Skip to main content
Top

2020 | OriginalPaper | Chapter

9. How Machine Learning Can Support Cyberattack Detection in Smart Grids

Authors : Bruno Bogaz Zarpelão, Sylvio Barbon Jr., Dilara Acarali, Muttukrishnan Rajarajan

Published in: Artificial Intelligence Techniques for a Scalable Energy Transition

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter addresses the application of machine learning algorithms to detect attacks against smart grids. Smart grids are the result of a long process of transformation that power systems have been through, relying on Information and Communication Technology (ICT) to improve their monitoring and control. Although an objective of this convergence of power systems and ICT is to increase their reliability, the dependency on information technology has brought new cybersecurity vulnerabilities to this scenario. Therefore, developing new cybersecurity measures for smart grids is a key factor in their success. One of these measures is attack detection, which allows the timely mitigation of attacks with the aim of limiting possible damages to the targets. As machine learning algorithms have been widely applied as powerful tools to support the design of cybersecurity solutions in multiple areas, they also have huge potential for addressing the new challenges that smart grids pose. With this as the foundational perspective, this study starts by presenting an overview of smart grids, followed by possible attacks. After this discussion, we examine the background concepts for attack detection and machine learning. Then, we discuss the existing solutions, showing in detail how they address the particularities of smart grids and their attack types using machine learning algorithms. This is supplemented by a discussion of the open issues in the use of machine learning for smart grid attack detection, followed by some future research directions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C. Greer, D.A. Wollman, D.E. Prochaska, P.A. Boynton, J.A. Mazer, C.T. Nguyen, G.J. FitzPatrick, T.L. Nelson, G.H. Koepke, A.R. Hefner Jr. et al., NIST framework and roadmap for smart grid interoperability standards, release 3.0. Technical Report (2014) C. Greer, D.A. Wollman, D.E. Prochaska, P.A. Boynton, J.A. Mazer, C.T. Nguyen, G.J. FitzPatrick, T.L. Nelson, G.H. Koepke, A.R. Hefner Jr. et al., NIST framework and roadmap for smart grid interoperability standards, release 3.0. Technical Report (2014)
2.
go back to reference K. Hamedani, L. Liu, R. Atat, J. Wu, Y. Yi, Reservoir computing meets smart grids: attack detection using delayed feedback networks. IEEE Trans. Ind. Inf. 14(2), 734–743 (2017) K. Hamedani, L. Liu, R. Atat, J. Wu, Y. Yi, Reservoir computing meets smart grids: attack detection using delayed feedback networks. IEEE Trans. Ind. Inf. 14(2), 734–743 (2017)
3.
go back to reference M.N. Kurt, O. Ogundijo, C. Li, X. Wang, Online cyber-attack detection in smart grid: a reinforcement learning approach. IEEE Trans. Smart Grid 10(5), 5174–5185 (2019) M.N. Kurt, O. Ogundijo, C. Li, X. Wang, Online cyber-attack detection in smart grid: a reinforcement learning approach. IEEE Trans. Smart Grid 10(5), 5174–5185 (2019)
4.
go back to reference Y. Chen, S. Huang, F. Liu, Z. Wang, X. Sun, Evaluation of reinforcement learning-based false data injection attack to automatic voltage control. IEEE Trans. Smart Grid 10(2), 2158–2169 (2018) Y. Chen, S. Huang, F. Liu, Z. Wang, X. Sun, Evaluation of reinforcement learning-based false data injection attack to automatic voltage control. IEEE Trans. Smart Grid 10(2), 2158–2169 (2018)
5.
go back to reference U. Adhikari, T.H. Morris, S. Pan, Applying hoeffding adaptive trees for real-time cyber-power event and intrusion classification. IEEE Trans. Smart Grid 9(5), 4049–4060 (2017) U. Adhikari, T.H. Morris, S. Pan, Applying hoeffding adaptive trees for real-time cyber-power event and intrusion classification. IEEE Trans. Smart Grid 9(5), 4049–4060 (2017)
7.
