Skip to main content
Top
Published in: Wireless Personal Communications 4/2023

11-10-2022

Hybrid Deep Learning Approach for Improved Network Connectivity in Wireless Sensor Networks

Authors: V. Chandrasekar, Abul Bashar, T. Satish Kumar, B. A. Vani, R. Santhosh

Published in: Wireless Personal Communications | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Wireless sensor networks occupy a prominent role in industrial as well as scientific applications. Lifetime enhancement and coverage are the major factors considered while designing the network. Various research models are evolved by considering the scheduling and routing process to solve the network lifetime issues. However, coverage and connectivity is another important factor that affects the lifetime of the remaining nodes. When a large number of sensors are deployed randomly, scheduling is preferred to enhance the network lifetime, but it leads to coverage issues. Other than scheduling, node damage, battery exhaustion, software and hardware failures might lead to coverage issues. Preserving the network connectivity while maximizing the network coverage is a crucial task in wireless sensor networks. To preserve the network connectivity and improve the wireless sensor networks coverage this research work presents a hybrid deep learning approach using a deep neural network and reinforcement learning algorithm. The Proposed model is experimentally verified and compared with conventional deep neural network and reinforcement learning algorithms to demonstrate the better balancing characteristics between network coverage and lifetime.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Han, G., Liu, L., Jiang, J., Shu, L., & Hancke, G. (2017). Analysis of energy-efficient connected target coverage algorithms for industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 13(1), 135–143.CrossRef Han, G., Liu, L., Jiang, J., Shu, L., & Hancke, G. (2017). Analysis of energy-efficient connected target coverage algorithms for industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 13(1), 135–143.CrossRef
2.
go back to reference Boukerche, A., & Sun, P. (2018). Connectivity and coverage based protocols for wireless sensor networks. Ad Hoc Networks, 80, 54–69.CrossRef Boukerche, A., & Sun, P. (2018). Connectivity and coverage based protocols for wireless sensor networks. Ad Hoc Networks, 80, 54–69.CrossRef
3.
go back to reference Farsi, M., Elhosseini, M. A., Badawy, M., Ali, H. A., & Eldin, H. Z. (2019). Deployment techniques in wireless sensor networks, coverage and connectivity: A survey. IEEE Access, 7, 28940–28954.CrossRef Farsi, M., Elhosseini, M. A., Badawy, M., Ali, H. A., & Eldin, H. Z. (2019). Deployment techniques in wireless sensor networks, coverage and connectivity: A survey. IEEE Access, 7, 28940–28954.CrossRef
4.
go back to reference Tripathi, A., Gupta, H. P., Dutta, T., Mishra, R., Shukla, K. K., & Jit, S. (2018). Coverage and connectivity in WSNs: A survey, research issues and challenges. IEEE Access, 6, 26971–26992.CrossRef Tripathi, A., Gupta, H. P., Dutta, T., Mishra, R., Shukla, K. K., & Jit, S. (2018). Coverage and connectivity in WSNs: A survey, research issues and challenges. IEEE Access, 6, 26971–26992.CrossRef
5.
go back to reference Elhabyan, R., Shi, W., & St-Hilaire, M. (2019). Coverage protocols for wireless sensor networks: Review and future directions. Journal of Communications and Networks, 21(1), 45–60.CrossRef Elhabyan, R., Shi, W., & St-Hilaire, M. (2019). Coverage protocols for wireless sensor networks: Review and future directions. Journal of Communications and Networks, 21(1), 45–60.CrossRef
6.
go back to reference Chakraborty, S., Goyal, N. K., & Soh, S. (2020). On area coverage reliability of mobile wireless sensor networks with multistate nodes. IEEE Sensors Journal, 20(9), 4992–5003.CrossRef Chakraborty, S., Goyal, N. K., & Soh, S. (2020). On area coverage reliability of mobile wireless sensor networks with multistate nodes. IEEE Sensors Journal, 20(9), 4992–5003.CrossRef
7.
