Skip to main content
Top
Published in: Journal of Materials Science 4/2022

03-01-2022 | Energy materials

Humidity-resistant, durable, wearable single-electrode triboelectric nanogenerator for mechanical energy harvesting

Authors: Guoqing Zu, Ye Wei, Chuanyu Sun, Xijia Yang

Published in: Journal of Materials Science | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the rapid development of wearable, flexible, and portable electronic devices, triboelectric nanogenerators (TENG) as a possible power source with the features of miniature and flexibility have attracted tremendous research interest. In this respect, we prepared a stretchable and shape-adaptive silicone rubber-based triboelectric nanogenerator, with MoS2/GO in the friction layer to capture electrons. It is found that a large number of micropores are generated in the silicone rubber matrix, providing more sites for charge generation. In addition, the rough surface led to a greater contact area for harvesting environmental mechanical energy more effectively. By optimizing the fabrication process, the TENG displays output voltage, current density, and average power density up to ∼200 V, ∼25 μA, and ∼1.3 mW, respectively in single-electrode mode. In addition, it has good flexibility and water resistance and can be worn on skin or cloth to harvest energy from different body motions. Therefore, the device in this work with enhanced power output, stability, and portability is suitable for practical application to power wearable electronic devices from manual activities.

Graphical abstract

A robust and novel textile-TENG for energy harvest was developed, which is constructed from the flexible conducting textile and MoS2/RGO doped super-soft silicone rubber. The resulting film possesses good triboelectric performance and has the ability to harvest energy from different human motions. We found that the obtained TENG shows portable, lightweight, and sustainable properties, indicating its promising potential for applications in flexible and miniaturized green electronics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Scrosati B, Garche J (2010) Lithium batteries: Status, prospects and future. J Power Sources 195(9):2419–2430CrossRef Scrosati B, Garche J (2010) Lithium batteries: Status, prospects and future. J Power Sources 195(9):2419–2430CrossRef
2.
go back to reference Wang Q, Hisatomi T, Jia Q, Tokudome H, Zhong M, Wang C, Pan Z, Takata T, Nakabayashi M, Shibata N (2016) Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat Mater 15(6):611–615CrossRef Wang Q, Hisatomi T, Jia Q, Tokudome H, Zhong M, Wang C, Pan Z, Takata T, Nakabayashi M, Shibata N (2016) Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat Mater 15(6):611–615CrossRef
3.
go back to reference Wang ZL, Jiang T, Xu L (2017) Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 39:9–23CrossRef Wang ZL, Jiang T, Xu L (2017) Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 39:9–23CrossRef
4.
go back to reference Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531CrossRef Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531CrossRef
9.
go back to reference Fan F-R, Tian Z-Q, Wang ZL (2012) Flexible triboelectric generator. Nano Energy 1(2):328–334CrossRef Fan F-R, Tian Z-Q, Wang ZL (2012) Flexible triboelectric generator. Nano Energy 1(2):328–334CrossRef
10.
go back to reference Liang Q, Zhang Q, Yan X, Liao X, Han L, Yi F, Ma M, Zhang Y (2017) Recyclable and green triboelectric nanogenerator. Adv Mater 29(5):1604961CrossRef Liang Q, Zhang Q, Yan X, Liao X, Han L, Yi F, Ma M, Zhang Y (2017) Recyclable and green triboelectric nanogenerator. Adv Mater 29(5):1604961CrossRef