go back to reference H. He, J. Yan, Cyber-physical attacks and defences in the smart grid: a survey. IET Cyber-Phys. Syst. Theory Appl. 1(1), 13–27 (2016) H. He, J. Yan, Cyber-physical attacks and defences in the smart grid: a survey. IET Cyber-Phys. Syst. Theory Appl. 1(1), 13–27 (2016)
8.
go back to reference X. Li, X. Liang, R. Lu, X. Shen, X. Lin, H. Zhu, Securing smart grid: cyber attacks, countermeasures, and challenges. IEEE Commun. Mag. 50(8), 38–45 (2012) X. Li, X. Liang, R. Lu, X. Shen, X. Lin, H. Zhu, Securing smart grid: cyber attacks, countermeasures, and challenges. IEEE Commun. Mag. 50(8), 38–45 (2012)
9.
go back to reference G. Loukas, Cyber-Physical Attacks: A Growing Invisible Threat (Butterworth-Heinemann, Oxford, 2015) G. Loukas, Cyber-Physical Attacks: A Growing Invisible Threat (Butterworth-Heinemann, Oxford, 2015)
11.
go back to reference Y. Yilmaz, S. Uludag, Mitigating IoT-based cyberattacks on the smart grid, in 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA) (IEEE, Piscataway, 2017), pp. 517–522 Y. Yilmaz, S. Uludag, Mitigating IoT-based cyberattacks on the smart grid, in 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA) (IEEE, Piscataway, 2017), pp. 517–522
12.
go back to reference Y. Wang, M.M. Amin, J. Fu, H.B. Moussa, A novel data analytical approach for false data injection cyber-physical attack mitigation in smart grids. IEEE Access 5, 26022–26033 (2017) Y. Wang, M.M. Amin, J. Fu, H.B. Moussa, A novel data analytical approach for false data injection cyber-physical attack mitigation in smart grids. IEEE Access 5, 26022–26033 (2017)
13.
go back to reference M. Wu, Z. Song, Y.B. Moon, Detecting cyber-physical attacks in cyber manufacturing systems with machine learning methods. J. Intell. Manuf. 30(3), 1111–1123 (2019) M. Wu, Z. Song, Y.B. Moon, Detecting cyber-physical attacks in cyber manufacturing systems with machine learning methods. J. Intell. Manuf. 30(3), 1111–1123 (2019)
14.
go back to reference Y. Zhang, L. Wang, W. Sun, R.C. Green II, M. Alam, Distributed intrusion detection system in a multi-layer network architecture of smart grids. IEEE Trans. Smart Grid 2(4), 796–808 (2011) Y. Zhang, L. Wang, W. Sun, R.C. Green II, M. Alam, Distributed intrusion detection system in a multi-layer network architecture of smart grids. IEEE Trans. Smart Grid 2(4), 796–808 (2011)
15.
go back to reference R. Jiang, R. Lu, Y. Wang, J. Luo, C. Shen, X.S. Shen, Energy-theft detection issues for advanced metering infrastructure in smart grid. Tsinghua Sci. Technol. 19(2), 105–120 (2014) R. Jiang, R. Lu, Y. Wang, J. Luo, C. Shen, X.S. Shen, Energy-theft detection issues for advanced metering infrastructure in smart grid. Tsinghua Sci. Technol. 19(2), 105–120 (2014)
16.
go back to reference Y. Huang, M. Esmalifalak, H. Nguyen, R. Zheng, Z. Han, H. Li, L. Song, Bad data injection in smart grid: attack and defense mechanisms. IEEE Commun. Mag. 51(1), 27–33 (2013) Y. Huang, M. Esmalifalak, H. Nguyen, R. Zheng, Z. Han, H. Li, L. Song, Bad data injection in smart grid: attack and defense mechanisms. IEEE Commun. Mag. 51(1), 27–33 (2013)
17.
go back to reference H. He, J. Yan, Cyber-physical attacks and defences in the smart grid: a survey. IET Cyber-Phys. Syst. Theory Appl. 1(1), 13–27 (2016) H. He, J. Yan, Cyber-physical attacks and defences in the smart grid: a survey. IET Cyber-Phys. Syst. Theory Appl. 1(1), 13–27 (2016)
18.
