Skip to main content
Top
Published in: Journal of Materials Science 4/2022

03-01-2022 | Composites & nanocomposites

Hybrid graphene-NiW nanofiber transparent electrodes for all-nanofiber-based pressure sensor

Authors: Minmin Zhu, Anwen Zhao, Can Wei, Fuying Ren, Yida Zhao, Yiping Bao, Huilu Guo

Published in: Journal of Materials Science | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Alloying technique as an ancient and practical instrument has been a diverse fabricator for desirable properties of materials. Herein, utilizing the alloying engineering, we have developed a two-step process for hybrid graphene-NiW nanofibers (Gr-NiW NFs) transparent electrodes. Further analysis reveals that alloying NiW NFs significantly improve their mechanical performance, reducing the growth temperature of graphene down to ~ 700 °C or below, which is far less than that of ~ 1000 °C for graphene grown on Cu or Pt. More importantly, such Gr-NiW network has exhibited excellent transmittance in a broad wavelength and remarkable conductivity, which, in turn, could be tailored by the growth temperature and the W content. A high transmittance (84.2% at 550 nm) and low sheet resistance (125.4 Ohm/square) were observed at Ni NFs with 5 wt% W. The combination of excellent conductivity, high transparency and mechanical tunability makes it a promising candidate for wearable electronics and optoelectronics. Finally, an all-nanofiber-based pressure sensor on sandwiched Gr-NiW/P(VDF-TrFE)/Gr-NiW NFs was demonstrated, with high sensitivity (0.61 mV kPa−1) and excellent operation stability. This work offers deep insights into the development of transparent graphene-based electrodes via alloy engineering.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kou H, Lu J, Li Y (2014) High-strength and high-ductility nanostructured and amorphous metallic materials. Adv Mater 26:5518–5524CrossRef Kou H, Lu J, Li Y (2014) High-strength and high-ductility nanostructured and amorphous metallic materials. Adv Mater 26:5518–5524CrossRef
2.
go back to reference Wu H, Fan G (2020) An overview of tailoring strain delocalization for strength-ductility synergy. Prog Mater Sci 113:100675CrossRef Wu H, Fan G (2020) An overview of tailoring strain delocalization for strength-ductility synergy. Prog Mater Sci 113:100675CrossRef
3.
go back to reference George EP, Raabe D, Ritchie RO (2019) High-entropy alloys. Nat Rev Mater 4:515–534CrossRef George EP, Raabe D, Ritchie RO (2019) High-entropy alloys. Nat Rev Mater 4:515–534CrossRef
4.
go back to reference Li Z, Zhao S, Ritchie RO, Meyers MA (2019) Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog Mater Sci 102:296–345CrossRef Li Z, Zhao S, Ritchie RO, Meyers MA (2019) Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog Mater Sci 102:296–345CrossRef
5.
go back to reference Papageorgiou DG, Kinloch IA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90:75–127CrossRef Papageorgiou DG, Kinloch IA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90:75–127CrossRef
6.
go back to reference Castro Neto AH, Guinea F, Peres NMR et al (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162CrossRef Castro Neto AH, Guinea F, Peres NMR et al (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162CrossRef
7.
go back to reference Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308–1308CrossRef Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308–1308CrossRef
8.
go back to reference Deng B, Liu Z, Peng H (2019) Toward mass production of CVD graphene films. Adv Mater 31:1800996CrossRef Deng B, Liu Z, Peng H (2019) Toward mass production of CVD graphene films. Adv Mater 31:1800996CrossRef
9.
go back to reference Zhu MM, Wu J, Du ZH et al (2015) A wafer-scale graphene and ferroelectric multilayer for flexible and fast-switched modulation applications. Nanoscale 7:14730–14737CrossRef Zhu MM, Wu J, Du ZH et al (2015) A wafer-scale graphene and ferroelectric multilayer for flexible and fast-switched modulation applications. Nanoscale 7:14730–14737CrossRef
10.
go back to reference Xiao D, Zhu M, Wang Q et al (2020) A flexible and ultra-broadband terahertz wave absorber based on graphene–vertically aligned carbon nanotube hybrids. J Mater Chem C 8:7244–7252CrossRef Xiao D, Zhu M, Wang Q et al (2020) A flexible and ultra-broadband terahertz wave absorber based on graphene–vertically aligned carbon nanotube hybrids. J Mater Chem C 8:7244–7252CrossRef
11.
go back to reference Li X, Cai W, An J et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314CrossRef Li X, Cai W, An J et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314CrossRef
12.
go back to reference Wu T, Zhang X, Yuan Q et al (2016) Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys. Nat Mater 15:43–47CrossRef Wu T, Zhang X, Yuan Q et al (2016) Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys. Nat Mater 15:43–47CrossRef