11.
go back to reference Liu W, Wang Z, Wang G, Liu G, Chen J, Pu X, Xi Y, Wang X, Guo H, Hu C (2019) Integrated charge excitation triboelectric nanogenerator. Nat Commun 10(1):1–9 Liu W, Wang Z, Wang G, Liu G, Chen J, Pu X, Xi Y, Wang X, Guo H, Hu C (2019) Integrated charge excitation triboelectric nanogenerator. Nat Commun 10(1):1–9
12.
go back to reference Seung W, Gupta MK, Lee KY, Shin K-S, Lee J-H, Kim TY, Kim S, Lin J, Kim JH, Kim S-W (2015) Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 9(4):3501–3509CrossRef Seung W, Gupta MK, Lee KY, Shin K-S, Lee J-H, Kim TY, Kim S, Lin J, Kim JH, Kim S-W (2015) Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 9(4):3501–3509CrossRef
13.
go back to reference Wu C, Wang AC, Ding W, Guo H, Wang ZL (2019) Triboelectric nanogenerator: a foundation of the energy for the new era. Adv Energy Mater 9(1):1802906CrossRef Wu C, Wang AC, Ding W, Guo H, Wang ZL (2019) Triboelectric nanogenerator: a foundation of the energy for the new era. Adv Energy Mater 9(1):1802906CrossRef
14.
go back to reference Zhu G, Lin Z-H, Jing Q, Bai P, Pan C, Yang Y, Zhou Y, Wang ZL (2013) Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett 13(2):847–853CrossRef Zhu G, Lin Z-H, Jing Q, Bai P, Pan C, Yang Y, Zhou Y, Wang ZL (2013) Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett 13(2):847–853CrossRef
15.
go back to reference Lv P, Shi L, Fan C, Gao Y, Yang A, Wang X, Ding S, Rong M (2020) Hydrophobic Ionic liquid gel-based triboelectric nanogenerator: next generation of ultrastable, flexible, and transparent power sources for sustainable electronics. ACS Appl Mater Interfaces 12(13):15012–15022. https://doi.org/10.1021/acsami.9b19767CrossRef Lv P, Shi L, Fan C, Gao Y, Yang A, Wang X, Ding S, Rong M (2020) Hydrophobic Ionic liquid gel-based triboelectric nanogenerator: next generation of ultrastable, flexible, and transparent power sources for sustainable electronics. ACS Appl Mater Interfaces 12(13):15012–15022. https://​doi.​org/​10.​1021/​acsami.​9b19767CrossRef
18.
go back to reference Chen H, Xu Y, Zhang J, Wu W, Song G (2019) Enhanced stretchable graphene-based triboelectric nanogenerator via control of surface nanostructure. Nano Energy 58:304–311CrossRef Chen H, Xu Y, Zhang J, Wu W, Song G (2019) Enhanced stretchable graphene-based triboelectric nanogenerator via control of surface nanostructure. Nano Energy 58:304–311CrossRef
19.
go back to reference Chen X, Song Y, Chen H, Zhang J, Zhang H (2017) An ultrathin stretchable triboelectric nanogenerator with coplanar electrode for energy harvesting and gesture sensing. J mater chem A 5(24):12361–12368CrossRef Chen X, Song Y, Chen H, Zhang J, Zhang H (2017) An ultrathin stretchable triboelectric nanogenerator with coplanar electrode for energy harvesting and gesture sensing. J mater chem A 5(24):12361–12368CrossRef
20.
go back to reference Lee Y, Kim J, Jang B, Kim S, Sharma BK, Kim J-H, Ahn J-H (2019) Graphene-based stretchable/wearable self-powered touch sensor. Nano Energy 62:259–267CrossRef Lee Y, Kim J, Jang B, Kim S, Sharma BK, Kim J-H, Ahn J-H (2019) Graphene-based stretchable/wearable self-powered touch sensor. Nano Energy 62:259–267CrossRef
21.
go back to reference Li X, Jiang C, Zhao F, Lan L, Yao Y, Yu Y, Ping J, Ying Y (2019) Fully stretchable triboelectric nanogenerator for energy harvesting and self-powered sensing. Nano Energy 61:78–85CrossRef Li X, Jiang C, Zhao F, Lan L, Yao Y, Yu Y, Ping J, Ying Y (2019) Fully stretchable triboelectric nanogenerator for energy harvesting and self-powered sensing. Nano Energy 61:78–85CrossRef
22.
