Skip to main content
Top

2014 | OriginalPaper | Chapter

12. Hints from Computational Chemistry: Mechanisms of Transformations of Simple Species into Purine and Adenine by Feasible Abiotic Processes

Authors : Jing Wang, Jiande Gu, Jerzy Leszczynski

Published in: Practical Aspects of Computational Chemistry III

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chemical evolution of biomolecules such as nucleobases and their analogues from simple, one carbon containing molecules under abiotic conditions is a puzzle closely connected to the origin of life. Theoretical elucidation of the abiotic reaction routes leading from basic molecules cyanide acid (HCN) and formamide (H2NCHO) to the formation of purine and adenine is reviewed here. The mechanism of three pathways: from formamide dimer via pyrimidine to purine, from AICN (4-aminoimidazole-5-carboxamidine) to adenine, and from formamide to purine and adenine, are discussed. Based on the comparison of step-by-step mechanism of the reaction pathways, in the addition reaction formamide is suggested to be more reactive than HCN. Beside its simplicity, the formamide self-catalyzed mechanism is energetically more viable than either water-catalyzed mechanism or non-catalyzed process. Moreover, this self-catalyzed mechanism is able to explain the ratio of purine to adenine observed in experiments. The formamide self-catalyzed mechanism for the route leading from formamide to purine and/or adenine is most likely for the formation of adenine (and purine) in the formamide solutions in the early stage of the earth.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
7.
go back to reference Saladino R, Crestini C, Costanzo G, Di Mauro E (2005) On the prebiotic synthesis of nucleobases, nucleotides, oligonucleotides, pre-RNA and pre-DNA molecules. In: Walde P. (ed) Topics in current chemistry, “Prebiotic chemistry”, vol 259. Berlin, Springer, pp 29–68 Saladino R, Crestini C, Costanzo G, Di Mauro E (2005) On the prebiotic synthesis of nucleobases, nucleotides, oligonucleotides, pre-RNA and pre-DNA molecules. In: Walde P. (ed) Topics in current chemistry, “Prebiotic chemistry”, vol 259. Berlin, Springer, pp 29–68
8.
go back to reference Saladino R, Crestini C, Ciciriello F, Costanzo G, Di Mauro E (2007) Chem Biodivers 4:694–720CrossRef Saladino R, Crestini C, Ciciriello F, Costanzo G, Di Mauro E (2007) Chem Biodivers 4:694–720CrossRef
10.
go back to reference Crovisier J (2004) Chap. 8. In: Ehrenfreund P et al (ed) Astrobiology: future perspectives, Astrophysics and space science library, vol 305. Kluwer/Springer, Dordrecht, pp 179–203 Crovisier J (2004) Chap. 8. In: Ehrenfreund P et al (ed) Astrobiology: future perspectives, Astrophysics and space science library, vol 305. Kluwer/Springer, Dordrecht, pp 179–203
11.
go back to reference Bockelee-Morvan D, Lis DC, Wink JE, Despois D, Crovisier J, Bachiller R, Benford DJ, Biver N, Colom P, Davies JK, Gérard E, Germain B, Houde M, Mehringer D, Moreno R, Paubert G, Phillips TG, Rauer H (2000) Astron Astrophys 353:1101–1114 Bockelee-Morvan D, Lis DC, Wink JE, Despois D, Crovisier J, Bachiller R, Benford DJ, Biver N, Colom P, Davies JK, Gérard E, Germain B, Houde M, Mehringer D, Moreno R, Paubert G, Phillips TG, Rauer H (2000) Astron Astrophys 353:1101–1114
12.
go back to reference Schutte WA, Boogert ACA, Tielens AGGM, Whittet DCB, Gerakines PA, Chiar JE, Ehrenfreund P, Greenberg JM, van Dishoeck EF, de Graauw T (1999) Astron Astrophys 343:966–976 Schutte WA, Boogert ACA, Tielens AGGM, Whittet DCB, Gerakines PA, Chiar JE, Ehrenfreund P, Greenberg JM, van Dishoeck EF, de Graauw T (1999) Astron Astrophys 343:966–976
13.
go back to reference Bredereck H, Effenberger F, Rainer G, Schosser HP (1962) Justus Liebigs Ann Chem 659:133–138CrossRef Bredereck H, Effenberger F, Rainer G, Schosser HP (1962) Justus Liebigs Ann Chem 659:133–138CrossRef
15.
go back to reference Saladino R, Botta G, Pino S, Costanzo G, Di Mauro E (2012) Biochimie 94:1451–1456CrossRef Saladino R, Botta G, Pino S, Costanzo G, Di Mauro E (2012) Biochimie 94:1451–1456CrossRef
16.
go back to reference Saladino R, Crestini C, Pino S, Costanzo G, Di Mauro E (2012) Phys Life Rev 9:84–104CrossRef Saladino R, Crestini C, Pino S, Costanzo G, Di Mauro E (2012) Phys Life Rev 9:84–104CrossRef
17.
go back to reference Saladino R, Crestini C, Costanzo G, Negri R, Di Mauro E (2001) Bioorg Med Chem 9:1249–1253CrossRef Saladino R, Crestini C, Costanzo G, Negri R, Di Mauro E (2001) Bioorg Med Chem 9:1249–1253CrossRef
18.
