Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 7-8/2020

03-01-2020 | ORIGINAL ARTICLE

Hybrid CO2 laser-polishing process for improving material removal of silicon carbide

Authors: Mincheol Kim, Sangmin Bang, Dong-Hyeon Kim, Hyun-Taek Lee, Geon-Hee Kim, Sung-Hoon Ahn

Published in: The International Journal of Advanced Manufacturing Technology | Issue 7-8/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A novel hybrid polishing process, called laser-assisted polishing (LAP), was proposed in this study for improving the material removal rate (MRR) of polishing silicon carbide (SiC) by combining a CO2 laser source and a conventional polishing machine. The results showed that the MRR increased by 79.0% using the LAP process on the cracked and oxidized SiC sample surface as compared to that using the mechanical polishing of a normal sample. It was also found that the laser-induced crack was the main mechanism underlying the growth of MRR in the LAP process. It was expected that the proposed LAP process and the material removal mechanism might shed light on the expansion of the hybrid machining field and better industrial application of SiC.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lawn BR, Padture NP, Cait H, Guiberteau F (1994) Making ceramics “ductile”. Science 263(5150):1114–1116CrossRef Lawn BR, Padture NP, Cait H, Guiberteau F (1994) Making ceramics “ductile”. Science 263(5150):1114–1116CrossRef
2.
go back to reference Casstevens JM et al (2001) Silicon carbide high performance optics: a cost-effective, flexible fabrication process. In: International Symposium on Optical Science and Technology. International Society for Optics and Photonics Casstevens JM et al (2001) Silicon carbide high performance optics: a cost-effective, flexible fabrication process. In: International Symposium on Optical Science and Technology. International Society for Optics and Photonics
3.
go back to reference Robichaud J et al (2005) Recent advances in reaction bonded silicon carbide optics and optical systems. In: Optics & Photonics 2005. International Society for Optics and Photonics Robichaud J et al (2005) Recent advances in reaction bonded silicon carbide optics and optical systems. In: Optics & Photonics 2005. International Society for Optics and Photonics
4.
go back to reference Beaucamp A et al (2017) Brittle-ductile transition in shape adaptive grinding (SAG) of SiC aspheric optics. Int J Mach Tools Manuf 115:29–37CrossRef Beaucamp A et al (2017) Brittle-ductile transition in shape adaptive grinding (SAG) of SiC aspheric optics. Int J Mach Tools Manuf 115:29–37CrossRef
5.
go back to reference Yan G, You K, Fang F (2019) Three-Linear-Axis Grinding of Small Aperture Aspheric Surfaces. Int J Precis Eng Manuf Green Technol:1–12 Yan G, You K, Fang F (2019) Three-Linear-Axis Grinding of Small Aperture Aspheric Surfaces. Int J Precis Eng Manuf Green Technol:1–12
7.
go back to reference Preston F (1927) The theory and design of plate glass polishing machines. J Soc Glass Technol 11:214 Preston F (1927) The theory and design of plate glass polishing machines. J Soc Glass Technol 11:214
8.
go back to reference Tam HY, Cheng H, Wang Y (2007) Removal rate and surface roughness in the lapping and polishing of RB-SiC optical components. J Mater Process Technol 192:276–280CrossRef Tam HY, Cheng H, Wang Y (2007) Removal rate and surface roughness in the lapping and polishing of RB-SiC optical components. J Mater Process Technol 192:276–280CrossRef
9.
go back to reference Cheng H et al (2008) Mechanisms for grinding and polishing of silicon carbide with loose abrasive sub-aperture tools. Adv Manuf Technol XXII:65 Cheng H et al (2008) Mechanisms for grinding and polishing of silicon carbide with loose abrasive sub-aperture tools. Adv Manuf Technol XXII:65
10.
