Skip to main content
Top

2018 | OriginalPaper | Chapter

5. Hochenergiebatterien nach Lithium-Ion

Author : Peter Kurzweil, Prof. Dr.

Published in: Elektrochemische Speicher

Publisher: Springer Fachmedien Wiesbaden

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Zusammenfassung

Wiederaufladbare Batterien mit spezifischen Energien jenseits der 200 Wh kg−1 und herausragenden Leistungsdichten sollen die heutige Lithiumionen-Technologie in den nächsten Jahrzehnten ablösen. Manche Forschungsansätze reichen in die Zeit der Ölkrise in den 1970er und 1980er Jahren zurück. Das Kapitel beschreibt visionäre Konzepte von Metallionen- und Metall-Luft-Batterien, bis hin zu Festkörpertechnologien und Anionen-Batterien. Vor- und Nachteile werden im Hinblick auf eine baldige Nutzung in Speichersystemen abgewogen.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Agostini, M., Lee, D.-J., Scrosati, B., Sun, Y.K., Hassoun, J.: Characteristics of Li\({}_{\mathrm{2}}\)S\({}_{\mathrm{8}}\)-tetraglyme catholyte in a semi-liquid lithium-sulfur battery. J. Power Sources 265, 14–19 (2014) Agostini, M., Lee, D.-J., Scrosati, B., Sun, Y.K., Hassoun, J.: Characteristics of Li\({}_{\mathrm{2}}\)S\({}_{\mathrm{8}}\)-tetraglyme catholyte in a semi-liquid lithium-sulfur battery. J. Power Sources 265, 14–19 (2014)
2.
go back to reference Chen, L., Shaw, L.L.: Recent advances in lithium-sulfur batteries. J. Power Sources 267, 770–783 (2014) Chen, L., Shaw, L.L.: Recent advances in lithium-sulfur batteries. J. Power Sources 267, 770–783 (2014)
3.
go back to reference Ding, N., Chien, S.W., Hor, T.S.A., Liu, Z., Zong, Y.: Key parameters in design of lithium sulfur batteries. J. Power Sources 269, 111–116 (2014) Ding, N., Chien, S.W., Hor, T.S.A., Liu, Z., Zong, Y.: Key parameters in design of lithium sulfur batteries. J. Power Sources 269, 111–116 (2014)
4.
go back to reference Hassoun, J., Scrosati, B.: A high-performance polymer tin sulfur lithium ion battery. Angew. Chem. Int. Ed. 49, 2371–2374 (2010) Hassoun, J., Scrosati, B.: A high-performance polymer tin sulfur lithium ion battery. Angew. Chem. Int. Ed. 49, 2371–2374 (2010)
5.
go back to reference Hoss, R., Vögtle, F.: Templatsynthesen. Angew. Chem. 106(4), 389 (1994) Hoss, R., Vögtle, F.: Templatsynthesen. Angew. Chem. 106(4), 389 (1994)
6.
go back to reference Huang, C., Xiao, J., Shao, Y., Zheng, J., Bennett, W.D., Lu, D., Saraf, L.V., Engelhard, M., Ji, L., Zhang, J., Li, X., Graff, G.L., Liu, J.: Manipulating surface reactions in lithium–sulphur batteries using hybrid anode structures. Nat. Commun. 5, 3015 (2014) Huang, C., Xiao, J., Shao, Y., Zheng, J., Bennett, W.D., Lu, D., Saraf, L.V., Engelhard, M., Ji, L., Zhang, J., Li, X., Graff, G.L., Liu, J.: Manipulating surface reactions in lithium–sulphur batteries using hybrid anode structures. Nat. Commun. 5, 3015 (2014)
7.
go back to reference Kim, J., Lee, D.-J., Jung, H.-G., Sun, Y.-K., Hassoun, J., Scrosati, B.: An advanced lithium-sulfur battery. Adv. Funct. Mat. 23, 1076–1080 (2013) Kim, J., Lee, D.-J., Jung, H.-G., Sun, Y.-K., Hassoun, J., Scrosati, B.: An advanced lithium-sulfur battery. Adv. Funct. Mat. 23, 1076–1080 (2013)
8.
go back to reference Lin, Z., Liu, Z., Fu, W., Dudney, N.J., Liang, C.: Lithium polysulfidophosphates: A family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries. Angew. Chem. Int. Ed. 52, 7460–7463 (2013) Lin, Z., Liu, Z., Fu, W., Dudney, N.J., Liang, C.: Lithium polysulfidophosphates: A family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries. Angew. Chem. Int. Ed. 52, 7460–7463 (2013)
9.