go back to reference Z.M. Fadlullah, M.M. Fouda, N. Kato, X. Shen, Y. Nozaki, An early warning system against malicious activities for smart grid communications. IEEE Netw 25(5), 50–55 (2011) Z.M. Fadlullah, M.M. Fouda, N. Kato, X. Shen, Y. Nozaki, An early warning system against malicious activities for smart grid communications. IEEE Netw 25(5), 50–55 (2011)
19.
go back to reference M. Ashrafuzzaman, Y. Chakhchoukh, A.A. Jillepalli, P.T. Tosic, D.C. de Leon, F.T. Sheldon, B.K. Johnson, Detecting stealthy false data injection attacks in power grids using deep learning, in 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC) (IEEE, Piscataway, 2018), pp. 219–225 M. Ashrafuzzaman, Y. Chakhchoukh, A.A. Jillepalli, P.T. Tosic, D.C. de Leon, F.T. Sheldon, B.K. Johnson, Detecting stealthy false data injection attacks in power grids using deep learning, in 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC) (IEEE, Piscataway, 2018), pp. 219–225
20.
go back to reference M. Esmalifalak, L. Liu, N. Nguyen, R. Zheng, Z. Han, Detecting stealthy false data injection using machine learning in smart grid. IEEE Syst. J. 11(3), 1644–1652 (2014) M. Esmalifalak, L. Liu, N. Nguyen, R. Zheng, Z. Han, Detecting stealthy false data injection using machine learning in smart grid. IEEE Syst. J. 11(3), 1644–1652 (2014)
21.
go back to reference A. Anwar, A.N. Mahmood, Z. Tari, Identification of vulnerable node clusters against false data injection attack in an AMI based smart grid. Inf. Syst. 53, 201–212 (2015) A. Anwar, A.N. Mahmood, Z. Tari, Identification of vulnerable node clusters against false data injection attack in an AMI based smart grid. Inf. Syst. 53, 201–212 (2015)
22.
go back to reference Y. He, G.J. Mendis, J. Wei, Real-time detection of false data injection attacks in smart grid: a deep learning-based intelligent mechanism. IEEE Trans. Smart Grid 8(5), 2505–2516 (2017) Y. He, G.J. Mendis, J. Wei, Real-time detection of false data injection attacks in smart grid: a deep learning-based intelligent mechanism. IEEE Trans. Smart Grid 8(5), 2505–2516 (2017)
23.
go back to reference M. Ozay, I. Esnaola, F.T.Y. Vural, S.R. Kulkarni, H.V. Poor, Machine learning methods for attack detection in the smart grid. IEEE Trans. Neural Netw. Learn. Syst. 27(8), 1773–1786 (2015)MathSciNet M. Ozay, I. Esnaola, F.T.Y. Vural, S.R. Kulkarni, H.V. Poor, Machine learning methods for attack detection in the smart grid. IEEE Trans. Neural Netw. Learn. Syst. 27(8), 1773–1786 (2015)MathSciNet
24.
go back to reference M. Ozay, I. Esnaola, F.T.Y. Vural, S.R. Kulkarni, P.H. Vincent, Smarter security in the smart grid, in 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm) (IEEE, Piscataway, 2012), pp. 312–317 M. Ozay, I. Esnaola, F.T.Y. Vural, S.R. Kulkarni, P.H. Vincent, Smarter security in the smart grid, in 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm) (IEEE, Piscataway, 2012), pp. 312–317
25.
go back to reference J. Yan, B. Tang, H. He, Detection of false data attacks in smart grid with supervised learning, in 2016 International Joint Conference on Neural Networks (IJCNN) (IEEE, Piscataway, 2016), pp. 1395–1402 J. Yan, B. Tang, H. He, Detection of false data attacks in smart grid with supervised learning, in 2016 International Joint Conference on Neural Networks (IJCNN) (IEEE, Piscataway, 2016), pp. 1395–1402
26.
go back to reference R.C.B. Hink, J.M. Beaver, M.A. Buckner, T. Morris, U. Adhikari, S. Pan, Machine learning for power system disturbance and cyber-attack discrimination, in 2014 7th International Symposium on Resilient Control Systems (ISRCS) (IEEE, Piscataway, 2014), pp. 1–8 R.C.B. Hink, J.M. Beaver, M.A. Buckner, T. Morris, U. Adhikari, S. Pan, Machine learning for power system disturbance and cyber-attack discrimination, in 2014 7th International Symposium on Resilient Control Systems (ISRCS) (IEEE, Piscataway, 2014), pp. 1–8
27.
