Skip to main content
Top

2013 | OriginalPaper | Chapter

Holomorphic Realization of Unitary Representations of Banach–Lie Groups

Author : Karl-Hermann Neeb

Published in: Lie Groups: Structure, Actions, and Representations

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper we explore the method of holomorphic induction for unitary representations of Banach–Lie groups. First we show that the classification of complex bundle structures on homogeneous Banach bundles over complex homogeneous spaces of real Banach–Lie groups formally looks as in the finite-dimensional case. We then turn to a suitable concept of holomorphic unitary induction and show that this process preserves commutants. In particular, holomorphic induction from irreducible representations leads to irreducible ones. Finally we develop criteria to identify representations as holomorphically induced and apply these to the class of so-called positive energy representations. All this is based on extensions of Arveson’s concept of spectral subspaces to representations on Fréchet spaces, in particular on spaces of smooth vectors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
[Ar74]
go back to reference Arveson, W., On groups of automorphisms of operator algebras, J. Funct. Anal. 15 (1974), 217–243. Arveson, W., On groups of automorphisms of operator algebras, J. Funct. Anal. 15 (1974), 217–243.
[Bel03]
go back to reference Beltiţă, D., Complex homogeneous spaces of pseudo-restricted groups, Math. Res. Lett. 10:4 (2003), 459–467. Beltiţă, D., Complex homogeneous spaces of pseudo-restricted groups, Math. Res. Lett. 10:4 (2003), 459–467.
[Bel04]
go back to reference Beltiţă, D., On Banach–Lie algebras, spectral decompositions and complex polarizations, in Operator Theory: Advances and Applications 153, Birkhäuser, Basel; 13–38. Beltiţă, D., On Banach–Lie algebras, spectral decompositions and complex polarizations, in Operator Theory: Advances and Applications 153, Birkhäuser, Basel; 13–38.
[Bel05]
go back to reference Beltiţă, D., Integrability of analytic almost complex structures on Banach manifolds, Annals of Global Anal. and Geom. 28 (2005), 59–73. Beltiţă, D., Integrability of analytic almost complex structures on Banach manifolds, Annals of Global Anal. and Geom. 28 (2005), 59–73.
[BG08]
go back to reference Beltiţă, D., and J. Galé, Holomorphic geometric models for representations of C  ∗ -algebras, J. Funct. Anal. 255:10 (2008), 2888–2932. Beltiţă, D., and J. Galé, Holomorphic geometric models for representations of C  ∗ -algebras, J. Funct. Anal. 255:10 (2008), 2888–2932.
[BR07]
go back to reference Beltiţă, D., and T. S. Ratiu, Geometric representation theory for unitary groups of operator algebras, Advances in Math. 208 (2007), 299–317. Beltiţă, D., and T. S. Ratiu, Geometric representation theory for unitary groups of operator algebras, Advances in Math. 208 (2007), 299–317.
[BRT07]
go back to reference Beltiţă, D., T. S. Ratiu, and A. B. Tumpach, The restricted Grassmannian, Banach Lie-Poisson spaces, and coadjoint orbits, J. Funct. Anal. 247 (2007), no. 1, 138–168. Beltiţă, D., T. S. Ratiu, and A. B. Tumpach, The restricted Grassmannian, Banach Lie-Poisson spaces, and coadjoint orbits, J. Funct. Anal. 247 (2007), no. 1, 138–168.
[BH98]
go back to reference Bertram, W., and J. Hilgert, Reproducing kernels on vector bundles, in Lie Theory and Its Applications in Physics III, World Scientific, Singapore, 1998; 43–58. Bertram, W., and J. Hilgert, Reproducing kernels on vector bundles, in Lie Theory and Its Applications in Physics III, World Scientific, Singapore, 1998; 43–58.
[Bou07]
go back to reference Bourbaki, N., Espaces vectoriels topologiques. Chap.1 à 5, Springer-Verlag, Berlin, 2007 Bourbaki, N., Espaces vectoriels topologiques. Chap.1 à 5, Springer-Verlag, Berlin, 2007
[Bo80]
go back to reference Boyer, R., Representations of the Hilbert Lie group \(U(\mathcal{H})_{2}\), Duke Math. J. 47 (1980), 325–344. Boyer, R., Representations of the Hilbert Lie group \(U(\mathcal{H})_{2}\), Duke Math. J. 47 (1980), 325–344.
[Dix96]