13.
go back to reference Huang M, Bakharev PV, Wang Z-J et al (2020) Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil. Nat Nanotechnol 15:289–295CrossRef Huang M, Bakharev PV, Wang Z-J et al (2020) Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil. Nat Nanotechnol 15:289–295CrossRef
14.
go back to reference Gao L, Ren W, Xu H et al (2012) Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat Commun 3:699CrossRef Gao L, Ren W, Xu H et al (2012) Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat Commun 3:699CrossRef
15.
go back to reference Zhang B, Chen B, Wu J et al (2017) The electrochemical response of single crystalline copper nanowires to atmospheric air and aqueous solution. Small 13:1603411CrossRef Zhang B, Chen B, Wu J et al (2017) The electrochemical response of single crystalline copper nanowires to atmospheric air and aqueous solution. Small 13:1603411CrossRef
16.
17.
go back to reference Morishita M, Koyama K, Yagi S, Zhang G (2001) Calculated phase diagram of the Ni–Mo–B ternary system. J Alloys Compd 314:212–218CrossRef Morishita M, Koyama K, Yagi S, Zhang G (2001) Calculated phase diagram of the Ni–Mo–B ternary system. J Alloys Compd 314:212–218CrossRef
18.
go back to reference Zhu MM, Wu J, Du ZH et al (2018) Gate voltage and temperature dependent Ti-graphene junction resistance toward straightforward p-n junction formation. J Appl Phys 124:215302CrossRef Zhu MM, Wu J, Du ZH et al (2018) Gate voltage and temperature dependent Ti-graphene junction resistance toward straightforward p-n junction formation. J Appl Phys 124:215302CrossRef
19.
go back to reference Li D, Xia Y (2004) Electrospinning of nanofibers: Reinventing the wheel? Adv Mater 16:1151–1170CrossRef Li D, Xia Y (2004) Electrospinning of nanofibers: Reinventing the wheel? Adv Mater 16:1151–1170CrossRef
20.
go back to reference Xue J, Wu T, Dai Y, Xia Y (2019) Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 119:5298–5415CrossRef Xue J, Wu T, Dai Y, Xia Y (2019) Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 119:5298–5415CrossRef
21.
go back to reference Ico G, Showalter A, Bosze W et al (2016) Size-dependent piezoelectric and mechanical properties of electrospun P(VDF-TrFE) nanofibers for enhanced energy harvesting. J Mater Chem A 4:2293–2304CrossRef Ico G, Showalter A, Bosze W et al (2016) Size-dependent piezoelectric and mechanical properties of electrospun P(VDF-TrFE) nanofibers for enhanced energy harvesting. J Mater Chem A 4:2293–2304CrossRef
22.
go back to reference Li R, Rao L, Zhang J et al (2021) Novel in-situ electroflotation driven by hydrogen evolution reaction (HER) with polypyrrole (PPy)-Ni-modified fabric membrane for efficient oil/water separation. J Memb Sci 635:119502CrossRef Li R, Rao L, Zhang J et al (2021) Novel in-situ electroflotation driven by hydrogen evolution reaction (HER) with polypyrrole (PPy)-Ni-modified fabric membrane for efficient oil/water separation. J Memb Sci 635:119502CrossRef
23.
go back to reference You X, Zhang J, Shen L et al (2021) Thermodynamic mechanisms of membrane fouling during filtration of alginate solution in coagulation-ultrafiltration (UF) process in presence of different ionic strength and iron(III) ion concentration. J Memb Sci 635:119532CrossRef You X, Zhang J, Shen L et al (2021) Thermodynamic mechanisms of membrane fouling during filtration of alginate solution in coagulation-ultrafiltration (UF) process in presence of different ionic strength and iron(III) ion concentration. J Memb Sci 635:119532CrossRef
24.
go back to reference Wu J, Xia M, Li Z et al (2021) Facile preparation of polyvinylidene fluoride substrate supported thin film composite polyamide nanofiltration: effect of substrate pore size. J Memb Sci 638:119699CrossRef Wu J, Xia M, Li Z et al (2021) Facile preparation of polyvinylidene fluoride substrate supported thin film composite polyamide nanofiltration: effect of substrate pore size. J Memb Sci 638:119699CrossRef
25.
go back to reference Tay RY, Park HJ, Lin J et al (2018) Concentric and spiral few-layer graphene: growth driven by interfacial nucleation vs screw dislocation. Chem Mater 30:6858–6866CrossRef Tay RY, Park HJ, Lin J et al (2018) Concentric and spiral few-layer graphene: growth driven by interfacial nucleation vs screw dislocation. Chem Mater 30:6858–6866CrossRef
26.
go back to reference Zhu MM, Du ZH, Yin ZY et al (2016) Low-temperature in situ growth of graphene on metallic substrates and its application in anticorrosion. ACS Appl Mater Interfaces 8:502–510CrossRef Zhu MM, Du ZH, Yin ZY et al (2016) Low-temperature in situ growth of graphene on metallic substrates and its application in anticorrosion. ACS Appl Mater Interfaces 8:502–510CrossRef
27.
