene films. Adv Mater 29(27):1700589CrossRef Peng L, Xu Z, Liu Z, Guo Y, Li P, Gao C (2017) Ultrahigh thermal conductive yet superflexible graphene films. Adv Mater 29(27):1700589CrossRef
13.
go back to reference Renteria JD, Ramirez S, Malekpour H, Alonso B, Centeno A, Zurutuza A et al (2015) Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv Funct Mater 25(29):4664–4672CrossRef Renteria JD, Ramirez S, Malekpour H, Alonso B, Centeno A, Zurutuza A et al (2015) Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv Funct Mater 25(29):4664–4672CrossRef
14.
go back to reference Wu H, Drzal LT (2012) Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties. Carbon 50(3):1135–1145CrossRef Wu H, Drzal LT (2012) Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties. Carbon 50(3):1135–1145CrossRef
15.
go back to reference Hou Z-L, Song W-L, Wang P, Meziani MJ, Kong CY, Anderson A et al (2014) Flexible graphene–graphene composites of superior thermal and electrical transport properties. ACS Appl Mater Interfaces 6(17):15026–15032CrossRef Hou Z-L, Song W-L, Wang P, Meziani MJ, Kong CY, Anderson A et al (2014) Flexible graphene–graphene composites of superior thermal and electrical transport properties. ACS Appl Mater Interfaces 6(17):15026–15032CrossRef
16.
go back to reference Song N-J, Chen C-M, Lu C, Liu Z, Kong Q-Q, Cai R (2014) Thermally reduced graphene oxide films as flexible lateral heat spreaders. J Mater Chem A 2(39):16563–16568CrossRef Song N-J, Chen C-M, Lu C, Liu Z, Kong Q-Q, Cai R (2014) Thermally reduced graphene oxide films as flexible lateral heat spreaders. J Mater Chem A 2(39):16563–16568CrossRef
17.
go back to reference Kang D, Shin HS (2012) Control of size and physical properties of graphene oxide by changing the oxidation temperature. Carbon Lett 13(1):39–43CrossRef Kang D, Shin HS (2012) Control of size and physical properties of graphene oxide by changing the oxidation temperature. Carbon Lett 13(1):39–43CrossRef
18.
go back to reference Chen J, Li YR, Huang L, Li C, Shi GQ (2015) High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon 81(1):826–834CrossRef Chen J, Li YR, Huang L, Li C, Shi GQ (2015) High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon 81(1):826–834CrossRef
19.
go back to reference Li X-H, Kurasch S, Kaiser U, Antonietti M (2012) Synthesis of monolayer-patched graphene from glucose. Angew Chem 51(38):9689–9692CrossRef Li X-H, Kurasch S, Kaiser U, Antonietti M (2012) Synthesis of monolayer-patched graphene from glucose. Angew Chem 51(38):9689–9692CrossRef
20.
go back to reference Cheng M, Yang R, Zhang L-C, Shi Z-W, Yang W, Wang D-M et al (2012) Restoration of graphene from graphene oxide by defect repair. Carbon 50(7):2581–2587CrossRef Cheng M, Yang R, Zhang L-C, Shi Z-W, Yang W, Wang D-M et al (2012) Restoration of graphene from graphene oxide by defect repair. Carbon 50(7):2581–2587CrossRef
21.
go back to reference Li H-L, Dai S-C, Miao J, Wu X, Chandrasekharan N, Qiu H-X et al (2018) Enhanced thermal conductivity of graphen/epolyimide hybrid film via a novel “molecular welding” strategy. Carbon 126:319–327CrossRef Li H-L, Dai S-C, Miao J, Wu X, Chandrasekharan N, Qiu H-X et al (2018) Enhanced thermal conductivity of graphen/epolyimide hybrid film via a novel “molecular welding” strategy. Carbon 126:319–327CrossRef
22.
go back to reference Chang Y-Z, Han G-Y, Xiao Y-M, Zhou H-H, Dong J-H (2017) A comparative study of graphene oxide reduction in vapor and liquid phases. New Carbon Mater 32(1):21–26CrossRef Chang Y-Z, Han G-Y, Xiao Y-M, Zhou H-H, Dong J-H (2017) A comparative study of graphene oxide reduction in vapor and liquid phases. New Carbon Mater 32(1):21–26CrossRef
23.
go back to reference Vallés C, Núñez JD, Benito AM, Maser WK (2012) Flexible conductive graphene paper obtained by direct and gentle annealing of graphene oxide paper. Carbon 50(3):835–844CrossRef Vallés C, Núñez JD, Benito AM, Maser WK (2012) Flexible conductive graphene paper obtained by direct and gentle annealing of graphene oxide paper. Carbon 50(3):835–844CrossRef
24.
go back to reference Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan KA, Celik O et al (2009) Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv Funct Mater 19(16):2577–2583CrossRef Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan KA, Celik O et al (2009) Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv Funct Mater 19(16):2577–2583CrossRef
25.
go back to reference Wang J, Ran R, Sunarso J, Yin C, Zou H, Feng Y et al (2017) Nanocellulose-assisted low-temperature synthesis and supercapacitor performance of reduced graphene oxide aerogels. J Power Sour 347:259–269CrossRef Wang J, Ran R, Sunarso J, Yin C, Zou H, Feng Y et al (2017) Nanocellulose-assisted low-temperature synthesis and supercapacitor performance of reduced graphene oxide aerogels. J Power Sour 347:259–269CrossRef