go back to reference Lim G-H, Kwak SS, Kwon N, Kim T, Kim H, Kim SM, Kim S-W, Lim B (2017) Fully stretchable and highly durable triboelectric nanogenerators based on gold-nanosheet electrodes for self-powered human-motion detection. Nano Energy 42:300–306CrossRef Lim G-H, Kwak SS, Kwon N, Kim T, Kim H, Kim SM, Kim S-W, Lim B (2017) Fully stretchable and highly durable triboelectric nanogenerators based on gold-nanosheet electrodes for self-powered human-motion detection. Nano Energy 42:300–306CrossRef
23.
go back to reference Wang J, Wang H, Thakor NV, Lee C (2019) Self-powered direct muscle stimulation using a triboelectric nanogenerator (TENG) integrated with a flexible multiple-channel intramuscular electrode. ACS Nano 13(3):3589–3599CrossRef Wang J, Wang H, Thakor NV, Lee C (2019) Self-powered direct muscle stimulation using a triboelectric nanogenerator (TENG) integrated with a flexible multiple-channel intramuscular electrode. ACS Nano 13(3):3589–3599CrossRef
24.
go back to reference Zhang X-S, Han M, Kim B, Bao J-F, Brugger J, Zhang H (2018) All-in-one self-powered flexible microsystems based on triboelectric nanogenerators. Nano Energy 47:410–426CrossRef Zhang X-S, Han M, Kim B, Bao J-F, Brugger J, Zhang H (2018) All-in-one self-powered flexible microsystems based on triboelectric nanogenerators. Nano Energy 47:410–426CrossRef
27.
go back to reference Cheng X, Meng B, Chen X, Han M, Chen H, Su Z, Shi M, Zhang H (2016) Single-step fluorocarbon plasma treatment-induced wrinkle structure for high-performance triboelectric nanogenerator. Small 12(2):229–236CrossRef Cheng X, Meng B, Chen X, Han M, Chen H, Su Z, Shi M, Zhang H (2016) Single-step fluorocarbon plasma treatment-induced wrinkle structure for high-performance triboelectric nanogenerator. Small 12(2):229–236CrossRef
28.
go back to reference Tang W, Jiang T, Fan FR, Yu AF, Zhang C, Cao X, Wang ZL (2015) Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv Funct Mater 25(24):3718–3725CrossRef Tang W, Jiang T, Fan FR, Yu AF, Zhang C, Cao X, Wang ZL (2015) Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv Funct Mater 25(24):3718–3725CrossRef
29.
go back to reference Zhang X-S, Han M-D, Wang R-X, Meng B, Zhu F-Y, Sun X-M, Hu W, Wang W, Li Z-H, Zhang H-X (2014) High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment. Nano Energy 4:123–131CrossRef Zhang X-S, Han M-D, Wang R-X, Meng B, Zhu F-Y, Sun X-M, Hu W, Wang W, Li Z-H, Zhang H-X (2014) High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment. Nano Energy 4:123–131CrossRef
31.
go back to reference Fang H, Li Q, He W, Li J, Xue Q, Xu C, Zhang L, Ren T, Dong G, Chan HLW (2015) A high performance triboelectric nanogenerator for self-powered non-volatile ferroelectric transistor memory. Nanoscale 7(41):17306–17311CrossRef Fang H, Li Q, He W, Li J, Xue Q, Xu C, Zhang L, Ren T, Dong G, Chan HLW (2015) A high performance triboelectric nanogenerator for self-powered non-volatile ferroelectric transistor memory. Nanoscale 7(41):17306–17311CrossRef
32.
go back to reference Zhu G, Chen J, Zhang T, Jing Q, Wang ZL (2014) Radial-arrayed rotary electrification for high performance triboelectric generator. Nat Commun 5:3426CrossRef Zhu G, Chen J, Zhang T, Jing Q, Wang ZL (2014) Radial-arrayed rotary electrification for high performance triboelectric generator. Nat Commun 5:3426CrossRef
33.
go back to reference Choi H-J, Lee JH, Jun J, Kim TY, Kim S-W, Lee H (2016) High-performance triboelectric nanogenerators with artificially well-tailored interlocked interfaces. Nano Energy 27:595–601CrossRef Choi H-J, Lee JH, Jun J, Kim TY, Kim S-W, Lee H (2016) High-performance triboelectric nanogenerators with artificially well-tailored interlocked interfaces. Nano Energy 27:595–601CrossRef