go back to reference M. Cui, J. Wang, M. Yue, Machine learning based anomaly detection for load forecasting under cyberattacks. IEEE Trans. Smart Grid 10(5), 5724–5734 (2019) M. Cui, J. Wang, M. Yue, Machine learning based anomaly detection for load forecasting under cyberattacks. IEEE Trans. Smart Grid 10(5), 5724–5734 (2019)
28.
go back to reference H. Sedjelmaci, S.M. Senouci, Smart grid security: a new approach to detect intruders in a smart grid neighborhood area network, in 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM) (2016), pp. 6–11 H. Sedjelmaci, S.M. Senouci, Smart grid security: a new approach to detect intruders in a smart grid neighborhood area network, in 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM) (2016), pp. 6–11
29.
go back to reference K. Choi, X. Chen, S. Li, M. Kim, K. Chae, J. Na, Intrusion detection of NSM based DoS attacks using data mining in smart grid. Energies 5(10), 4091–4109 (2012) K. Choi, X. Chen, S. Li, M. Kim, K. Chae, J. Na, Intrusion detection of NSM based DoS attacks using data mining in smart grid. Energies 5(10), 4091–4109 (2012)
30.
go back to reference J. Niu, Z. Ming, M. Qiu, H. Su, Z. Gu, X. Qin, Defending jamming attack in wide-area monitoring system for smart grid. Telecommun. Syst. 60(1), 159–167 (2015) J. Niu, Z. Ming, M. Qiu, H. Su, Z. Gu, X. Qin, Defending jamming attack in wide-area monitoring system for smart grid. Telecommun. Syst. 60(1), 159–167 (2015)
31.
go back to reference H. Su, M. Qiu, H. Wang, Secure wireless communication system for smart grid with rechargeable electric vehicles. IEEE Commun. Mag. 50(8), 62–68 (2012) H. Su, M. Qiu, H. Wang, Secure wireless communication system for smart grid with rechargeable electric vehicles. IEEE Commun. Mag. 50(8), 62–68 (2012)
32.
go back to reference S. Kher, V. Nutt, D. Dasgupta, H. Ali, P. Mixon, A detection model for anomalies in smart grid with sensor network, in 2012 Future of Instrumentation International Workshop (FIIW) Proceedings (IEEE, Piscataway, 2012), pp. 1–4 S. Kher, V. Nutt, D. Dasgupta, H. Ali, P. Mixon, A detection model for anomalies in smart grid with sensor network, in 2012 Future of Instrumentation International Workshop (FIIW) Proceedings (IEEE, Piscataway, 2012), pp. 1–4
33.
go back to reference J.L. Viegas, S.M. Vieira, Clustering-based novelty detection to uncover electricity theft, in 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (IEEE, Piscataway, 2017), pp. 1–6 J.L. Viegas, S.M. Vieira, Clustering-based novelty detection to uncover electricity theft, in 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (IEEE, Piscataway, 2017), pp. 1–6
34.
go back to reference A.E. Lazzaretti, D.M.J. Tax, H.V. Neto, V.H. Ferreira, Novelty detection and multi-class classification in power distribution voltage waveforms. Expert Syst. Appl. 45 322–330 (2016) A.E. Lazzaretti, D.M.J. Tax, H.V. Neto, V.H. Ferreira, Novelty detection and multi-class classification in power distribution voltage waveforms. Expert Syst. Appl. 45 322–330 (2016)
35.
go back to reference E.R. Faria, J. Gama, A.C. Carvalho, Novelty detection algorithm for data streams multi-class problems, in Proceedings of the 28th Annual ACM Symposium on Applied Computing (ACM, New York, 2013), pp. 795–800 E.R. Faria, J. Gama, A.C. Carvalho, Novelty detection algorithm for data streams multi-class problems, in Proceedings of the 28th Annual ACM Symposium on Applied Computing (ACM, New York, 2013), pp. 795–800
36.
