Skip to main content
Top
Published in: Neural Processing Letters 4/2022

08-02-2022

How Does Bayesian Noisy Self-Supervision Defend Graph Convolutional Networks?

Authors: Jun Zhuang, Mohammad Al Hasan

Published in: Neural Processing Letters | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, it has been shown that, compared to other contemporary machine learning models, graph convolutional networks (GCNs) achieve superior performance on the node classification task. However, two potential issues threaten the robustness of GCNs, label scarcity and adversarial attacks. .Intensive studies aim to strengthen the robustness of GCNs from three perspectives, the self-supervision-based method, the adversarial-based method, and the detection-based method. Yet, all of the above-mentioned methods can barely handle both issues simultaneously. In this paper, we hypothesize noisy supervision as a kind of self-supervised learning method and then propose a novel Bayesian graph noisy self-supervision model, namely GraphNS, to address both issues. Extensive experiments demonstrate that GraphNS can significantly enhance node classification against both label scarcity and adversarial attacks. This enhancement proves to be generalized over four classic GCNs and is superior to the competing methods across six public graph datasets.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Bishop CM (2006) Pattern recognition and machine learning. Springer, BerlinMATH Bishop CM (2006) Pattern recognition and machine learning. Springer, BerlinMATH
2.
go back to reference Bruna J, Zaremba W, Szlam A, LeCun Y (2013) Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 Bruna J, Zaremba W, Szlam A, LeCun Y (2013) Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:​1312.​6203
3.
go back to reference Dai H, Li H, Tian T, Huang X, Wang L, Zhu J, Song L (2018) Adversarial attack on graph structured data. arXiv preprint arXiv:1806.02371 Dai H, Li H, Tian T, Huang X, Wang L, Zhu J, Song L (2018) Adversarial attack on graph structured data. arXiv preprint arXiv:​1806.​02371
4.
go back to reference Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in neural information processing systems, pp 3844–3852 Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in neural information processing systems, pp 3844–3852
5.
6.
go back to reference Du B, Xinyao T, Wang Z, Zhang L, Tao D (2018) Robust graph-based semisupervised learning for noisy labeled data via maximum correntropy criterion. IEEE Trans Cybern Du B, Xinyao T, Wang Z, Zhang L, Tao D (2018) Robust graph-based semisupervised learning for noisy labeled data via maximum correntropy criterion. IEEE Trans Cybern
8.
go back to reference Entezari N, Al-Sayouri SA, Darvishzadeh A, Papalexakis EE (2020) All you need is low (rank) defending against adversarial attacks on graphs. In: Proceedings of the 13th International Conference on Web Search and Data Mining Entezari N, Al-Sayouri SA, Darvishzadeh A, Papalexakis EE (2020) All you need is low (rank) defending against adversarial attacks on graphs. In: Proceedings of the 13th International Conference on Web Search and Data Mining
9.
go back to reference Feng F, He X, Tang J, Chua TS (2019) Graph adversarial training: Dynamically regularizing based on graph structure. IEEE Trans Knowl Data Eng Feng F, He X, Tang J, Chua TS (2019) Graph adversarial training: Dynamically regularizing based on graph structure. IEEE Trans Knowl Data Eng
10.
go back to reference Feng W, Zhang J, Dong Y, Han Y, Luan H, Xu Q, Yang Q, Kharlamov E, Tang J (2020) Graph random neural network for semi-supervised learning on graphs. In: NeurIPS’20 Feng W, Zhang J, Dong Y, Han Y, Luan H, Xu Q, Yang Q, Kharlamov E, Tang J (2020) Graph random neural network for semi-supervised learning on graphs. In: NeurIPS’20
11.
go back to reference Galke L, Vagliano I, Scherp A (2019) Can graph neural networks go “online"? an analysis of pretraining and inference. arXiv preprint arXiv:1905.06018 Galke L, Vagliano I, Scherp A (2019) Can graph neural networks go “online"? an analysis of pretraining and inference. arXiv preprint arXiv:​1905.​06018
12.