34.
go back to reference Shin S-H, Kwon YH, Kim Y-H, Jung J-Y, Lee MH, Nah J (2015) Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators. ACS Nano 9(4):4621–4627CrossRef Shin S-H, Kwon YH, Kim Y-H, Jung J-Y, Lee MH, Nah J (2015) Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators. ACS Nano 9(4):4621–4627CrossRef
35.
go back to reference Zhao L, Zheng Q, Ouyang H, Li H, Yan L, Shi B, Li Z (2016) A size-unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator. Nano Energy 28:172–178CrossRef Zhao L, Zheng Q, Ouyang H, Li H, Yan L, Shi B, Li Z (2016) A size-unlimited surface microstructure modification method for achieving high performance triboelectric nanogenerator. Nano Energy 28:172–178CrossRef
38.
go back to reference Dudem B, Bharat LK, Patnam H, Mule AR, Yu JS (2018) Enhancing the output performance of hybrid nanogenerators based on Al-doped BaTiO 3 composite films: a self-powered utility system for portable electronics. J Mater Chem A 6(33):16101–16110CrossRef Dudem B, Bharat LK, Patnam H, Mule AR, Yu JS (2018) Enhancing the output performance of hybrid nanogenerators based on Al-doped BaTiO 3 composite films: a self-powered utility system for portable electronics. J Mater Chem A 6(33):16101–16110CrossRef
39.
go back to reference Lin ZH, Cheng G, Yang Y, Zhou YS, Lee S, Wang ZL (2014) Triboelectric nanogenerator as an active UV photodetector. Adv Funct Mater 24 (19):2810–2816 %@ 1616–2301X Lin ZH, Cheng G, Yang Y, Zhou YS, Lee S, Wang ZL (2014) Triboelectric nanogenerator as an active UV photodetector. Adv Funct Mater 24 (19):2810–2816 %@ 1616–2301X
40.
go back to reference He X, Zi Y, Guo H, Zheng H, Xi Y, Wu C, Wang J, Zhang W, Lu C, Wang ZL (2017) A highly stretchable fiber-based triboelectric nanogenerator for self-powered wearable electronics. Adv Func Mater 27(4):1604378CrossRef He X, Zi Y, Guo H, Zheng H, Xi Y, Wu C, Wang J, Zhang W, Lu C, Wang ZL (2017) A highly stretchable fiber-based triboelectric nanogenerator for self-powered wearable electronics. Adv Func Mater 27(4):1604378CrossRef
41.
go back to reference Kwak SS, Kim H, Seung W, Kim J, Hinchet R, Kim S-W (2017) Fully stretchable textile triboelectric nanogenerator with knitted fabric structures. ACS Nano 11(11):10733–10741CrossRef Kwak SS, Kim H, Seung W, Kim J, Hinchet R, Kim S-W (2017) Fully stretchable textile triboelectric nanogenerator with knitted fabric structures. ACS Nano 11(11):10733–10741CrossRef
42.
go back to reference Pu X, Guo H, Chen J, Wang X, Xi Y, Hu C, Wang ZL (2017) Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci Adv 3(7):1700694CrossRef Pu X, Guo H, Chen J, Wang X, Xi Y, Hu C, Wang ZL (2017) Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci Adv 3(7):1700694CrossRef
43.
go back to reference Pu X, Liu M, Chen X, Sun J, Du C, Zhang Y, Zhai J, Hu W, Wang ZL (2017) Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci Adv 3(5):1700015CrossRef Pu X, Liu M, Chen X, Sun J, Du C, Zhang Y, Zhai J, Hu W, Wang ZL (2017) Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci Adv 3(5):1700015CrossRef
57.
Metadata
Title
Humidity-resistant, durable, wearable single-electrode triboelectric nanogenerator for mechanical energy harvesting
Authors
Guoqing Zu
Ye Wei
Chuanyu Sun
Xijia Yang
Publication date
03-01-2022
Publisher
Springer US
Published in
Journal of Materials Science / Issue 4/2022
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-06696-2

Other articles of this Issue 4/2022

Journal of Materials Science 4/2022 Go to the issue

Premium Partners