go back to reference R. Kaviani, K.W. Hedman, A detection mechanism against load-redistribution attacks in smart grids (2019). Preprint. arXiv:1907.13294 R. Kaviani, K.W. Hedman, A detection mechanism against load-redistribution attacks in smart grids (2019). Preprint. arXiv:1907.13294
37.
go back to reference C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)MATH C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)MATH
38.
go back to reference S. Haykin, Neural Networks: A Comprehensive Foundation (Prentice Hall PTR, Englewood Cliffs, 1994) S. Haykin, Neural Networks: A Comprehensive Foundation (Prentice Hall PTR, Englewood Cliffs, 1994)
39.
go back to reference T.M. Cover, P. Hart et al., Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)MATH T.M. Cover, P. Hart et al., Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)MATH
40.
go back to reference I. Rish et al., An empirical study of the Naive Bayes classifier, in IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3, no. 22 (2001), pp. 41–46 I. Rish et al., An empirical study of the Naive Bayes classifier, in IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3, no. 22 (2001), pp. 41–46
41.
go back to reference L. Breiman, Random forests. Mach. Learn. 45(1), 5–32 (2001)MATH L. Breiman, Random forests. Mach. Learn. 45(1), 5–32 (2001)MATH
42.
go back to reference O. Chapelle, B. Scholkopf, A. Zien, Semi-supervised learning (Chapelle, O. et al., eds.; 2006) [Book reviews]. IEEE Trans. Neural Netw. 20(3), 542–542 (2009) O. Chapelle, B. Scholkopf, A. Zien, Semi-supervised learning (Chapelle, O. et al., eds.; 2006) [Book reviews]. IEEE Trans. Neural Netw. 20(3), 542–542 (2009)
43.
go back to reference S. Zanero, S.M. Savaresi, Unsupervised learning techniques for an intrusion detection system, in Proceedings of the 2004 ACM Symposium on Applied Computing (ACM, New York, 2004), pp. 412–419 S. Zanero, S.M. Savaresi, Unsupervised learning techniques for an intrusion detection system, in Proceedings of the 2004 ACM Symposium on Applied Computing (ACM, New York, 2004), pp. 412–419
44.
go back to reference S. Dasgupta, A. Srivastava, J. Cordova, R. Arghandeh, Clustering household electrical load profiles using elastic shape analysis, in 2019 IEEE Milan PowerTech (IEEE, Piscataway, 2019), pp. 1–6 S. Dasgupta, A. Srivastava, J. Cordova, R. Arghandeh, Clustering household electrical load profiles using elastic shape analysis, in 2019 IEEE Milan PowerTech (IEEE, Piscataway, 2019), pp. 1–6
45.
go back to reference J. Gama, R. Fernandes, R. Rocha, Decision trees for mining data streams. Intell. Data Anal. 10(1), 23–45 (2006) J. Gama, R. Fernandes, R. Rocha, Decision trees for mining data streams. Intell. Data Anal. 10(1), 23–45 (2006)
46.
go back to reference Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436 (2015) Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436 (2015)
47.
go back to reference V.G.T. da Costa, A.C.P. de Leon Ferreira, S. Barbon Jr., et al., Strict very fast decision tree: a memory conservative algorithm for data stream mining. Pattern Recogn. Lett. 116, 22–28 (2018) V.G.T. da Costa, A.C.P. de Leon Ferreira, S. Barbon Jr., et al., Strict very fast decision tree: a memory conservative algorithm for data stream mining. Pattern Recogn. Lett. 116, 22–28 (2018)
48.
go back to reference G. Le Ray, P. Pinson, Online adaptive clustering algorithm for load profiling. Sustain. Energy Grids Netw. 17, 100181 (2019) G. Le Ray, P. Pinson, Online adaptive clustering algorithm for load profiling. Sustain. Energy Grids Netw. 17, 100181 (2019)
49.
go back to reference R.C. Qiu, Z. Hu, Z. Chen, N. Guo, R. Ranganathan, S. Hou, G. Zheng, Cognitive Radio Network for the smart grid: experimental system architecture, control algorithms, security, and microgrid testbed. IEEE Trans. Smart Grid 2(4), 724–740 (2011) R.C. Qiu, Z. Hu, Z. Chen, N. Guo, R. Ranganathan, S. Hou, G. Zheng, Cognitive Radio Network for the smart grid: experimental system architecture, control algorithms, security, and microgrid testbed. IEEE Trans. Smart Grid 2(4), 724–740 (2011)
50.
