Skip to main content
Top
Published in: Wireless Personal Communications 2/2022

01-12-2021

Hybrid Optimized Secure Cooperative Spectrum Sensing for Cognitive Radio Networks

Authors: Neelaveni Rangaraj, Sivasankari Jothiraj, Sridevi Balu

Published in: Wireless Personal Communications | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Spectrum utilization is an important factor in Cognitive radio networks, which is accomplished by analyzing the unused spectrum bands of primary users (PU). The secondary users are allowed to access the resources, when the spectral bands are vacant by sensing the spectrum status and thus it reduces the spectrum scarcity among the users. Researchers have paid more attention towards spectrum sensing along with its security factors in cognitive radio networks. In this process, cooperative spectrum sensing is widely adopted in cognitive radio networks due to its robustness. However, the security concerns in cooperative spectrum sensing against attacks must be addressed. The performance of cooperative spectrum sensing will get affected if the fusion center gets wrong information from malicious user. This leads to wrong decision in the fusion center and results into false observations and affects the decision process. In order to overcome these challenges, this research work proposes a hybrid nature inspired and optimized cooperative spectrum sensing against attacks in cognitive radio networks. The proposed model allows the fusion center to remove the uncharacteristic data in the fusion process, which results from the malicious users. The performance analysis of spectrum sensing process under different attacks are analyzed through simulation and later it is compared against conventional methods such as genetic algorithm, particle swarm optimization and differential evolution schemes to validate the improved performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ding, G., Jiao, Y., Wang, J., Zou, Y., Wu, Q., Yao, Y.-D., & Hanzo, L. (2018). Spectrum inference in cognitive radio networks: Algorithms and applications. IEEE Communications Surveys & Tutorials, 20(1), 150–182.CrossRef Ding, G., Jiao, Y., Wang, J., Zou, Y., Wu, Q., Yao, Y.-D., & Hanzo, L. (2018). Spectrum inference in cognitive radio networks: Algorithms and applications. IEEE Communications Surveys & Tutorials, 20(1), 150–182.CrossRef
2.
go back to reference Hu, F., Chen, B., & Zhu, K. (2018). Full spectrum sharing in cognitive radio networks toward 5G: A survey. IEEE Access, 6, 15754–15776.CrossRef Hu, F., Chen, B., & Zhu, K. (2018). Full spectrum sharing in cognitive radio networks toward 5G: A survey. IEEE Access, 6, 15754–15776.CrossRef
3.
go back to reference Nallagonda, S., Chandra, A., Dhar, R. S., & Kundu, S. (2017). Analytical performance of soft data fusion-aided spectrum sensing in hybrid terrestrial-satellite networks: Spectrum Sensing Performance with Soft Data Fusion. International Journal of Satellite Communications and Networking, 35, 461–480.CrossRef Nallagonda, S., Chandra, A., Dhar, R. S., & Kundu, S. (2017). Analytical performance of soft data fusion-aided spectrum sensing in hybrid terrestrial-satellite networks: Spectrum Sensing Performance with Soft Data Fusion. International Journal of Satellite Communications and Networking, 35, 461–480.CrossRef
4.
go back to reference Huang, Y.-F., & Wang, J.-W. (2019). Cooperative spectrum sensing in cognitive radio using bayesian updating with multiple observations. Journal of Electronic Science and Technology, 17(3), 252–259. Huang, Y.-F., & Wang, J.-W. (2019). Cooperative spectrum sensing in cognitive radio using bayesian updating with multiple observations. Journal of Electronic Science and Technology, 17(3), 252–259.
5.
go back to reference Liu, X., Zhang, X., & Peng, B. (2019). Intelligent clustering cooperative spectrum sensing based on Bayesian learning for cognitive radio network. Ad Hoc Networks, 94, 1–15.CrossRef Liu, X., Zhang, X., & Peng, B. (2019). Intelligent clustering cooperative spectrum sensing based on Bayesian learning for cognitive radio network. Ad Hoc Networks, 94, 1–15.CrossRef
6.