go back to reference Saladino R, Crestini C, Costanzo G, Di Mauro E (2004) Curr Org Chem 8:1425–1443CrossRef Saladino R, Crestini C, Costanzo G, Di Mauro E (2004) Curr Org Chem 8:1425–1443CrossRef
19.
go back to reference Saladino R, Ciambecchini U, Crestini C, Costanzo G, Negri R, Di Mauro E (2003) Chem Biol Chem 4:514–521CrossRef Saladino R, Ciambecchini U, Crestini C, Costanzo G, Negri R, Di Mauro E (2003) Chem Biol Chem 4:514–521CrossRef
20.
go back to reference Saladino R, Crestini C, Ciambecchini U, Ciciriello F, Costanzo G, Di Mauro E (2004) Chem Biol Chem 5:1558–1566CrossRef Saladino R, Crestini C, Ciambecchini U, Ciciriello F, Costanzo G, Di Mauro E (2004) Chem Biol Chem 5:1558–1566CrossRef
21.
22.
go back to reference Bark HL, Buckley R, Grieves GA, Di Mauro E, Hud NV, Orlando TM (2010) Chem Biol Chem 11:1240–1243CrossRef Bark HL, Buckley R, Grieves GA, Di Mauro E, Hud NV, Orlando TM (2010) Chem Biol Chem 11:1240–1243CrossRef
23.
go back to reference Hudson JS, Eberle JF, Vachhani RH, Rogers LC, Wade JH, Krishnamurthy R, Springsteen G (2012) Angew Chem Int Ed 51:5134–5137CrossRef Hudson JS, Eberle JF, Vachhani RH, Rogers LC, Wade JH, Krishnamurthy R, Springsteen G (2012) Angew Chem Int Ed 51:5134–5137CrossRef
24.
go back to reference Yamada H, Hirobe M, Higashiyama K, Takahashi H, Suzuki KT (1978) J Am Chem Soc 100:4617–4618CrossRef Yamada H, Hirobe M, Higashiyama K, Takahashi H, Suzuki KT (1978) J Am Chem Soc 100:4617–4618CrossRef
25.
go back to reference Ochiai M, Marumoto R, Kobayashi S, Shimazu H, Morita K (1968) Tetrahedron 24:5731–5737CrossRef Ochiai M, Marumoto R, Kobayashi S, Shimazu H, Morita K (1968) Tetrahedron 24:5731–5737CrossRef
26.
go back to reference Yamada H, Hirobe M, Higashiyama K, Takahashi H, Suzuki KT (1978) Tetrahedron Lett 19:4039–4042CrossRef Yamada H, Hirobe M, Higashiyama K, Takahashi H, Suzuki KT (1978) Tetrahedron Lett 19:4039–4042CrossRef
27.
go back to reference Yamada H, Hirobe M, Okamoto T (1980) Yakugaku Zasshi 100:489–492 Yamada H, Hirobe M, Okamoto T (1980) Yakugaku Zasshi 100:489–492
28.
29.
go back to reference Sponer JE, Mladek A, Sponer J, Fuentes-Cabrera M (2012) J Phys Chem A 116:720–726CrossRef Sponer JE, Mladek A, Sponer J, Fuentes-Cabrera M (2012) J Phys Chem A 116:720–726CrossRef
32.
go back to reference Sanchez RA, Ferris JP, Orgel LE (1967) J Mol Biol 30:223–253 Sanchez RA, Ferris JP, Orgel LE (1967) J Mol Biol 30:223–253
39.
41.
42.
43.
go back to reference Roy D, Najafian K, von Schleyer R (2007) Proc Natl Acad Sci U S A 104:17272–17277CrossRef Roy D, Najafian K, von Schleyer R (2007) Proc Natl Acad Sci U S A 104:17272–17277CrossRef
44.
go back to reference Wang J, Gu J, Nguyen MT, Springsteen G, Leszczynski J (2013) J Phys Chem B 117:2314–2320CrossRef Wang J, Gu J, Nguyen MT, Springsteen G, Leszczynski J (2013) J Phys Chem B 117:2314–2320CrossRef
45.
go back to reference Wang J, Gu J, Nguyen MT, Springsteen G, Leszczynski J (2013) J Phys Chem B 117:9333–9342CrossRef Wang J, Gu J, Nguyen MT, Springsteen G, Leszczynski J (2013) J Phys Chem B 117:9333–9342CrossRef
46.
go back to reference Hehre WJ, Radom L, Schleyer PR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York Hehre WJ, Radom L, Schleyer PR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York
47.
49.
51.
go back to reference Nguyen VS, Abbott HL, Dawley MM, Orlando TM, Leszczynski J, Nguyen MT (2011) J Phys Chem A 115:841–851CrossRef Nguyen VS, Abbott HL, Dawley MM, Orlando TM, Leszczynski J, Nguyen MT (2011) J Phys Chem A 115:841–851CrossRef
52.
go back to reference Nguyen VS, Orlando TM, Leszczynski J, Nguyen MT (2013) J Phys Chem A 117:2543–2555CrossRef Nguyen VS, Orlando TM, Leszczynski J, Nguyen MT (2013) J Phys Chem A 117:2543–2555CrossRef
53.
go back to reference Moore ML (1949) In: Adams R, Bachmann WE, Blatt AH, Fieser LF, Johnson JR (eds) Organic reactions, vol 5. Wiley, New York, pp 301–330 Moore ML (1949) In: Adams R, Bachmann WE, Blatt AH, Fieser LF, Johnson JR (eds) Organic reactions, vol 5. Wiley, New York, pp 301–330
54.
go back to reference Wang J, Gu J, Nguyen MT, Springsteen G, Leszczynski J (2013) J Phys Chem B 117:14039–14045CrossRef Wang J, Gu J, Nguyen MT, Springsteen G, Leszczynski J (2013) J Phys Chem B 117:14039–14045CrossRef
Metadata
Title
Hints from Computational Chemistry: Mechanisms of Transformations of Simple Species into Purine and Adenine by Feasible Abiotic Processes
Authors
Jing Wang
Jiande Gu
Jerzy Leszczynski
Copyright Year
2014
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-4899-7445-7_12

Premium Partner