go back to reference Scrosati, B., Abraham, K.M., van Schalkwijk, W., Hassoun, J.: Lithium Batteries, Advanced Technologies and Applications. Wiley, Hoboken (2013) Scrosati, B., Abraham, K.M., van Schalkwijk, W., Hassoun, J.: Lithium Batteries, Advanced Technologies and Applications. Wiley, Hoboken (2013)
10.
go back to reference Scheers, J., Fantini, S., Johansson, P.: A review of electrolytes for lithium-sulphur batteries. J. Power Sources 255, 204–218 (2014) Scheers, J., Fantini, S., Johansson, P.: A review of electrolytes for lithium-sulphur batteries. J. Power Sources 255, 204–218 (2014)
11.
go back to reference Seh, Z.W., Li, W., Cha, J.J., Zheng, G., Yang, Y., McDowell, M.T., Hsu, P.C., Cui, Y.: Sulphur–TiO\({}_{\mathrm{2}}\) yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 4, 1331 (2013) Seh, Z.W., Li, W., Cha, J.J., Zheng, G., Yang, Y., McDowell, M.T., Hsu, P.C., Cui, Y.: Sulphur–TiO\({}_{\mathrm{2}}\) yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 4, 1331 (2013)
13.
go back to reference Abraham, K.M., Jiang, Z.: A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996) Abraham, K.M., Jiang, Z.: A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996)
14.
go back to reference Aurbach, D., Daroux, M., Faguy, P., Yeager, E.: The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts. J. Electroanal. Chem. 297, 225–244 (1991) Aurbach, D., Daroux, M., Faguy, P., Yeager, E.: The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts. J. Electroanal. Chem. 297, 225–244 (1991)
15.
go back to reference McCloskey, B.D., Bethune, D.S., Shelby, R.M., Girishkumar, G., Luntz, A.C.: Solvents’ critical role in nonaqueous lithium–oxygen battery electrochemistry. J. Phys. Chem. Lett. 2(10), 1161–1166 (2011) McCloskey, B.D., Bethune, D.S., Shelby, R.M., Girishkumar, G., Luntz, A.C.: Solvents’ critical role in nonaqueous lithium–oxygen battery electrochemistry. J. Phys. Chem. Lett. 2(10), 1161–1166 (2011)
16.
go back to reference Jung, H.-G., Hassoun, J., Park, J.-B., Sun, Y.-K., Scrosati, B.: An improved high-performance lithium-air battery. Nat. Chem. 4, 579–585 (2012) Jung, H.-G., Hassoun, J., Park, J.-B., Sun, Y.-K., Scrosati, B.: An improved high-performance lithium-air battery. Nat. Chem. 4, 579–585 (2012)
17.
go back to reference Li, F., Kitaura, H., Zhou, H.: The pursuit of rechargeable solid-state Li–air batteries. Energy Environ. Sci. 6, 2302–2311 (2013) Li, F., Kitaura, H., Zhou, H.: The pursuit of rechargeable solid-state Li–air batteries. Energy Environ. Sci. 6, 2302–2311 (2013)
18.
go back to reference Lu, Y.C., Xu, Z., Gasteiger, H.A., Chen, S., et al.: Platinum-gold nanoparticles: a highly active functional electrocatalyst for rechargeable lithium-air batteries. J. Am. Chem. Soc. 132(35), 12170–12171 (2010) Lu, Y.C., Xu, Z., Gasteiger, H.A., Chen, S., et al.: Platinum-gold nanoparticles: a highly active functional electrocatalyst for rechargeable lithium-air batteries. J. Am. Chem. Soc. 132(35), 12170–12171 (2010)
19.
go back to reference Kowalczk, I., Read, J., Salomon, M.: Li-air batteries: A classic example of limitations owing to solubilities. Pure Appl. Chem. 79, 851–860 (2007) Kowalczk, I., Read, J., Salomon, M.: Li-air batteries: A classic example of limitations owing to solubilities. Pure Appl. Chem. 79, 851–860 (2007)
20.
go back to reference Littauer, E.L., Tsai, K.C.: Anodic behavior of lithium in aqueous electrolytes. J. Electrochem. Soc. 123, 771–776 (1976) Littauer, E.L., Tsai, K.C.: Anodic behavior of lithium in aqueous electrolytes. J. Electrochem. Soc. 123, 771–776 (1976)
21.
go back to reference Ogasawara, T., Debart, A., Holzapfel, M., Novak, P., Bruce, P.G.: Rechargeable Li\({}_{\mathrm{2}}\)O\({}_{\mathrm{2}}\) electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390–1393 (2006) Ogasawara, T., Debart, A., Holzapfel, M., Novak, P., Bruce, P.G.: Rechargeable Li\({}_{\mathrm{2}}\)O\({}_{\mathrm{2}}\) electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390–1393 (2006)
22.