go back to reference Zeng, Y., Li, Xu., & Khalil, I. (2019). Privacy-preserving aggregation for cooperative spectrum sensing. Journal of Network and Computer Applications, 140, 55–64.CrossRef Zeng, Y., Li, Xu., & Khalil, I. (2019). Privacy-preserving aggregation for cooperative spectrum sensing. Journal of Network and Computer Applications, 140, 55–64.CrossRef
7.
go back to reference Wang, Ji., Chen, I.-R., & Wang, D.-C. (2018). Trust-based mechanism design for cooperative spectrum sensing in cognitive radio networks. Computer Communications, 116, 90–100.CrossRef Wang, Ji., Chen, I.-R., & Wang, D.-C. (2018). Trust-based mechanism design for cooperative spectrum sensing in cognitive radio networks. Computer Communications, 116, 90–100.CrossRef
8.
go back to reference Zhang, M., Wang, L., & Feng, Y. (2018). Distributed cooperative spectrum sensing based on reinforcement learning in cognitive radio networks. AEU - International Journal of Electronics and Communications, 94, 359–366.CrossRef Zhang, M., Wang, L., & Feng, Y. (2018). Distributed cooperative spectrum sensing based on reinforcement learning in cognitive radio networks. AEU - International Journal of Electronics and Communications, 94, 359–366.CrossRef
9.
go back to reference Soto, J., & Nogueira, M. (2017). A framework for resilient and secure spectrum sensing on cognitive radio networks. Computer Networks, 115, 130–138.CrossRef Soto, J., & Nogueira, M. (2017). A framework for resilient and secure spectrum sensing on cognitive radio networks. Computer Networks, 115, 130–138.CrossRef
10.
go back to reference Das, D., & Das, S. (2018). An intelligent resource management scheme for SDF-based cooperative spectrum sensing in the presence of primary user emulation attack. Computers & Electrical Engineering, 69, 555–571.CrossRef Das, D., & Das, S. (2018). An intelligent resource management scheme for SDF-based cooperative spectrum sensing in the presence of primary user emulation attack. Computers & Electrical Engineering, 69, 555–571.CrossRef
11.
go back to reference Shrivastava, S., & Kothari, D. P. (2018). SU throughput enhancement in a decision fusion based cooperative sensing system. AEU - International Journal of Electronics and Communications, 87, 95–100.CrossRef Shrivastava, S., & Kothari, D. P. (2018). SU throughput enhancement in a decision fusion based cooperative sensing system. AEU - International Journal of Electronics and Communications, 87, 95–100.CrossRef
12.
go back to reference Feng, J., Guangyue, Lu., & Wang, X. (2016). Supporting secure spectrum sensing data transmission against SSDH attack in cognitive radio ad hoc networks. Journal of Network and Computer Applications, 72, 140–149.CrossRef Feng, J., Guangyue, Lu., & Wang, X. (2016). Supporting secure spectrum sensing data transmission against SSDH attack in cognitive radio ad hoc networks. Journal of Network and Computer Applications, 72, 140–149.CrossRef
13.
go back to reference Sasabe, M., Nishida, T., & Kasahara, S. (2019). Collaborative spectrum sensing mechanism based on user incentive in cognitive radio networks. Computer Communications, 147, 1–13.CrossRef Sasabe, M., Nishida, T., & Kasahara, S. (2019). Collaborative spectrum sensing mechanism based on user incentive in cognitive radio networks. Computer Communications, 147, 1–13.CrossRef
14.
go back to reference Ahmadfard, A., Jamshidi, A., & Keshavarz-Haddad, A. (2017). Probabilistic spectrum sensing data falsification attack in cognitive radio networks. Signal Processing, 137, 1–9.CrossRef Ahmadfard, A., Jamshidi, A., & Keshavarz-Haddad, A. (2017). Probabilistic spectrum sensing data falsification attack in cognitive radio networks. Signal Processing, 137, 1–9.CrossRef
15.
go back to reference Kailkhura, B., Vempaty, A., Varshney, P. K. (2018). Collaborative spectrum sensing in the presence of Byzantine attacks. In Cooperative and Graph Signal Processing (pp. 505–522). Academic Press. Kailkhura, B., Vempaty, A., Varshney, P. K. (2018). Collaborative spectrum sensing in the presence of Byzantine attacks. In Cooperative and Graph Signal Processing (pp. 505–522). Academic Press.
16.
go back to reference Srinu, S., & Mishra, A. K. (2016). Efficient elimination of erroneous nodes in cooperative sensing for cognitive radio networks. Computers & Electrical Engineering, 52, 284–292.CrossRef Srinu, S., & Mishra, A. K. (2016). Efficient elimination of erroneous nodes in cooperative sensing for cognitive radio networks. Computers & Electrical Engineering, 52, 284–292.CrossRef