go back to reference Klocke F, Zunke R (2009) Removal mechanisms in polishing of silicon based advanced ceramics. CIRP Ann Manuf Technol 58(1):491–494CrossRef Klocke F, Zunke R (2009) Removal mechanisms in polishing of silicon based advanced ceramics. CIRP Ann Manuf Technol 58(1):491–494CrossRef
11.
go back to reference Tsai M et al (2015) Investigation of increased removal rate during polishing of single-crystal silicon carbide. Int J Adv Manuf Technol 80(9–12):1511–1520CrossRef Tsai M et al (2015) Investigation of increased removal rate during polishing of single-crystal silicon carbide. Int J Adv Manuf Technol 80(9–12):1511–1520CrossRef
12.
go back to reference Ho J-K et al (2016) Investigation of polishing pads impregnated with Fe and Al2O3 particles for single-crystal silicon carbide wafers. Appl Sci 6(3):89CrossRef Ho J-K et al (2016) Investigation of polishing pads impregnated with Fe and Al2O3 particles for single-crystal silicon carbide wafers. Appl Sci 6(3):89CrossRef
13.
go back to reference Liu G et al (2010) Removal behaviors of different SiC ceramics during polishing. J Mater Sci Technol 26(2):125–130CrossRef Liu G et al (2010) Removal behaviors of different SiC ceramics during polishing. J Mater Sci Technol 26(2):125–130CrossRef
14.
go back to reference Kubota A et al (2015) Abrasive-free polishing of single-crystal 4H-SiC with silica glass plates. ECS J Solid State Sci Technol 4(12):P468–P475CrossRef Kubota A et al (2015) Abrasive-free polishing of single-crystal 4H-SiC with silica glass plates. ECS J Solid State Sci Technol 4(12):P468–P475CrossRef
15.
go back to reference Li ZL et al (2015) A study of computer controlled ultra-precision polishing of silicon carbide reflecting lenses for enhancing surface roughness. In: Key Engineering Materials. Trans Tech Publ Li ZL et al (2015) A study of computer controlled ultra-precision polishing of silicon carbide reflecting lenses for enhancing surface roughness. In: Key Engineering Materials. Trans Tech Publ
16.
go back to reference Gu Y et al (2017) Investigation of silicon carbide ceramic polishing by simulation and experiment. Adv Mech Eng 9(11):1687814017729090CrossRef Gu Y et al (2017) Investigation of silicon carbide ceramic polishing by simulation and experiment. Adv Mech Eng 9(11):1687814017729090CrossRef
17.
go back to reference Lauwers B et al (2014) Hybrid processes in manufacturing. CIRP Ann Manuf Technol 63(2):561–583CrossRef Lauwers B et al (2014) Hybrid processes in manufacturing. CIRP Ann Manuf Technol 63(2):561–583CrossRef
18.
go back to reference Kozak J, Rajurkar KP (2000) Hybrid machining process evaluation and development. In: Proceedings of 2nd international conference on machining and measurements of sculptured surfaces, Keynote Paper, Krakow Kozak J, Rajurkar KP (2000) Hybrid machining process evaluation and development. In: Proceedings of 2nd international conference on machining and measurements of sculptured surfaces, Keynote Paper, Krakow
19.
go back to reference Sun S, Brandt M, Dargusch M (2010) Thermally enhanced machining of hard-to-machine materials—a review. Int J Mach Tools Manuf 50(8):663–680CrossRef Sun S, Brandt M, Dargusch M (2010) Thermally enhanced machining of hard-to-machine materials—a review. Int J Mach Tools Manuf 50(8):663–680CrossRef
20.
go back to reference Brecher C et al (2011) Laser-assisted milling of advanced materials. Phys Procedia 12:599–606CrossRef Brecher C et al (2011) Laser-assisted milling of advanced materials. Phys Procedia 12:599–606CrossRef
21.
go back to reference Kim D-H, Lee C-M (2014) A study of cutting force and preheating-temperature prediction for laser-assisted milling of Inconel 718 and AISI 1045 steel. Int J Heat Mass Transf 71:264–274CrossRef Kim D-H, Lee C-M (2014) A study of cutting force and preheating-temperature prediction for laser-assisted milling of Inconel 718 and AISI 1045 steel. Int J Heat Mass Transf 71:264–274CrossRef