go back to reference J. Yan, H. He, X. Zhong, Y. Tang, Q-Learning-based vulnerability analysis of smart grid against sequential topology attacks. IEEE Trans. Inf. Forensics Secur. 12(1), 200–210 (2016) J. Yan, H. He, X. Zhong, Y. Tang, Q-Learning-based vulnerability analysis of smart grid against sequential topology attacks. IEEE Trans. Inf. Forensics Secur. 12(1), 200–210 (2016)
51.
go back to reference F. Cao, M. Estert, W. Qian, A. Zhou, Density-based clustering over an evolving data stream with noise, in Proceedings of the 2006 SIAM International Conference on Data Mining (SIAM, Philadelphia, 2006), pp. 328–339 F. Cao, M. Estert, W. Qian, A. Zhou, Density-based clustering over an evolving data stream with noise, in Proceedings of the 2006 SIAM International Conference on Data Mining (SIAM, Philadelphia, 2006), pp. 328–339
52.
go back to reference D. Nussbaum, A. Agarwal, Scalability of parallel machines. Commun. ACM 34(3), 57–61 (1991)MathSciNet D. Nussbaum, A. Agarwal, Scalability of parallel machines. Commun. ACM 34(3), 57–61 (1991)MathSciNet
53.
go back to reference N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)MATH N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)MATH
54.
go back to reference R.G. Mantovani, A.L. Rossi, J. Vanschoren, B. Bischl, A.C. Carvalho, To tune or not to tune: recommending when to adjust SVM hyper-parameters via meta-learning, in 2015 International Joint Conference on Neural Networks (IJCNN) (IEEE, Piscataway, 2015), pp. 1–8 R.G. Mantovani, A.L. Rossi, J. Vanschoren, B. Bischl, A.C. Carvalho, To tune or not to tune: recommending when to adjust SVM hyper-parameters via meta-learning, in 2015 International Joint Conference on Neural Networks (IJCNN) (IEEE, Piscataway, 2015), pp. 1–8
55.
go back to reference J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, A. Bouchachia, A survey on concept drift adaptation. ACM Comput. Surv. 46(4), 44 (2014) J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, A. Bouchachia, A survey on concept drift adaptation. ACM Comput. Surv. 46(4), 44 (2014)
56.
go back to reference V.G.T. da Costa, E.J. Santana, J.F. Lopes, S. Barbon, Evaluating the four-way performance trade-off for stream classification, in International Conference on Green, Pervasive, and Cloud Computing (Springer, Berlin, 2019), pp. 3–17 V.G.T. da Costa, E.J. Santana, J.F. Lopes, S. Barbon, Evaluating the four-way performance trade-off for stream classification, in International Conference on Green, Pervasive, and Cloud Computing (Springer, Berlin, 2019), pp. 3–17
57.
go back to reference A. Kurakin, I. Goodfellow, S. Bengio, Adversarial machine learning at scale (2016). Preprint. arXiv:1611.01236 A. Kurakin, I. Goodfellow, S. Bengio, Adversarial machine learning at scale (2016). Preprint. arXiv:1611.01236
58.
go back to reference R.S. de Carvalho, S. Mohagheghi, Analyzing impact of communication network topologies on reconfiguration of networked microgrids, impact of communication system on smart grid reliability, security and operation, in 2016 North American Power Symposium (NAPS) (IEEE, Piscataway, 2016), pp. 1–6 R.S. de Carvalho, S. Mohagheghi, Analyzing impact of communication network topologies on reconfiguration of networked microgrids, impact of communication system on smart grid reliability, security and operation, in 2016 North American Power Symposium (NAPS) (IEEE, Piscataway, 2016), pp. 1–6
Metadata
Title
How Machine Learning Can Support Cyberattack Detection in Smart Grids
Authors
Bruno Bogaz Zarpelão
Sylvio Barbon Jr.
Dilara Acarali
Muttukrishnan Rajarajan
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-42726-9_9