go back to reference Lander JJ, Kern HE, Beach AL (1952) Solubility and diffusion coefficient of carbon in nickel: reaction rates of nickel-carbon alloys with barium oxide. J Appl Phys 23:1305–1309CrossRef Lander JJ, Kern HE, Beach AL (1952) Solubility and diffusion coefficient of carbon in nickel: reaction rates of nickel-carbon alloys with barium oxide. J Appl Phys 23:1305–1309CrossRef
28.
go back to reference Hu X, Hemmat Z, Majidi L et al (2020) Controlling nanoscale thermal expansion of monolayer transition metal dichalcogenides by alloy engineering. Small 16:1905892CrossRef Hu X, Hemmat Z, Majidi L et al (2020) Controlling nanoscale thermal expansion of monolayer transition metal dichalcogenides by alloy engineering. Small 16:1905892CrossRef
29.
go back to reference Hu L, Kim HS, Lee J et al (2010) Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4:2955–2963CrossRef Hu L, Kim HS, Lee J et al (2010) Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4:2955–2963CrossRef
30.
go back to reference Gruner G, Angeles L, Gong J et al (2007) Electrowetting devices with transparent single-walled carbon nanotube electrodes Electrowetting devices with transparent single-walled carbon nanotube electrodes. Appl Phys Lett 90:093124CrossRef Gruner G, Angeles L, Gong J et al (2007) Electrowetting devices with transparent single-walled carbon nanotube electrodes Electrowetting devices with transparent single-walled carbon nanotube electrodes. Appl Phys Lett 90:093124CrossRef
31.
go back to reference Zhu Y, Lu W, Sun Z et al (2011) High throughput preparation of large area transparent electrodes using non-functionalized graphene nanoribbons. Chem Mater 23:935–939CrossRef Zhu Y, Lu W, Sun Z et al (2011) High throughput preparation of large area transparent electrodes using non-functionalized graphene nanoribbons. Chem Mater 23:935–939CrossRef
32.
go back to reference Sa K, Mahanandia P (2019) Conducting reduced graphene oxide film as transparent electrode. Thin Solid Films 692:137594CrossRef Sa K, Mahanandia P (2019) Conducting reduced graphene oxide film as transparent electrode. Thin Solid Films 692:137594CrossRef
33.
go back to reference Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710CrossRef Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710CrossRef
34.
go back to reference Kholmanov IN, Magnuson CW, Piner R et al (2015) Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films. Adv Mater 27:3053–3059CrossRef Kholmanov IN, Magnuson CW, Piner R et al (2015) Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films. Adv Mater 27:3053–3059CrossRef
35.
go back to reference Yousry YM, Yao K, Mohamed AM et al (2020) Theoretical model and outstanding performance from constructive piezoelectric and triboelectric mechanism in electrospun PVDF fiber film. Adv Funct Mater 30:1910592CrossRef Yousry YM, Yao K, Mohamed AM et al (2020) Theoretical model and outstanding performance from constructive piezoelectric and triboelectric mechanism in electrospun PVDF fiber film. Adv Funct Mater 30:1910592CrossRef
36.
go back to reference Surmenev RA, Orlova T, Chernozem RV et al (2019) Hybrid lead-free polymer-based nanocomposites with improved piezoelectric response for biomedical energy-harvesting applications: a review. Nano Energy 62:475–506CrossRef Surmenev RA, Orlova T, Chernozem RV et al (2019) Hybrid lead-free polymer-based nanocomposites with improved piezoelectric response for biomedical energy-harvesting applications: a review. Nano Energy 62:475–506CrossRef
37.
go back to reference Zhu MM, Chng SS, Cai WF et al (2020) Piezoelectric polymer nanofibers for pressure sensors and their applications in human activity monitoring. RSC Adv 10:21887–21894CrossRef Zhu MM, Chng SS, Cai WF et al (2020) Piezoelectric polymer nanofibers for pressure sensors and their applications in human activity monitoring. RSC Adv 10:21887–21894CrossRef
38.
go back to reference Persano L, Dagdeviren C, Su Y et al (2013) High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat Commun 4:1633CrossRef Persano L, Dagdeviren C, Su Y et al (2013) High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat Commun 4:1633CrossRef
39.
go back to reference Peng X, Dong K, Ye C et al (2020) A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci Adv 6:eaba9624CrossRef Peng X, Dong K, Ye C et al (2020) A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci Adv 6:eaba9624CrossRef
Metadata
Title
Hybrid graphene-NiW nanofiber transparent electrodes for all-nanofiber-based pressure sensor
Authors
Minmin Zhu
Anwen Zhao
Can Wei
Fuying Ren
Yida Zhao
Yiping Bao
Huilu Guo
Publication date
03-01-2022
Publisher
Springer US
Published in
Journal of Materials Science / Issue 4/2022
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-06702-7

Other articles of this Issue 4/2022

Journal of Materials Science 4/2022 Go to the issue

Premium Partners