22.
go back to reference Kobayashi N et al (2008) Precision treatment of silicon wafer edge utilizing ultrasonically assisted polishing technique. J Mater Process Technol 201(1–3):531–535CrossRef Kobayashi N et al (2008) Precision treatment of silicon wafer edge utilizing ultrasonically assisted polishing technique. J Mater Process Technol 201(1–3):531–535CrossRef
23.
go back to reference Shiou F-J, Ciou H-S (2008) Ultra-precision surface finish of the hardened stainless mold steel using vibration-assisted ball polishing process. Int J Mach Tools Manuf 48(7–8):721–732CrossRef Shiou F-J, Ciou H-S (2008) Ultra-precision surface finish of the hardened stainless mold steel using vibration-assisted ball polishing process. Int J Mach Tools Manuf 48(7–8):721–732CrossRef
24.
go back to reference Suzuki H et al (2010) Ultraprecision finishing of micro-aspheric surface by ultrasonic two-axis vibration assisted polishing. CIRP Ann Manuf Technol 59(1):347–350CrossRef Suzuki H et al (2010) Ultraprecision finishing of micro-aspheric surface by ultrasonic two-axis vibration assisted polishing. CIRP Ann Manuf Technol 59(1):347–350CrossRef
25.
go back to reference Lin WM et al (2013) Polishing Characteristics of a Low Frequency Vibration Assisted Polishing Method. In: Advanced Materials Research. Trans Tech Publ Lin WM et al (2013) Polishing Characteristics of a Low Frequency Vibration Assisted Polishing Method. In: Advanced Materials Research. Trans Tech Publ
26.
go back to reference Cheng H et al (2005) Magnetorheological finishing of SiC aspheric mirrors. Mater Manuf Process 20(6):917–931CrossRef Cheng H et al (2005) Magnetorheological finishing of SiC aspheric mirrors. Mater Manuf Process 20(6):917–931CrossRef
27.
go back to reference Yamaguchi H et al (2009) Study of finishing of wafers by magnetic field-assisted finishing. J Adv Mech Des Syst Manuf 3(1):35–46CrossRef Yamaguchi H et al (2009) Study of finishing of wafers by magnetic field-assisted finishing. J Adv Mech Des Syst Manuf 3(1):35–46CrossRef
28.
go back to reference Yamamura K et al (2011) Plasma assisted polishing of single crystal SiC for obtaining atomically flat strain-free surface. CIRP Ann Manuf Technol 60(1):571–574CrossRef Yamamura K et al (2011) Plasma assisted polishing of single crystal SiC for obtaining atomically flat strain-free surface. CIRP Ann Manuf Technol 60(1):571–574CrossRef
29.
go back to reference Takahashi N et al (2017) Study on laser assisted polishing of SiC. Proc JSPE Semest Meet 2017S:519–520 Takahashi N et al (2017) Study on laser assisted polishing of SiC. Proc JSPE Semest Meet 2017S:519–520
30.
go back to reference Yang X et al (2017) Effects of artificial defect on the material residual strength of SiC ceramics after thermal-shock. Mater Sci Eng A 707:159–163CrossRef Yang X et al (2017) Effects of artificial defect on the material residual strength of SiC ceramics after thermal-shock. Mater Sci Eng A 707:159–163CrossRef
31.
go back to reference Shukla P et al (2017) Surface property modifications of silicon carbide ceramic following laser shock peening. J Eur Ceram Soc 37(9):3027–3038CrossRef Shukla P et al (2017) Surface property modifications of silicon carbide ceramic following laser shock peening. J Eur Ceram Soc 37(9):3027–3038CrossRef
32.
go back to reference Wang C et al (2017) The Polishing Effect of SiC Substrates in Femtosecond Laser Irradiation Assisted Chemical Mechanical Polishing (CMP). ECS J Solid State Sci Technol 6(4):P105–P112CrossRef Wang C et al (2017) The Polishing Effect of SiC Substrates in Femtosecond Laser Irradiation Assisted Chemical Mechanical Polishing (CMP). ECS J Solid State Sci Technol 6(4):P105–P112CrossRef
33.