go back to reference Suparna Chakraborty, N. K., & Goyal, S. S. (2019). A Monte-Carlo Markov chain approach for coverage-area reliability of mobile wireless sensor networks with multistate nodes. Reliability Engineering & System Safety, 193, 1–14. Suparna Chakraborty, N. K., & Goyal, S. S. (2019). A Monte-Carlo Markov chain approach for coverage-area reliability of mobile wireless sensor networks with multistate nodes. Reliability Engineering & System Safety, 193, 1–14.
8.
go back to reference Qin, D., Ma, J., Zhang, Y., Feng, P., Ji, P., & Berhane, T. M. (2018). Study on connected target coverage algorithm for wireless sensor network. IEEE Access, 6, 69415–69425.CrossRef Qin, D., Ma, J., Zhang, Y., Feng, P., Ji, P., & Berhane, T. M. (2018). Study on connected target coverage algorithm for wireless sensor network. IEEE Access, 6, 69415–69425.CrossRef
9.
go back to reference Yang, C., & Chin, K.-W. (2017). On nodes placement in energy harvesting wireless sensor networks for coverage and connectivity. IEEE Transactions on Industrial Informatics, 13(1), 27–36.CrossRef Yang, C., & Chin, K.-W. (2017). On nodes placement in energy harvesting wireless sensor networks for coverage and connectivity. IEEE Transactions on Industrial Informatics, 13(1), 27–36.CrossRef
10.
go back to reference Le Nguyen, P., Hanh, N. T., & Ji, Y. (2019). Node placement for connected target coverage in wireless sensor networks with dynamic sinks. Pervasive and Mobile Computing, 59, 1–21.CrossRef Le Nguyen, P., Hanh, N. T., & Ji, Y. (2019). Node placement for connected target coverage in wireless sensor networks with dynamic sinks. Pervasive and Mobile Computing, 59, 1–21.CrossRef
11.
go back to reference Zishan, A. A., Karim, I., & Rahman, A. (2018). Maximizing heterogeneous coverage in over and under provisioned visual sensor networks. Journal of Network and Computer Applications, 124, 44–62.CrossRef Zishan, A. A., Karim, I., & Rahman, A. (2018). Maximizing heterogeneous coverage in over and under provisioned visual sensor networks. Journal of Network and Computer Applications, 124, 44–62.CrossRef
12.
go back to reference Kibria, M. G., Nguyen, K., Villardi, G. P., Liao, W.-S., Ishizu, K., & Kojima, F. (2018). A stochastic geometry analysis of multiconnectivity in heterogeneous wireless networks. IEEE Transactions on Vehicular Technology, 67(10), 9734–9746.CrossRef Kibria, M. G., Nguyen, K., Villardi, G. P., Liao, W.-S., Ishizu, K., & Kojima, F. (2018). A stochastic geometry analysis of multiconnectivity in heterogeneous wireless networks. IEEE Transactions on Vehicular Technology, 67(10), 9734–9746.CrossRef
13.
go back to reference Olasupo, T. O., & Otero, C. E. (2018). A framework for optimizing the deployment of wireless sensor networks. IEEE Transactions on Network and Service Management, 15(3), 1105–1118.CrossRef Olasupo, T. O., & Otero, C. E. (2018). A framework for optimizing the deployment of wireless sensor networks. IEEE Transactions on Network and Service Management, 15(3), 1105–1118.CrossRef
14.
go back to reference Oroza, C. A., Zhang, Z., Watteyne, T., & Glaser, S. D. (2017). A machine-learning-based connectivity model for complex terrain large-scale low-power wireless deployments. IEEE Transactions on Cognitive Communications and Networking, 3(4), 576–584.CrossRef Oroza, C. A., Zhang, Z., Watteyne, T., & Glaser, S. D. (2017). A machine-learning-based connectivity model for complex terrain large-scale low-power wireless deployments. IEEE Transactions on Cognitive Communications and Networking, 3(4), 576–584.CrossRef
15.
go back to reference Khalifa, B., Al Aghbari, Z., Khedr, A. M., & Abawajy, J. H. (2017). Coverage hole repair in WSNs using cascaded neighbor intervention. IEEE Sensors Journal, 17(21), 7209–7216.CrossRef Khalifa, B., Al Aghbari, Z., Khedr, A. M., & Abawajy, J. H. (2017). Coverage hole repair in WSNs using cascaded neighbor intervention. IEEE Sensors Journal, 17(21), 7209–7216.CrossRef
16.