go back to reference Peng, Z., Freunberger, S.A., Chen, Y., Bruce, P.G.: A reversible and higher-rate Li-O\({}_{\mathrm{2}}\) battery. Science 337, 563–566 (2012) Peng, Z., Freunberger, S.A., Chen, Y., Bruce, P.G.: A reversible and higher-rate Li-O\({}_{\mathrm{2}}\) battery. Science 337, 563–566 (2012)
23.
go back to reference (a) Visco, S.J., Nimon, E., De Jonghe, L.C. In: Garche, J. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 4, S. 376. Elsevier, Amsterdam (2009) (b) US 7645543 (2010), US 7282295 (2007), US 7282296 (2007), US 7824806 (2010), US 20130045428 (a) Visco, S.J., Nimon, E., De Jonghe, L.C. In: Garche, J. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 4, S. 376. Elsevier, Amsterdam (2009) (b) US 7645543 (2010), US 7282295 (2007), US 7282296 (2007), US 7824806 (2010), US 20130045428
24.
go back to reference Visco, S.J., Nimon, V.Y., Petrov, A., Pridatko, K., Goncharenko, N., Nimon, E., De Jonghe, L., Volfkovich, Y.M., Bograchev, D.A.: Aqueous and nonaqueous lithium-air batteries enabled by water-stable lithium metal electrodes. J. Solid State Electrochem. 18, 1443–1456 (2014) Visco, S.J., Nimon, V.Y., Petrov, A., Pridatko, K., Goncharenko, N., Nimon, E., De Jonghe, L., Volfkovich, Y.M., Bograchev, D.A.: Aqueous and nonaqueous lithium-air batteries enabled by water-stable lithium metal electrodes. J. Solid State Electrochem. 18, 1443–1456 (2014)
25.
go back to reference Walker, W., Giordani, V., Uddin, J., Bryantsev, V.S., Chase, G.V., Addison, D.: A rechargeable Li–O\({}_{\mathrm{2}}\) battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. J. Am. Chem. Soc. 135, 2076–2079 (2013) Walker, W., Giordani, V., Uddin, J., Bryantsev, V.S., Chase, G.V., Addison, D.: A rechargeable Li–O\({}_{\mathrm{2}}\) battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. J. Am. Chem. Soc. 135, 2076–2079 (2013)
26.
go back to reference Wang, J., Li, Y., Sun, X.: Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries. Nano Energy 2, 443–467 (2013) Wang, J., Li, Y., Sun, X.: Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries. Nano Energy 2, 443–467 (2013)
27.
go back to reference Wang, Y., He, P., Zhou, H.: A lithium-air capacitor-battery based on a hybrid electrolyte. Energy Environ. Sci. 4, 4994–4999 (2011) Wang, Y., He, P., Zhou, H.: A lithium-air capacitor-battery based on a hybrid electrolyte. Energy Environ. Sci. 4, 4994–4999 (2011)
28.
go back to reference (a) Xie, B., Lee, H.S., Li, H., Yang, X.Q., McBreen, J., Chen, L.Q.: New electrolytes using Li\({}_{\mathrm{2}}\)O or Li\({}_{\mathrm{2}}\)O\({}_{\mathrm{2}}\) oxides and tris(pentafluorophenyl) borane as boron based anion receptor for lithium batteries. Electrochem. Commun. 10, 1195–1197 (2008) (b) Li, L.F., Xie, B., Lee, H.S., Li, H., Yang, X.-Q., McBreen, J., Huang, X.J.: Studies on the enhancement of solid electrolyte interphase formation on graphitized anodes in LiX-carbonate based electrolytes using Lewis acid additives for lithium-ion batteries. J. Power Sources 189, 539–542 (2009) (c) Shanmukaraj, D., Grugeon, S., Gachot, G., Laruelle, S., Mathiron, D., Tarascon, J.M., Armand, M.: Boron esters as tunable anion carriers for non-aqueous batteries electrochemistry. J. Am. Chem. Soc. 132, 3055–3062 (2010) (a) Xie, B., Lee, H.S., Li, H., Yang, X.Q., McBreen, J., Chen, L.Q.: New electrolytes using Li\({}_{\mathrm{2}}\)O or Li\({}_{\mathrm{2}}\)O\({}_{\mathrm{2}}\) oxides and tris(pentafluorophenyl) borane as boron based anion receptor for lithium batteries. Electrochem. Commun. 10, 1195–1197 (2008) (b) Li, L.F., Xie, B., Lee, H.S., Li, H., Yang, X.-Q., McBreen, J., Huang, X.J.: Studies on the enhancement of solid electrolyte interphase formation on graphitized anodes in LiX-carbonate based electrolytes using Lewis acid additives for lithium-ion batteries. J. Power Sources 189, 539–542 (2009) (c) Shanmukaraj, D., Grugeon, S., Gachot, G., Laruelle, S., Mathiron, D., Tarascon, J.M., Armand, M.: Boron esters as tunable anion carriers for non-aqueous batteries electrochemistry. J. Am. Chem. Soc. 132, 3055–3062 (2010)
29.