go back to reference Zhang X et al (2018) Study on the grinding behavior of laser-structured grinding in silicon nitride ceramic. Int J Adv Manuf Technol:1–11 Zhang X et al (2018) Study on the grinding behavior of laser-structured grinding in silicon nitride ceramic. Int J Adv Manuf Technol:1–11
34.
go back to reference Dahotre NB, Harimkar S (2008) Laser fabrication and machining of materials. Springer Science & Business Media Dahotre NB, Harimkar S (2008) Laser fabrication and machining of materials. Springer Science & Business Media
35.
go back to reference Stournaras A et al (2009) An investigation of quality in CO2 laser cutting of aluminum. CIRP J Manuf Sci Technol 2(1):61–69CrossRef Stournaras A et al (2009) An investigation of quality in CO2 laser cutting of aluminum. CIRP J Manuf Sci Technol 2(1):61–69CrossRef
36.
go back to reference Chryssolouris G, Stavropoulos P, Salonitis K (2013) Process of laser machining, Handbook of manufacturing engineering and technology, pp 1–25 Chryssolouris G, Stavropoulos P, Salonitis K (2013) Process of laser machining, Handbook of manufacturing engineering and technology, pp 1–25
37.
go back to reference Stavropoulos P, Chryssolouris G (2007) Molecular dynamics simulations of laser ablation: the Morse potential function approach. Int J Nanomanuf 1(6):736–750CrossRef Stavropoulos P, Chryssolouris G (2007) Molecular dynamics simulations of laser ablation: the Morse potential function approach. Int J Nanomanuf 1(6):736–750CrossRef
38.
go back to reference Stavropoulos P et al (2010) Experimental and theoretical investigation of the ablation mechanisms during femptosecond laser machining. Int J Nanomanuf 6(1–4):55–65CrossRef Stavropoulos P et al (2010) Experimental and theoretical investigation of the ablation mechanisms during femptosecond laser machining. Int J Nanomanuf 6(1–4):55–65CrossRef
39.
go back to reference Agarwal S, Rao PV (2008) Experimental investigation of surface/subsurface damage formation and material removal mechanisms in SiC grinding. Int J Mach Tools Manuf 48(6):698–710CrossRef Agarwal S, Rao PV (2008) Experimental investigation of surface/subsurface damage formation and material removal mechanisms in SiC grinding. Int J Mach Tools Manuf 48(6):698–710CrossRef
40.
go back to reference Suratwala T et al (2006) Sub-surface mechanical damage distributions during grinding of fused silica. J Non-Cryst Solids 352(52–54):5601–5617CrossRef Suratwala T et al (2006) Sub-surface mechanical damage distributions during grinding of fused silica. J Non-Cryst Solids 352(52–54):5601–5617CrossRef
41.
go back to reference Bragg WH, Bragg WL (1913) The reflection of X-rays by crystals. Proc R Soc Lond A 88(605):428–438CrossRef Bragg WH, Bragg WL (1913) The reflection of X-rays by crystals. Proc R Soc Lond A 88(605):428–438CrossRef
42.
go back to reference Islam M, Campbell G (1993) Laser machining of ceramics: a review. Mater Manuf Process 8(6):611–630CrossRef Islam M, Campbell G (1993) Laser machining of ceramics: a review. Mater Manuf Process 8(6):611–630CrossRef
43.
go back to reference Uchimura H, Kokaji A, Kaji M (1992) Evaluation of fast fracture strength of ceramic components under multiaxial stress states. In: ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers. Uchimura H, Kokaji A, Kaji M (1992) Evaluation of fast fracture strength of ceramic components under multiaxial stress states. In: ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers.
Metadata
Title
Hybrid CO2 laser-polishing process for improving material removal of silicon carbide
Authors
Mincheol Kim
Sangmin Bang
Dong-Hyeon Kim
Hyun-Taek Lee
Geon-Hee Kim
Sung-Hoon Ahn
Publication date
03-01-2020
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 7-8/2020
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-04846-0

Other articles of this Issue 7-8/2020

The International Journal of Advanced Manufacturing Technology 7-8/2020 Go to the issue

Premium Partners