go back to reference Dixmier, J., Les algèbres d’opérateurs dans l’espace Hilbertien, Éditions Gabay, 1996. Dixmier, J., Les algèbres d’opérateurs dans l’espace Hilbertien, Éditions Gabay, 1996.
[FV70]
go back to reference Foias, C., and F.-H. Vasilescu, On the spectral theory of commutators, J. Math. Anal. Appl. 31 (1970), 473–486. Foias, C., and F.-H. Vasilescu, On the spectral theory of commutators, J. Math. Anal. Appl. 31 (1970), 473–486.
[GN03]
go back to reference Glöckner, H., and K.-H. Neeb, Banach–Lie quotients, enlargibility, and universal complexifications, J. reine angew. Math. 560 (2003), 1–28. Glöckner, H., and K.-H. Neeb, Banach–Lie quotients, enlargibility, and universal complexifications, J. reine angew. Math. 560 (2003), 1–28.
[HR70]
go back to reference Hewitt, E., and K.A. Ross, Abstract Harmonic Analysis II, Springer Verlag, Berlin, Heidelberg, New York, 1970. Hewitt, E., and K.A. Ross, Abstract Harmonic Analysis II, Springer Verlag, Berlin, Heidelberg, New York, 1970.
[Jo82]
go back to reference Jørgensen, P. E. T., Spectral theory for infinitesimal generators of one-parameter groups of isometries: the min-max principle and compact perturbations, J. Math. Anal. Appl. 90:2 (1982), 343–370. Jørgensen, P. E. T., Spectral theory for infinitesimal generators of one-parameter groups of isometries: the min-max principle and compact perturbations, J. Math. Anal. Appl. 90:2 (1982), 343–370.
[Ko68]
go back to reference Kobayashi, S., Irreducibility of certain unitary representations, J. Math. Soc. Japan 20 (1968), 638–642. Kobayashi, S., Irreducibility of certain unitary representations, J. Math. Soc. Japan 20 (1968), 638–642.
[KoT05]
go back to reference Kobayashi, T., Multiplicity-free representations and visible actions on complex manifolds, Publ. Res. Inst. Math. Sci. 41:3 (2005), 497–549. Kobayashi, T., Multiplicity-free representations and visible actions on complex manifolds, Publ. Res. Inst. Math. Sci. 41:3 (2005), 497–549.
[KoT11]
go back to reference —, Propagation of multiplicity-free property for holomorphic vector bundles, arXiv:math.RT/0607004v2, 23 Jul 2011; in this volume —, Propagation of multiplicity-free property for holomorphic vector bundles, arXiv:math.RT/0607004v2, 23 Jul 2011; in this volume
[Le99]
go back to reference Lempert, L., The Dolbeault complex in infinite dimensions II, J. Amer. Math. Soc. 12:3 (1999), 775–793. Lempert, L., The Dolbeault complex in infinite dimensions II, J. Amer. Math. Soc. 12:3 (1999), 775–793.
[Li91]
go back to reference Lisiecki, W., A classification of coherent state representations of unimodular Lie groups, Bull. Amer. Math. Soc. 25:1 (1991), 37–43. Lisiecki, W., A classification of coherent state representations of unimodular Lie groups, Bull. Amer. Math. Soc. 25:1 (1991), 37–43.
[MPW97]
go back to reference Monastyrski, M., and Z. Pasternak-Winiarski, Maps on complex manifolds into Grassmann spaces defined by reproducing kernels of Bergman type, Demonstratio Math. 30:2 (1997), 465–474. Monastyrski, M., and Z. Pasternak-Winiarski, Maps on complex manifolds into Grassmann spaces defined by reproducing kernels of Bergman type, Demonstratio Math. 30:2 (1997), 465–474.
[MNS09]
go back to reference Müller, C., K.-H. Neeb, and H. Seppänen, Borel–Weil Theory for Root Graded Banach–Lie groups, Int. Math. Res. Notices 2010:5 (2010), 783–823. Müller, C., K.-H. Neeb, and H. Seppänen, Borel–Weil Theory for Root Graded Banach–Lie groups, Int. Math. Res. Notices 2010:5 (2010), 783–823.
[Ne00]
go back to reference Neeb, K.-H. Holomorphy and Convexity in Lie Theory, Expositions in Mathematics 28, de Gruyter Verlag, Berlin, 2000. Neeb, K.-H. Holomorphy and Convexity in Lie Theory, Expositions in Mathematics 28, de Gruyter Verlag, Berlin, 2000.
[Ne01]
go back to reference —, Representations of infinite-dimensional groups, pp. 131–178; in Infinite Dimensional Kähler Manifolds, Eds. A. Huckleberry, T. Wurzbacher, DMV-Seminar 31, Birkhäuser Verlag, 2001. —, Representations of infinite-dimensional groups, pp. 131–178; in Infinite Dimensional Kähler Manifolds, Eds. A. Huckleberry, T. Wurzbacher, DMV-Seminar 31, Birkhäuser Verlag, 2001.