go back to reference Zhang, D., Li, R., Huang, T., Yu, A.: Novel composite polymer electrolyte for lithium air batteries. J. Power Sources 195, 1202–1206 (2010) Zhang, D., Li, R., Huang, T., Yu, A.: Novel composite polymer electrolyte for lithium air batteries. J. Power Sources 195, 1202–1206 (2010)
30.
go back to reference Zheng, J.P., Liang, R.Y., Hendrickson, M., Plichta, E.J.: Theoretical energy density of Li-air batteries. J. Electrochem. Soc. 155, A432–A437 (2008) Zheng, J.P., Liang, R.Y., Hendrickson, M., Plichta, E.J.: Theoretical energy density of Li-air batteries. J. Electrochem. Soc. 155, A432–A437 (2008)
31.
go back to reference Barpanda, P., Oyama, G., Nishimura, S., Chung, S.-C., Yamada, A.: A 3.8-V earth-abundant sodium battery electrode. Nat. Commun. 5, 4358 (2014) Barpanda, P., Oyama, G., Nishimura, S., Chung, S.-C., Yamada, A.: A 3.8-V earth-abundant sodium battery electrode. Nat. Commun. 5, 4358 (2014)
32.
go back to reference Berthelot, R., Carlier, D., Delmas, C.: Electrochemical investigation of the P2–Na\({}_{x}\)CoO\({}_{\mathrm{2}}\) phase diagram. Nat. Mater. 10, 74–80 (2011) Berthelot, R., Carlier, D., Delmas, C.: Electrochemical investigation of the P2–Na\({}_{x}\)CoO\({}_{\mathrm{2}}\) phase diagram. Nat. Mater. 10, 74–80 (2011)
33.
go back to reference Brandt, K.: Historical development of secondary lithium batteries. Solid State Ionics 69, 173–183 (1994) Brandt, K.: Historical development of secondary lithium batteries. Solid State Ionics 69, 173–183 (1994)
34.
go back to reference Chen, S., Bi, J., Zhao, Y., Yang, L., Zhang, C., et al.: Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Adv. Mater. 24(41), 5593–5597 (2012) Chen, S., Bi, J., Zhao, Y., Yang, L., Zhang, C., et al.: Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Adv. Mater. 24(41), 5593–5597 (2012)
35.
go back to reference Chen, Z., Higgins, D., Yu, A., Zhang, L., Zhang, J.: A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 4, 3167–3192 (2011) Chen, Z., Higgins, D., Yu, A., Zhang, L., Zhang, J.: A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 4, 3167–3192 (2011)
36.
go back to reference Datta, D., Li, J., Shenoy, V.B.: Defective graphene as a high-capacity anode material for Na- and Ca-ion batteries. ACS Appl. Mater. Interfaces 6, 1788–1795 (2014) Datta, D., Li, J., Shenoy, V.B.: Defective graphene as a high-capacity anode material for Na- and Ca-ion batteries. ACS Appl. Mater. Interfaces 6, 1788–1795 (2014)
37.
go back to reference Ding, F., Xu, W., Graff, G.L., Zhang, J., Sushko, M.L., et al.: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013) Ding, F., Xu, W., Graff, G.L., Zhang, J., Sushko, M.L., et al.: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013)
38.
go back to reference Ellis, B.L., Nazar, L.F.: Sodium and sodium-ion energy storage batteries. Current opinion in solid state and materials. Science 16, 168–177 (2012) Ellis, B.L., Nazar, L.F.: Sodium and sodium-ion energy storage batteries. Current opinion in solid state and materials. Science 16, 168–177 (2012)
39.
go back to reference Goodenough, J.B., Hong, H.Y.P., Kafalas, J.A.: Fast Na\({}^{\mathrm{+}}\)-ion transport in skeleton structures. Mater. Res. Bull. 11, 203–220 (1976) Goodenough, J.B., Hong, H.Y.P., Kafalas, J.A.: Fast Na\({}^{\mathrm{+}}\)-ion transport in skeleton structures. Mater. Res. Bull. 11, 203–220 (1976)
40.