go back to reference Geisler S, Zügner D, Günnemann S (2020) Reliable graph neural networks via robust aggregation. Adv Neural Inf Process Syst, 33 Geisler S, Zügner D, Günnemann S (2020) Reliable graph neural networks via robust aggregation. Adv Neural Inf Process Syst, 33
13.
go back to reference Goldberger J, Ben-Reuven E (2017) Training deep neural-networks using a noise adaptation layer. International Conference on Learning Representations Goldberger J, Ben-Reuven E (2017) Training deep neural-networks using a noise adaptation layer. International Conference on Learning Representations
14.
go back to reference Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In: Advances in neural information processing systems, pp 1024–1034 Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In: Advances in neural information processing systems, pp 1024–1034
15.
go back to reference Hassani K, Khasahmadi AH (2020) Contrastive multi-view representation learning on graphs. In: International conference on machine learning, PMLR, pp 4116–4126 Hassani K, Khasahmadi AH (2020) Contrastive multi-view representation learning on graphs. In: International conference on machine learning, PMLR, pp 4116–4126
16.
go back to reference Hu W, Liu B, Gomes J, Zitnik M, Liang P, Pande V, Leskovec J (2019a) Strategies for pre-training graph neural networks. In: International conference on learning representations Hu W, Liu B, Gomes J, Zitnik M, Liang P, Pande V, Leskovec J (2019a) Strategies for pre-training graph neural networks. In: International conference on learning representations
17.
go back to reference Hu W, Fey M, Zitnik M, Dong Y, Ren H, Liu B, Catasta M, Leskovec J (2020a) Open graph benchmark: Datasets for machine learning on graphs. arXiv preprint arXiv:2005.00687 Hu W, Fey M, Zitnik M, Dong Y, Ren H, Liu B, Catasta M, Leskovec J (2020a) Open graph benchmark: Datasets for machine learning on graphs. arXiv preprint arXiv:​2005.​00687
18.
go back to reference Hu Z, Fan C, Chen T, Chang KW, Sun Y (2019b) Pre-training graph neural networks for generic structural feature extraction. arXiv preprint arXiv:1905.13728 Hu Z, Fan C, Chen T, Chang KW, Sun Y (2019b) Pre-training graph neural networks for generic structural feature extraction. arXiv preprint arXiv:​1905.​13728
19.
go back to reference Hu Z, Dong Y, Wang K, Chang KW, Sun Y (2020b) Gpt-gnn: Generative pre-training of graph neural networks. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp 1857–1867 Hu Z, Dong Y, Wang K, Chang KW, Sun Y (2020b) Gpt-gnn: Generative pre-training of graph neural networks. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp 1857–1867
20.
go back to reference Hwang D, Park J, Kwon S, Kim KM, Ha JW, Kim HJ (2020) Self-supervised auxiliary learning with meta-paths for heterogeneous graphs. arXiv preprint arXiv:2007.08294 Hwang D, Park J, Kwon S, Kim KM, Ha JW, Kim HJ (2020) Self-supervised auxiliary learning with meta-paths for heterogeneous graphs. arXiv preprint arXiv:​2007.​08294
21.
go back to reference Jin H, Zhang X (2019) Latent adversarial training of graph convolution networks. In: ICML workshop on learning and reasoning with graph-structured representations Jin H, Zhang X (2019) Latent adversarial training of graph convolution networks. In: ICML workshop on learning and reasoning with graph-structured representations
22.
go back to reference Jin W, Ma Y, Liu X, Tang X, Wang S, Tang J (2020) Graph structure learning for robust graph neural networks. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp 66–74 Jin W, Ma Y, Liu X, Tang X, Wang S, Tang J (2020) Graph structure learning for robust graph neural networks. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp 66–74
23.
go back to reference Kefato ZT, Girdzijauskas S (2021) Self-supervised graph neural networks without explicit negative sampling. arXiv preprint arXiv:2103.14958 Kefato ZT, Girdzijauskas S (2021) Self-supervised graph neural networks without explicit negative sampling. arXiv preprint arXiv:​2103.​14958
24.