26.
go back to reference Zhu C, Guo S, Fang Y, Dong S (2010) Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4(4):2429–2437CrossRef Zhu C, Guo S, Fang Y, Dong S (2010) Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4(4):2429–2437CrossRef
27.
go back to reference Fang Y, Luo B, Jia Y, Li X, Wang B, Song Q et al (2012) Renewing functionalized graphene as electrodes for high-performance supercapacitors. Adv Mater 24(47):6348–6355CrossRef Fang Y, Luo B, Jia Y, Li X, Wang B, Song Q et al (2012) Renewing functionalized graphene as electrodes for high-performance supercapacitors. Adv Mater 24(47):6348–6355CrossRef
28.
go back to reference Figueiredo JL, Pereira MFR, Freitas MMA, Órfão JJM (1999) Modification of the surface chemistry of activated carbons. Carbon 37(9):1379–1389CrossRef Figueiredo JL, Pereira MFR, Freitas MMA, Órfão JJM (1999) Modification of the surface chemistry of activated carbons. Carbon 37(9):1379–1389CrossRef
29.
go back to reference Chen C-M, Huang J-Q, Zhang Q, Gong W-Z, Yang Q-H, Wang M-Z et al (2012) Annealing a graphene oxide film to produce a free standing high conductive graphene film. Carbon 50(2):659–667CrossRef Chen C-M, Huang J-Q, Zhang Q, Gong W-Z, Yang Q-H, Wang M-Z et al (2012) Annealing a graphene oxide film to produce a free standing high conductive graphene film. Carbon 50(2):659–667CrossRef
30.
go back to reference Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401CrossRef Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401CrossRef
31.
go back to reference Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2(7):581–587CrossRef Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2(7):581–587CrossRef
32.
go back to reference Eigler S, Dotzer C, Hirsch A (2012) Visualization of defect densities in reduced graphene oxide. Carbon 50(10):3666–3673CrossRef Eigler S, Dotzer C, Hirsch A (2012) Visualization of defect densities in reduced graphene oxide. Carbon 50(10):3666–3673CrossRef
33.
go back to reference Cançado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H (2006) General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett 88(16):163106CrossRef Cançado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H (2006) General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett 88(16):163106CrossRef
34.
go back to reference Sheng Z-H, Shao L, Chen J-J, Bao W-J, Wang F-B, Xia X-H (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5(6):4350–4358CrossRef Sheng Z-H, Shao L, Chen J-J, Bao W-J, Wang F-B, Xia X-H (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5(6):4350–4358CrossRef
35.
go back to reference Zhang J, Shi G, Jiang C, Ju S, Jiang D (2015) 3D bridged carbon nanoring/graphene hybrid paper as a high-performance;ateral heat spreader. Small 11(46):6197–6204CrossRef Zhang J, Shi G, Jiang C, Ju S, Jiang D (2015) 3D bridged carbon nanoring/graphene hybrid paper as a high-performance;ateral heat spreader. Small 11(46):6197–6204CrossRef
36.
go back to reference Zhuo H, Hu Y-J, Tong X, Chen Z-H, Zhong L-X, Lai H-H et al (2018) A supercompressible, elastic, and bendable carbon aerogel with ultrasensitive detection limits for compression strain, pressure, and bending angle. Adv Mater 30(18):1706705CrossRef Zhuo H, Hu Y-J, Tong X, Chen Z-H, Zhong L-X, Lai H-H et al (2018) A supercompressible, elastic, and bendable carbon aerogel with ultrasensitive detection limits for compression strain, pressure, and bending angle. Adv Mater 30(18):1706705CrossRef
37.
go back to reference Ding J, ur Rahman O, Zhao H, Peng W, Dou H, Chen H et al (2017) Hydroxylated graphene-based flexible carbon film with ultrahigh electrical and thermal conductivity. Nanotech. 28:(39)LT01-9 Ding J, ur Rahman O, Zhao H, Peng W, Dou H, Chen H et al (2017) Hydroxylated graphene-based flexible carbon film with ultrahigh electrical and thermal conductivity. Nanotech. 28:(39)LT01-9
38.
go back to reference Wang N, Samani M-K, Li H, Dong L, Zhang Z-W, Su P et al (2018) Tailoring the thermal and mechanical properties of graphene film by structural engineering. Small 14(29):1801346CrossRef Wang N, Samani M-K, Li H, Dong L, Zhang Z-W, Su P et al (2018) Tailoring the thermal and mechanical properties of graphene film by structural engineering. Small 14(29):1801346CrossRef
Metadata
Title
Highly thermally conductive graphene film produced using glucose under low-temperature thermal annealing
Authors
Jing Li
Xu-Yang Chen
Ru-Bai Lei
Jin-Feng Lai
Tong-Mei Ma
Yang Li
Publication date
13-02-2019
Publisher
Springer US
Published in
Journal of Materials Science / Issue 10/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03406-x

Other articles of this Issue 10/2019

Journal of Materials Science 10/2019 Go to the issue

Premium Partners