go back to reference Hartmann, P., Bender, C.L., Vracar, M., Dürr, A.K., Garsuch, A., Janek, J., Adelhelm, P.: A rechargeable room-temperature sodium superoxide (NaO\({}_{\mathrm{2}})\) battery. Nat. Mater. 12, 228–232 (2013) Hartmann, P., Bender, C.L., Vracar, M., Dürr, A.K., Garsuch, A., Janek, J., Adelhelm, P.: A rechargeable room-temperature sodium superoxide (NaO\({}_{\mathrm{2}})\) battery. Nat. Mater. 12, 228–232 (2013)
41.
go back to reference Jache, B., Adelhelm, P.: Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem. Int. Ed. 53(38), 10169–10173 (2014) Jache, B., Adelhelm, P.: Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem. Int. Ed. 53(38), 10169–10173 (2014)
42.
go back to reference Janek, J., Adelhelm, P.: Zukunftstechnologien. In: Korthauer, R. (Hrsg.) Handbuch Lithium-Ionen-Batterien, Kap. 16, S. 199–217. Springer, Berlin (2013) Janek, J., Adelhelm, P.: Zukunftstechnologien. In: Korthauer, R. (Hrsg.) Handbuch Lithium-Ionen-Batterien, Kap. 16, S. 199–217. Springer, Berlin (2013)
43.
go back to reference Komaba, S., Murata, W., Ishikawa, T., Yabuuchi, N., Ozeki, T., Nakayama, T., Ogata, A., Gotoh, K., Fujiwara, K.: Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 21, 3859–3867 (2011) Komaba, S., Murata, W., Ishikawa, T., Yabuuchi, N., Ozeki, T., Nakayama, T., Ogata, A., Gotoh, K., Fujiwara, K.: Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 21, 3859–3867 (2011)
44.
go back to reference Palomares, V., Casas-Cabanas, M., Castillo-Martínez, E., Han, M.H., Rojo, T.: Update on Na-based battery materials. A growing research path. Energy Environ. Sci. 6, 2312–2337 (2013) Palomares, V., Casas-Cabanas, M., Castillo-Martínez, E., Han, M.H., Rojo, T.: Update on Na-based battery materials. A growing research path. Energy Environ. Sci. 6, 2312–2337 (2013)
45.
go back to reference Peled, E., Golodnitsky, D., Mazor, H., Goor, M., Avshalomov, S.: Parameter analysis of a practical lithium- and sodium-air electric vehicle battery. J. Power Sources 196, 6835 (2011) Peled, E., Golodnitsky, D., Mazor, H., Goor, M., Avshalomov, S.: Parameter analysis of a practical lithium- and sodium-air electric vehicle battery. J. Power Sources 196, 6835 (2011)
46.
go back to reference Vesborg, P.C.K., Jaramillo, T.F.: Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv. 2, 7933–7947 (2012) Vesborg, P.C.K., Jaramillo, T.F.: Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv. 2, 7933–7947 (2012)
47.
go back to reference Wenzel, S., Hara, T., Janek, J., Adelhelm, P.: Room-temperature sodium-ion batteries: improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci. 4, 3342 (2011) Wenzel, S., Hara, T., Janek, J., Adelhelm, P.: Room-temperature sodium-ion batteries: improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci. 4, 3342 (2011)
48.
go back to reference Yamamoto, T., Nohira, T., Hagiwara, R., Fukunaga, A., Sakai, S., Nitta, K., Inazawa, S.: Charge-discharge behavior of tin negative electrode for a sodium secondary battery using intermediate temperature ionic liquid sodium bis(fluorosulfonyl)amide-potassium bis(fluorosulfonyl)amide. J. Power Sources 217, 479–484 (2012) Yamamoto, T., Nohira, T., Hagiwara, R., Fukunaga, A., Sakai, S., Nitta, K., Inazawa, S.: Charge-discharge behavior of tin negative electrode for a sodium secondary battery using intermediate temperature ionic liquid sodium bis(fluorosulfonyl)amide-potassium bis(fluorosulfonyl)amide. J. Power Sources 217, 479–484 (2012)
49.
go back to reference Buschmann, H., Berendts, S., Mogwitz, B., Janek, J.: Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors Li\({}_{\mathrm{7}}\)La\({}_{\mathrm{3}}\)Zr\({}_{\mathrm{2}}\)O\({}_{\mathrm{12}}\) and Li\({}_{7-x}\)La\({}_{\mathrm{3}}\)Zr\({}_{2-x}\)Ta\({}_{x}\)O\({}_{\mathrm{12}}\) with garnet-type structure. J. Power Sources 206, 236–244 (2012) Buschmann, H., Berendts, S., Mogwitz, B., Janek, J.: Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors Li\({}_{\mathrm{7}}\)La\({}_{\mathrm{3}}\)Zr\({}_{\mathrm{2}}\)O\({}_{\mathrm{12}}\) and Li\({}_{7-x}\)La\({}_{\mathrm{3}}\)Zr\({}_{2-x}\)Ta\({}_{x}\)O\({}_{\mathrm{12}}\) with garnet-type structure. J. Power Sources 206, 236–244 (2012)
50.