25.
go back to reference Miller BA, Çamurcu M, Gomez AJ, Chan K, Eliassi-Rad T (2019) Improving robustness to attacks against vertex classification. In: MLG Workshop Miller BA, Çamurcu M, Gomez AJ, Chan K, Eliassi-Rad T (2019) Improving robustness to attacks against vertex classification. In: MLG Workshop
26.
go back to reference Misra I, Lawrence Zitnick C, Mitchell M, Girshick R (2016) Seeing through the human reporting bias: Visual classifiers from noisy human-centric labels. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2930–2939 Misra I, Lawrence Zitnick C, Mitchell M, Girshick R (2016) Seeing through the human reporting bias: Visual classifiers from noisy human-centric labels. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2930–2939
28.
go back to reference Patrini G, Rozza A, Krishna Menon A, Nock R, Qu L (2017) Making deep neural networks robust to label noise: A loss correction approach. In: Proceedings of the IEEE conference on computer vision and pattern recognition Patrini G, Rozza A, Krishna Menon A, Nock R, Qu L (2017) Making deep neural networks robust to label noise: A loss correction approach. In: Proceedings of the IEEE conference on computer vision and pattern recognition
29.
go back to reference Qiu J, Chen Q, Dong Y, Zhang J, Yang H, Ding M, Wang K, Tang J (2020) Gcc: Graph contrastive coding for graph neural network pre-training. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp 1150–1160 Qiu J, Chen Q, Dong Y, Zhang J, Yang H, Ding M, Wang K, Tang J (2020) Gcc: Graph contrastive coding for graph neural network pre-training. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp 1150–1160
30.
go back to reference Qu M, Bengio Y, Tang J (2019) Gmnn: Graph markov neural networks. In: International conference on machine learning, PMLR, pp 5241–5250 Qu M, Bengio Y, Tang J (2019) Gmnn: Graph markov neural networks. In: International conference on machine learning, PMLR, pp 5241–5250
31.
go back to reference Reed S, Lee H, Anguelov D, Szegedy C, Erhan D, Rabinovich A (2014) Training deep neural networks on noisy labels with bootstrapping. arXiv preprint arXiv:1412.6596 Reed S, Lee H, Anguelov D, Szegedy C, Erhan D, Rabinovich A (2014) Training deep neural networks on noisy labels with bootstrapping. arXiv preprint arXiv:​1412.​6596
32.
go back to reference Rong Y, Bian Y, Xu T, Xie W, Wei Y, Huang W, Huang J (2020) Self-supervised graph transformer on large-scale molecular data. Adv Neural Inf Process Syst, 33 Rong Y, Bian Y, Xu T, Xie W, Wei Y, Huang W, Huang J (2020) Self-supervised graph transformer on large-scale molecular data. Adv Neural Inf Process Syst, 33
33.
go back to reference Sen P, Namata G, Bilgic M, Getoor L, Galligher B, Eliassi-Rad T (2008) Collective classification in network data. AI magazine Sen P, Namata G, Bilgic M, Getoor L, Galligher B, Eliassi-Rad T (2008) Collective classification in network data. AI magazine
34.
go back to reference Shang J, Ma T, Xiao C, Sun J (2019) Pre-training of graph augmented transformers for medication recommendation. arXiv preprint arXiv:1906.00346 Shang J, Ma T, Xiao C, Sun J (2019) Pre-training of graph augmented transformers for medication recommendation. arXiv preprint arXiv:​1906.​00346
35.
go back to reference Shchur O, Mumme M, Bojchevski A, Günnemann S (2018) Pitfalls of graph neural network evaluation. Relational Representation Learning Workshop, NeurIPS Shchur O, Mumme M, Bojchevski A, Günnemann S (2018) Pitfalls of graph neural network evaluation. Relational Representation Learning Workshop, NeurIPS
36.
go back to reference Sukhbaatar S, Bruna J, Paluri M, Bourdev L, Fergus R (2014) Training convolutional networks with noisy labels. arXiv preprint arXiv:1406.2080 Sukhbaatar S, Bruna J, Paluri M, Bourdev L, Fergus R (2014) Training convolutional networks with noisy labels. arXiv preprint arXiv:​1406.​2080
37.