17.
go back to reference Kim, J., & Choi, J. P. (2019). Sensing coverage-based cooperative spectrum detection in cognitive radio networks. IEEE Sensors Journal, 19(13), 5325–5332.CrossRef Kim, J., & Choi, J. P. (2019). Sensing coverage-based cooperative spectrum detection in cognitive radio networks. IEEE Sensors Journal, 19(13), 5325–5332.CrossRef
18.
go back to reference Awasthi, M., Nigam, M. J., & Kumar, V. (2019). Optimal sensing, fusion and transmission with primary user protection for energy-efficient cooperative spectrum sensing in CRNs. AEU - International Journal of Electronics and Communications, 98, 95–105.CrossRef Awasthi, M., Nigam, M. J., & Kumar, V. (2019). Optimal sensing, fusion and transmission with primary user protection for energy-efficient cooperative spectrum sensing in CRNs. AEU - International Journal of Electronics and Communications, 98, 95–105.CrossRef
19.
go back to reference Raj, J. S. (2020). Machine learning implementation in cognitive radio networks with game-theory technique. IRO Journal on Sustainable Wireless Systems, 1(2), 68–75.CrossRef Raj, J. S. (2020). Machine learning implementation in cognitive radio networks with game-theory technique. IRO Journal on Sustainable Wireless Systems, 1(2), 68–75.CrossRef
20.
go back to reference Li, M., Hei, Y., & Qiu, Z. (2017). Optimization of multiband cooperative spectrum sensing with modified artificial bee colony algorithm. Applied Soft Computing, 57, 751–759.CrossRef Li, M., Hei, Y., & Qiu, Z. (2017). Optimization of multiband cooperative spectrum sensing with modified artificial bee colony algorithm. Applied Soft Computing, 57, 751–759.CrossRef
21.
go back to reference Haoxiang, W. (2019). Multi-objective optimization algorithm for power management in cognitive radio networks. Journal of Ubiquitous Computing and Communication Technologies (UCCT), 1(02), 97–109.CrossRef Haoxiang, W. (2019). Multi-objective optimization algorithm for power management in cognitive radio networks. Journal of Ubiquitous Computing and Communication Technologies (UCCT), 1(02), 97–109.CrossRef
22.
go back to reference Darney, P. E., & Jacob, I. J. (2019). Performance enhancements of cognitive radio networks using the improved fuzzy logic. Journal of Soft Computing Paradigm (JSCP), 1(02), 57–68.CrossRef Darney, P. E., & Jacob, I. J. (2019). Performance enhancements of cognitive radio networks using the improved fuzzy logic. Journal of Soft Computing Paradigm (JSCP), 1(02), 57–68.CrossRef
23.
go back to reference Chakraborty, C., Rodrigues, J. J. C. P. (2020). A comprehensive review on device-to-device communication paradigm: Trends, challenges and applications. Wireless Personal Communications, 114(1), 185–207. Chakraborty, C., Rodrigues, J. J. C. P. (2020). A comprehensive review on device-to-device communication paradigm: Trends, challenges and applications. Wireless Personal Communications, 114(1), 185–207.
24.
go back to reference Mustapha, I., Ali, B. M., & Mohamad, H. (2017). An energy efficient reinforcement learning based cooperative channel sensing for cognitive radio sensor networks. Pervasive and Mobile Computing, 35, 165–184.CrossRef Mustapha, I., Ali, B. M., & Mohamad, H. (2017). An energy efficient reinforcement learning based cooperative channel sensing for cognitive radio sensor networks. Pervasive and Mobile Computing, 35, 165–184.CrossRef
25.
go back to reference Jacob, I. J., & Darney, P. E. (2021). Artificial bee colony optimization algorithm for enhancing routing in wireless networks. Journal of Artificial Intelligence, 3(01), 62–71. Jacob, I. J., & Darney, P. E. (2021). Artificial bee colony optimization algorithm for enhancing routing in wireless networks. Journal of Artificial Intelligence, 3(01), 62–71.
Metadata
Title
Hybrid Optimized Secure Cooperative Spectrum Sensing for Cognitive Radio Networks
Authors
Neelaveni Rangaraj
Sivasankari Jothiraj
Sridevi Balu
Publication date
01-12-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2022
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-09402-2

Other articles of this Issue 2/2022

Wireless Personal Communications 2/2022 Go to the issue