go back to reference Fergus, J.W.: Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 195, 4554–4569 (2010) Fergus, J.W.: Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 195, 4554–4569 (2010)
51.
go back to reference Golodnitsky, D.: Electrolytes: single lithium ion conducting polymers. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 5, S. 112. Elsevier, Amsterdam (2009) Golodnitsky, D.: Electrolytes: single lithium ion conducting polymers. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 5, S. 112. Elsevier, Amsterdam (2009)
52.
go back to reference Hartmann, P., Leichtweiss, Th., Busche, M.R., Schneider, M., Reich, M., Sann, J., Adelhelm, Ph., Janek, J.: Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J. Phys. Chem. C 117(41), 21064–21074 (2013) Hartmann, P., Leichtweiss, Th., Busche, M.R., Schneider, M., Reich, M., Sann, J., Adelhelm, Ph., Janek, J.: Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J. Phys. Chem. C 117(41), 21064–21074 (2013)
53.
go back to reference Ma, Ch., Rangasamy, E., Liang, Ch., Sakamoto, J., More, K.L., Chi, M.: Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li\({}^{\mathrm{+}}\)/H\({}^{\mathrm{+}}\) exchange in aqueous solutions. Angew. Chem. 127(1), 131–135 (2015) Ma, Ch., Rangasamy, E., Liang, Ch., Sakamoto, J., More, K.L., Chi, M.: Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li\({}^{\mathrm{+}}\)/H\({}^{\mathrm{+}}\) exchange in aqueous solutions. Angew. Chem. 127(1), 131–135 (2015)
54.
go back to reference Meziane, R., Bonnet, J.-P., Courty, M., Djellab, K., Armand, M.: Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochim. Acta 57, 14–19 (2011) Meziane, R., Bonnet, J.-P., Courty, M., Djellab, K., Armand, M.: Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochim. Acta 57, 14–19 (2011)
55.
go back to reference Ohta, S., Kobayashi, T., Asaoka, T.: High lithium ionic conductivity in the garnet-type oxide Li\({}_{{7-X}}\) La\({}_{\mathrm{3}}\)(Zr\({}_{{2-X}}\), NbX)O\({}_{\mathrm{12}}\) (X \(=\) 0–2). J. Power Sources 196, 3342–3345 (2011) Ohta, S., Kobayashi, T., Asaoka, T.: High lithium ionic conductivity in the garnet-type oxide Li\({}_{{7-X}}\) La\({}_{\mathrm{3}}\)(Zr\({}_{{2-X}}\), NbX)O\({}_{\mathrm{12}}\) (X \(=\) 0–2). J. Power Sources 196, 3342–3345 (2011)
56.
go back to reference Ohta, S., Komagata, S., Seki, J., Saeki, T., Morishita, Sh., Asaoka, T.: All-solid-state lithium ion battery using garnet-type oxide and Li\({}_{\mathrm{3}}\)BO\({}_{\mathrm{3}}\) solid electrolytes fabricated by screen-printing. J. Power Sources 238, 53 (2013) Ohta, S., Komagata, S., Seki, J., Saeki, T., Morishita, Sh., Asaoka, T.: All-solid-state lithium ion battery using garnet-type oxide and Li\({}_{\mathrm{3}}\)BO\({}_{\mathrm{3}}\) solid electrolytes fabricated by screen-printing. J. Power Sources 238, 53 (2013)
57.
go back to reference Wang, L., Goodenough, J.B.: DOE Vehicle Technologies Annual Merit Review Meeting, May 14–18 (2012) Wang, L., Goodenough, J.B.: DOE Vehicle Technologies Annual Merit Review Meeting, May 14–18 (2012)
58.
go back to reference Jones, K.S.: Ceramic Leadership Summit. American Ceramic Society, Baltimore, Aug 1–3, 2011 Jones, K.S.: Ceramic Leadership Summit. American Ceramic Society, Baltimore, Aug 1–3, 2011
59.
go back to reference Arai, H.: Metal storage/metal air (Zn, Fe, Al, Mg). In: Moseley, P.T., Garche, J. (Hrsg.) Electrochemical Energy Storage for Renewable Sources and Grid Balancing, Kap. 18, S. 337–344. Elsevier, Amsterdam (2015) Arai, H.: Metal storage/metal air (Zn, Fe, Al, Mg). In: Moseley, P.T., Garche, J. (Hrsg.) Electrochemical Energy Storage for Renewable Sources and Grid Balancing, Kap. 18, S. 337–344. Elsevier, Amsterdam (2015)
60.