go back to reference Sun, G., Liu, Y., & Zhang, Y. (2017). A novel connectivity and coverage algorithm based on shortest path for wireless sensor networks. Computers & Electrical Engineering, 71, 1025–1039.CrossRef Sun, G., Liu, Y., & Zhang, Y. (2017). A novel connectivity and coverage algorithm based on shortest path for wireless sensor networks. Computers & Electrical Engineering, 71, 1025–1039.CrossRef
17.
go back to reference Gupta, H. P., Rao, S. V., & Venkatesh, T. (2016). Analysis of stochastic coverage and connectivity in three-dimensional heterogeneous directional wireless sensor networks. Pervasive and Mobile Computing, 29, 38–56.CrossRef Gupta, H. P., Rao, S. V., & Venkatesh, T. (2016). Analysis of stochastic coverage and connectivity in three-dimensional heterogeneous directional wireless sensor networks. Pervasive and Mobile Computing, 29, 38–56.CrossRef
18.
go back to reference Senouci, M. R., & Mellouk, A. (2019). A robust uncertainty-aware cluster-based deployment approach for WSNs: Coverage, connectivity, and lifespan. Journal of Network and Computer Applications, 146, 1–12.CrossRef Senouci, M. R., & Mellouk, A. (2019). A robust uncertainty-aware cluster-based deployment approach for WSNs: Coverage, connectivity, and lifespan. Journal of Network and Computer Applications, 146, 1–12.CrossRef
19.
go back to reference Keshmiri, H., & Bakhshi, H. (2020). A new 2-phase optimization-based guaranteed connected target coverage for wireless sensor networks. IEEE Sensors Journal, 20(13), 7472–7486.CrossRef Keshmiri, H., & Bakhshi, H. (2020). A new 2-phase optimization-based guaranteed connected target coverage for wireless sensor networks. IEEE Sensors Journal, 20(13), 7472–7486.CrossRef
20.
go back to reference Charr, J.-C., Deschinkel, K., & Hakem, M. (2020). Lifetime optimization for partial coverage in heterogeneous sensor networks. Ad Hoc Networks, 107, 1–16.CrossRef Charr, J.-C., Deschinkel, K., & Hakem, M. (2020). Lifetime optimization for partial coverage in heterogeneous sensor networks. Ad Hoc Networks, 107, 1–16.CrossRef
21.
go back to reference Kabakulak, B. (2018). Sensor and sink placement, scheduling and routing algorithms for connected coverage of wireless sensor networks. Ad Hoc Networks, 86, 83–102.CrossRef Kabakulak, B. (2018). Sensor and sink placement, scheduling and routing algorithms for connected coverage of wireless sensor networks. Ad Hoc Networks, 86, 83–102.CrossRef
22.
go back to reference Chakravarthi, S. S., & Kumar, G. H. (2020). Optimization of network coverage and lifetime of the wireless sensor network based on pareto optimization using non-dominated sorting genetic approach. Procedia Computer Science, 172, 225–228.CrossRef Chakravarthi, S. S., & Kumar, G. H. (2020). Optimization of network coverage and lifetime of the wireless sensor network based on pareto optimization using non-dominated sorting genetic approach. Procedia Computer Science, 172, 225–228.CrossRef
23.
go back to reference Hanh, N. T., Binh, H. T. T., & Palaniswami, M. S. (2019). An efficient genetic algorithm for maximizing area coverage in wireless sensor networks. Information Sciences, 488, 58–75.MathSciNetCrossRefMATH Hanh, N. T., Binh, H. T. T., & Palaniswami, M. S. (2019). An efficient genetic algorithm for maximizing area coverage in wireless sensor networks. Information Sciences, 488, 58–75.MathSciNetCrossRefMATH
24.
go back to reference Movassagh, M., & Aghdasi, H. S. (2017). Game theory based node scheduling as a distributed solution for coverage control in wireless sensor networks. Engineering Applications of Artificial Intelligence, 65, 137–146.CrossRef Movassagh, M., & Aghdasi, H. S. (2017). Game theory based node scheduling as a distributed solution for coverage control in wireless sensor networks. Engineering Applications of Artificial Intelligence, 65, 137–146.CrossRef
Metadata
Title
Hybrid Deep Learning Approach for Improved Network Connectivity in Wireless Sensor Networks
Authors
V. Chandrasekar
Abul Bashar
T. Satish Kumar
B. A. Vani
R. Santhosh
Publication date
11-10-2022
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2023
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-10052-1

Other articles of this Issue 4/2023

Wireless Personal Communications 4/2023 Go to the issue