38.
go back to reference Sun L, Dou Y, Yang C, Wang J, Yu PS, Li B (2018) Adversarial attack and defense on graph data: A survey. arXiv preprint arXiv:1812.10528 Sun L, Dou Y, Yang C, Wang J, Yu PS, Li B (2018) Adversarial attack and defense on graph data: A survey. arXiv preprint arXiv:​1812.​10528
39.
go back to reference Tang X, Li Y, Sun Y, Yao H, Mitra P, Wang S (2020) Transferring robustness for graph neural network against poisoning attacks. In: Proceedings of the 13th international conference on web search and data mining Tang X, Li Y, Sun Y, Yao H, Mitra P, Wang S (2020) Transferring robustness for graph neural network against poisoning attacks. In: Proceedings of the 13th international conference on web search and data mining
40.
go back to reference Tsitsulin A, Mottin D, Karras P, Bronstein A, Müller E (2018) Sgr: Self-supervised spectral graph representation learning. arXiv preprint arXiv:1811.06237 Tsitsulin A, Mottin D, Karras P, Bronstein A, Müller E (2018) Sgr: Self-supervised spectral graph representation learning. arXiv preprint arXiv:​1811.​06237
41.
go back to reference Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2018) Graph attention networks. In: International conference on learning representations Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2018) Graph attention networks. In: International conference on learning representations
42.
go back to reference Wang S, Chen Z, Ni J, Yu X, Li Z, Chen H, Yu PS (2019a) Adversarial defense framework for graph neural network. arXiv preprint arXiv:1905.03679 Wang S, Chen Z, Ni J, Yu X, Li Z, Chen H, Yu PS (2019a) Adversarial defense framework for graph neural network. arXiv preprint arXiv:​1905.​03679
44.
go back to reference Wu F, Zhang T, Souza Jr AHd, Fifty C, Yu T, Weinberger KQ (2019a) Simplifying graph convolutional networks. arXiv preprint arXiv:1902.07153 Wu F, Zhang T, Souza Jr AHd, Fifty C, Yu T, Weinberger KQ (2019a) Simplifying graph convolutional networks. arXiv preprint arXiv:​1902.​07153
45.
go back to reference Wu H, Wang C, Tyshetskiy Y, Docherty A, Lu K, Zhu L (2019b) Adversarial examples on graph data: Deep insights into attack and defense. arXiv preprint arXiv:1903.01610 Wu H, Wang C, Tyshetskiy Y, Docherty A, Lu K, Zhu L (2019b) Adversarial examples on graph data: Deep insights into attack and defense. arXiv preprint arXiv:​1903.​01610
46.
go back to reference Xie Y, Xu Z, Zhang J, Wang Z, Ji S (2021) Self-supervised learning of graph neural networks: A unified review. arXiv preprint arXiv:2102.10757 Xie Y, Xu Z, Zhang J, Wang Z, Ji S (2021) Self-supervised learning of graph neural networks: A unified review. arXiv preprint arXiv:​2102.​10757
49.
go back to reference Xu K, Chen H, Liu S, Chen PY, Weng TW, Hong M, Lin X (2019b) Topology attack and defense for graph neural networks: an optimization perspective. arXiv preprint arXiv:1906.04214 Xu K, Chen H, Liu S, Chen PY, Weng TW, Hong M, Lin X (2019b) Topology attack and defense for graph neural networks: an optimization perspective. arXiv preprint arXiv:​1906.​04214
50.
go back to reference Yao J, Wu H, Zhang Y, Tsang IW, Sun J (2019) Safeguarded dynamic label regression for noisy supervision. Proc AAAI Conf Artif Intell 33:9103–9110 Yao J, Wu H, Zhang Y, Tsang IW, Sun J (2019) Safeguarded dynamic label regression for noisy supervision. Proc AAAI Conf Artif Intell 33:9103–9110
51.