go back to reference Arthur, T.S., Singh, N., Matsui, M.: Electrodeposited Bi, Sb and B\({}_{\mathrm{i}1-x}\)Sb\({}_{x}\) alloys as anodes for Mg-ion batteries. Electrochem. Commun. 16, 103–106 (2012) Arthur, T.S., Singh, N., Matsui, M.: Electrodeposited Bi, Sb and B\({}_{\mathrm{i}1-x}\)Sb\({}_{x}\) alloys as anodes for Mg-ion batteries. Electrochem. Commun. 16, 103–106 (2012)
61.
go back to reference Aurbach, D., Weissman, I., Gofer, Y., Levi, E.: Nonaqueous magnesium electrochemistry and its application in secondary batteries. Chem. Rec. 3, 61–73 (2003) Aurbach, D., Weissman, I., Gofer, Y., Levi, E.: Nonaqueous magnesium electrochemistry and its application in secondary batteries. Chem. Rec. 3, 61–73 (2003)
62.
go back to reference Aurbach, D., Lu, Z., Schechter, A., Gofer, Y., Gizbar, H., Turgeman, R., et al.: Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000) Aurbach, D., Lu, Z., Schechter, A., Gofer, Y., Gizbar, H., Turgeman, R., et al.: Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000)
63.
go back to reference (a) Doe, R.E., Han, R., Hwang, J., Gmitter, A., Shterenberg, I., Yoo, H.D., et al.: Novel electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem. Commun. 50, 243–245 (2014) (b) WO/2013/096827A1 (2013), US 20130252112 (2013), US 20130252114 (2013) (a) Doe, R.E., Han, R., Hwang, J., Gmitter, A., Shterenberg, I., Yoo, H.D., et al.: Novel electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem. Commun. 50, 243–245 (2014) (b) WO/2013/096827A1 (2013), US 20130252112 (2013), US 20130252114 (2013)
64.
go back to reference Gofer, Y., Chusid, O., Aurbach, D., Gan, R.: Magnesium batteries. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 4, S. 285–301. Elsevier, Amsterdam (2009) Gofer, Y., Chusid, O., Aurbach, D., Gan, R.: Magnesium batteries. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 4, S. 285–301. Elsevier, Amsterdam (2009)
65.
go back to reference Jörissen, L.: Secondary batteries, metal-air systems: bifunctional oxygen electrodes. In: Encyclopedia of Electrochemical Power Sources, Bd. 4, S. 356. Elsevier, Amsterdam (2009) Jörissen, L.: Secondary batteries, metal-air systems: bifunctional oxygen electrodes. In: Encyclopedia of Electrochemical Power Sources, Bd. 4, S. 356. Elsevier, Amsterdam (2009)
66.
go back to reference Kakibe, T., Hishii, J., Yoshimoto, N., Egashira, M., Morita, M.: Binary ionic liquid electrolytes containing organo-magnesium complex for rechargeable magnesium batteries. J. Power Sources 203, 195–200 (2012) Kakibe, T., Hishii, J., Yoshimoto, N., Egashira, M., Morita, M.: Binary ionic liquid electrolytes containing organo-magnesium complex for rechargeable magnesium batteries. J. Power Sources 203, 195–200 (2012)
67.
go back to reference Kim, H.S., Arthur, T.S., Allred, G.D., Zajicek, J., Newman, J.G., Rodnyansky, A.E., et al.: Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat. Commun. 2, 427 (2011) Kim, H.S., Arthur, T.S., Allred, G.D., Zajicek, J., Newman, J.G., Rodnyansky, A.E., et al.: Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat. Commun. 2, 427 (2011)
68.
go back to reference Levi, E., Gofer, Y., Aurbach, D.: On the way to rechargeable Mg batteries: The challenge of new cathode materials. Chem. Mater. 22(3), 860–868 (2010) Levi, E., Gofer, Y., Aurbach, D.: On the way to rechargeable Mg batteries: The challenge of new cathode materials. Chem. Mater. 22(3), 860–868 (2010)
69.
go back to reference Muldoon, J., Bucur, C.B., Oliver, A.G., Sugimoto, T., Matsui, M., Kim, H.S., et al.: Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci. 5, 5941–5950 (2012) Muldoon, J., Bucur, C.B., Oliver, A.G., Sugimoto, T., Matsui, M., Kim, H.S., et al.: Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci. 5, 5941–5950 (2012)
70.