[Ne08]
go back to reference —, A complex semigroup approach to group algebras of infinite-dimensional Lie groups, Semigroup Forum 77 (2008), 5–35. —, A complex semigroup approach to group algebras of infinite-dimensional Lie groups, Semigroup Forum 77 (2008), 5–35.
[Ne09]
go back to reference —, Semibounded unitary representations of infinite-dimensional Lie groups, in Infinite Dimensional Harmonic Analysis IV , Eds. J. Hilgert et al, World Scientific, 2009; 209–222. —, Semibounded unitary representations of infinite-dimensional Lie groups, in Infinite Dimensional Harmonic Analysis IV , Eds. J. Hilgert et al, World Scientific, 2009; 209–222.
[Ne10a]
go back to reference —, On differentiable vectors for representations of infinite-dimensional Lie groups, J. Funct. Anal. 259 (2010), 2814–2855. —, On differentiable vectors for representations of infinite-dimensional Lie groups, J. Funct. Anal. 259 (2010), 2814–2855.
[Ne10b]
go back to reference —, On analytic vectors for unitary representations of infinite-dimensional Lie groups, Ann. Inst. Fourier 61:5 (2011), 1441–1476. arXiv:math.RT.1002.4792v1, 25 Feb 2010. —, On analytic vectors for unitary representations of infinite-dimensional Lie groups, Ann. Inst. Fourier 61:5 (2011), 1441–1476. arXiv:math.RT.1002.4792v1, 25 Feb 2010.
[Ne10c]
go back to reference —, Semibounded representations and invariant cones in infinite-dimensional Lie algebras, Confluentes Math. 2:1 (2010), 37–134. —, Semibounded representations and invariant cones in infinite-dimensional Lie algebras, Confluentes Math. 2:1 (2010), 37–134.
[Ne11]
go back to reference —, Semibounded representations of hermitian Lie groups, Travaux mathematiques, 21 (2012), 29–109. —, Semibounded representations of hermitian Lie groups, Travaux mathematiques, 21 (2012), 29–109.
[Od88]
go back to reference Odzijewicz, A., On reproducing kernels and quantization of states, Comm. Math. Phys. 114 (1988), 577–597. Odzijewicz, A., On reproducing kernels and quantization of states, Comm. Math. Phys. 114 (1988), 577–597.
[Od92]
go back to reference —, Coherent states and geometric quantization, Comm. Math. Phys. 150:2 (1992), 385–413. —, Coherent states and geometric quantization, Comm. Math. Phys. 150:2 (1992), 385–413.
[Ra85]
go back to reference Rădulescu, F., Spectral properties of generalized multipliers, J. Oper. Theory 14:2 (1985), 277–289. Rădulescu, F., Spectral properties of generalized multipliers, J. Oper. Theory 14:2 (1985), 277–289.
[Ru73]
go back to reference Rudin, W., Functional Analysis, McGraw Hill, 1973. Rudin, W., Functional Analysis, McGraw Hill, 1973.
[Si70]
go back to reference Sinclair, A. M., Eigenvalues in the boundary of the numerical range, Pac. J. Math. 35:1 (1970), 231–234. Sinclair, A. M., Eigenvalues in the boundary of the numerical range, Pac. J. Math. 35:1 (1970), 231–234.
[Ta03]
go back to reference Takesaki, M., Theory of Operator Algebras. I, Encyclopedia of Mathematical Sciences 125, Operator Algebras and Non-commutative Geometry 6, Springer-Verlag, Berlin, 2003. Takesaki, M., Theory of Operator Algebras. I, Encyclopedia of Mathematical Sciences 125, Operator Algebras and Non-commutative Geometry 6, Springer-Verlag, Berlin, 2003.
[TW70]
go back to reference Tirao, J. A., and J. Wolf, Homogeneous holomorphic vector bundles, Indiana University Math. Journal 20:1 (1970), 15–31. Tirao, J. A., and J. Wolf, Homogeneous holomorphic vector bundles, Indiana University Math. Journal 20:1 (1970), 15–31.
[Up85]
go back to reference Upmeier, H., Symmetric Banach Manifolds and Jordan C  ∗ -algebras, North-Holland Mathematics Studies, 104. Notas de Matemàtica 96, North-Holland Publishing Co., Amsterdam, 1985. Upmeier, H., Symmetric Banach Manifolds and Jordan C  ∗ -algebras, North-Holland Mathematics Studies, 104. Notas de Matemàtica 96, North-Holland Publishing Co., Amsterdam, 1985.
Metadata
Title
Holomorphic Realization of Unitary Representations of Banach–Lie Groups
Author
Karl-Hermann Neeb
Copyright Year
2013
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-7193-6_10

Premium Partner