go back to reference Yasunaga M, Liang P (2020) Graph-based, self-supervised program repair from diagnostic feedback. In: International conference on machine learning, PMLR, pp 10799–10808 Yasunaga M, Liang P (2020) Graph-based, self-supervised program repair from diagnostic feedback. In: International conference on machine learning, PMLR, pp 10799–10808
52.
go back to reference You Y, Chen T, Sui Y, Chen T, Wang Z, Shen Y (2020a) Graph contrastive learning with augmentations. Adv Neural Inf Process Syst, 33 You Y, Chen T, Sui Y, Chen T, Wang Z, Shen Y (2020a) Graph contrastive learning with augmentations. Adv Neural Inf Process Syst, 33
53.
go back to reference You Y, Chen T, Wang Z, Shen Y (2020b) When does self-supervision help graph convolutional networks? In: International conference on machine learning, PMLR, pp 10871–10880 You Y, Chen T, Wang Z, Shen Y (2020b) When does self-supervision help graph convolutional networks? In: International conference on machine learning, PMLR, pp 10871–10880
55.
go back to reference Zhang A, Ma J (2020) Defensevgae: Defending against adversarial attacks on graph data via a variational graph autoencoder. arXiv preprint arXiv:2006.08900 Zhang A, Ma J (2020) Defensevgae: Defending against adversarial attacks on graph data via a variational graph autoencoder. arXiv preprint arXiv:​2006.​08900
56.
go back to reference Zhang Y, Khan S, Coates M (2019a) Comparing and detecting adversarial attacks for graph deep learning. In: Proc. Representation Learning on Graphs and Manifolds Workshop, Int. Conf. Learning Representations, New Orleans, LA, USA Zhang Y, Khan S, Coates M (2019a) Comparing and detecting adversarial attacks for graph deep learning. In: Proc. Representation Learning on Graphs and Manifolds Workshop, Int. Conf. Learning Representations, New Orleans, LA, USA
57.
go back to reference Zhang Y, Pal S, Coates M, Ustebay D (2019) Bayesian graph convolutional neural networks for semi-supervised classification. Proc AAAI Conf Artif Intell 33:5829–5836 Zhang Y, Pal S, Coates M, Ustebay D (2019) Bayesian graph convolutional neural networks for semi-supervised classification. Proc AAAI Conf Artif Intell 33:5829–5836
58.
go back to reference Zheng C, Zong B, Cheng W, Song D, Ni J, Yu W, Chen H, Wang W (2020) Robust graph representation learning via neural sparsification. In: International conference on machine learning, PMLR, pp 11458–11468 Zheng C, Zong B, Cheng W, Song D, Ni J, Yu W, Chen H, Wang W (2020) Robust graph representation learning via neural sparsification. In: International conference on machine learning, PMLR, pp 11458–11468
59.
go back to reference Zhong JX, Li N, Kong W, Liu S, Li TH, Li G (2019) Graph convolutional label noise cleaner: Train a plug-and-play action classifier for anomaly detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition Zhong JX, Li N, Kong W, Liu S, Li TH, Li G (2019) Graph convolutional label noise cleaner: Train a plug-and-play action classifier for anomaly detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition
60.
61.
go back to reference Zügner D, Akbarnejad A, Günnemann S (2018) Adversarial attacks on neural networks for graph data. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pp 2847–2856 Zügner D, Akbarnejad A, Günnemann S (2018) Adversarial attacks on neural networks for graph data. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pp 2847–2856
Metadata
Title
How Does Bayesian Noisy Self-Supervision Defend Graph Convolutional Networks?
Authors
Jun Zhuang
Mohammad Al Hasan
Publication date
08-02-2022
Publisher
Springer US
Published in
Neural Processing Letters / Issue 4/2022
Print ISSN: 1370-4621
Electronic ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-022-10750-8

Other articles of this Issue 4/2022

Neural Processing Letters 4/2022 Go to the issue