go back to reference Saha, P., Datta, M.K., Velikokhatnyi, O.I., Manivannan, A., Alman, D., Kumta, P.N.: Rechargeable magnesium battery: current status and key challenges for the future. Prog. Mater. Sci. 66, 1–86 (2014) Saha, P., Datta, M.K., Velikokhatnyi, O.I., Manivannan, A., Alman, D., Kumta, P.N.: Rechargeable magnesium battery: current status and key challenges for the future. Prog. Mater. Sci. 66, 1–86 (2014)
71.
go back to reference Singh, N., Arthur, T.S., Ling, C., Matsui, M., Mizuno, F.: A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem. Commun. 49, 149–151 (2013) Singh, N., Arthur, T.S., Ling, C., Matsui, M., Mizuno, F.: A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem. Commun. 49, 149–151 (2013)
72.
go back to reference Wang, W., Jiang, B., Xiong, W., Sun, H., Lin, Z., et al.: A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation. Sci. Rep. 3(3383) (2013) Wang, W., Jiang, B., Xiong, W., Sun, H., Lin, Z., et al.: A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation. Sci. Rep. 3(3383) (2013)
73.
go back to reference (a) Yu, X., Licht, S.: Advances in Fe(VI) charge storage, Part I. Primary alkaline super-iron batteries. J. Power Sources 171, 966–980 (2007) b) Advances in Fe(VI) charge storage: Part II. Reversible alkaline super-iron batteries and nonaqueous super-iron batteries. J. Power Sources 171(2), 1010–1022 (2007) (a) Yu, X., Licht, S.: Advances in Fe(VI) charge storage, Part I. Primary alkaline super-iron batteries. J. Power Sources 171, 966–980 (2007) b) Advances in Fe(VI) charge storage: Part II. Reversible alkaline super-iron batteries and nonaqueous super-iron batteries. J. Power Sources 171(2), 1010–1022 (2007)
74.
go back to reference Zhang, R., Yu, X., Nam, K.-W., Ling, C., Arthur, T.S., Song, W., Knapp, A.M., Ehrlich, S.N., Yang, X.-Q., Matsui, M.: \(\upalpha\)-MnO\({}_{\mathrm{2}}\) as a cathode material for rechargeable Mg batteries. Electrochem. Commun. 23, 110–113 (2012) Zhang, R., Yu, X., Nam, K.-W., Ling, C., Arthur, T.S., Song, W., Knapp, A.M., Ehrlich, S.N., Yang, X.-Q., Matsui, M.: \(\upalpha\)-MnO\({}_{\mathrm{2}}\) as a cathode material for rechargeable Mg batteries. Electrochem. Commun. 23, 110–113 (2012)
75.
go back to reference Placke, T., Fromm, O., Lux, S.F., Bieker, P., Rothermel, S., Meyer, H.W., Passerini, S., Winter, M.: Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells. J. Electrochem. Soc. 159(11), A1755–A1765 (2012) Placke, T., Fromm, O., Lux, S.F., Bieker, P., Rothermel, S., Meyer, H.W., Passerini, S., Winter, M.: Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells. J. Electrochem. Soc. 159(11), A1755–A1765 (2012)
76.
go back to reference Reddy, A., Fichtner, M.: Batteries based on fluoride shuttle. J. Mater. Chem. 21, 17059–17062 (2011) Reddy, A., Fichtner, M.: Batteries based on fluoride shuttle. J. Mater. Chem. 21, 17059–17062 (2011)
77.
go back to reference Zhao, X., Ren, Sh., Bruns, M., Fichtner, M.: Chloride ion battery: a new member in the rechargeable battery family. J. Power Sources 245, 706–711 (2014) Zhao, X., Ren, Sh., Bruns, M., Fichtner, M.: Chloride ion battery: a new member in the rechargeable battery family. J. Power Sources 245, 706–711 (2014)
78.
go back to reference Amatucci, G.G., Pereira, N.: Fluoride based electrode materials for advanced energy storage devices. J. Fluorine Chem. 128, 243–262 (2007) Amatucci, G.G., Pereira, N.: Fluoride based electrode materials for advanced energy storage devices. J. Fluorine Chem. 128, 243–262 (2007)
79.
go back to reference Bruce, P.G., Scrosati, B., Tarascon, J.-M.: Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008) Bruce, P.G., Scrosati, B., Tarascon, J.-M.: Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008)
80.
go back to reference Cabana, J., Monconduit, L., Larcher, D., Palacín, M.R.: Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192 (2010) Cabana, J., Monconduit, L., Larcher, D., Palacín, M.R.: Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192 (2010)
81.
go back to reference Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., Tarascon, J.M.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000) Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., Tarascon, J.M.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000)
Metadata
Title
Hochenergiebatterien nach Lithium-Ion
Author
Peter Kurzweil, Prof. Dr.
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-658-21829-4_5