Skip to main content
Top

2024 | OriginalPaper | Chapter

Hybrid Region of Interest Based Near-Lossless Codec for Brain Tumour Images Using Convolutional Autoencoder

Authors : Muthalaguraja Venugopal, Kalavathi Palanisamy

Published in: Computational Sciences and Sustainable Technologies

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

One of the most significant industries producing digital images worldwide is radiology. The advancements in radiological equipment have ensured the production of high-definition digital medical images. Irrespective of the growth in storage and network facilities, these high-definition images still face the problem of high storage space requirements and high transmission costs. To handle aforementioned problems and pave way for faster, hassle-free transmission and effective storage of such medical images for telemedicine services, we need enhanced image compression techniques. Medical images tend to have data with both high and low clinical importance for downstream analysis and treatment. Compression algorithms must be developed in order to handle both high and low clinically important data at the same time to improve the compression standard of medical images. We propose a Convolutional autoencoder technique for Region of Interest based hybrid near-lossless medical image compression aided by “You Only Look Once” (YOLO) deep learning algorithm. This work aims to achieve ROI-based near-lossless compression with notable compression ratio and medical image quality. To achieve this ROI-based near-lossless compression, we employed a combination of YOLO object detection algorithm, Convolutional autoencoder, and Haar wavelet transform with SPIHT encoding on grayscale Magnetic Resonance brain tumour images. The proposed approach was evaluated against several existing standard compression methods. Results inferred that our proposed method assured the near-lossless image compression scenario by maintaining the quality of medical images after decompression and comparatively reduced the storage and transmission cost by ensuring an effective compression ratio.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Ansari, M.A., Anand, R.S.: Recent trends in image compression and its application in telemedicine and teleconsuktation. In: National Systems Conference, No. July, pp. 59–64 (2008) Ansari, M.A., Anand, R.S.: Recent trends in image compression and its application in telemedicine and teleconsuktation. In: National Systems Conference, No. July, pp. 59–64 (2008)
3.
go back to reference Zukoski, M.J., Boult, T., Iyriboz, T.: A novel approach to medical image compression. Int. J. Bioinform. Res. Appl. Bioinform. Res. Appl. 2(1), 89–103 (2006)CrossRef Zukoski, M.J., Boult, T., Iyriboz, T.: A novel approach to medical image compression. Int. J. Bioinform. Res. Appl. Bioinform. Res. Appl. 2(1), 89–103 (2006)CrossRef
4.
go back to reference Puech, W.: Efficient adaptive arithmetic coding based on updated probability distribution for lossless image compression. J. Electron. Imaging 19(2), 023014 (2010)CrossRef Puech, W.: Efficient adaptive arithmetic coding based on updated probability distribution for lossless image compression. J. Electron. Imaging 19(2), 023014 (2010)CrossRef
5.
go back to reference Vaish, A., Kumar, M.: A new Image compression technique using principal component analysis and Huffman coding. In: Proceedings of 2014 3rd International Conference on Parallel, Distributed and Grid Computing, PDGC 2014, pp. 301–305 (2015) Vaish, A., Kumar, M.: A new Image compression technique using principal component analysis and Huffman coding. In: Proceedings of 2014 3rd International Conference on Parallel, Distributed and Grid Computing, PDGC 2014, pp. 301–305 (2015)
6.
go back to reference Tu, C., Liang, J., Tran, T.D.: Adaptive runlength coding. IEEE Signal Process. Lett. 10(3), 61–64 (2003)CrossRef Tu, C., Liang, J., Tran, T.D.: Adaptive runlength coding. IEEE Signal Process. Lett. 10(3), 61–64 (2003)CrossRef
7.
go back to reference Raid, A.M., et al.: JPEG image compression using discrete cosine transform - a survey. Int. J. Comput. Sci. Eng. Surv. 5(2), 39–47 (2014)CrossRef Raid, A.M., et al.: JPEG image compression using discrete cosine transform - a survey. Int. J. Comput. Sci. Eng. Surv. 5(2), 39–47 (2014)CrossRef
8.
go back to reference Walker, J.S., Nguyen, T.Q.: Wavelet-Based Image Compression. Wavelet-Based Image Compression. The Transform and Data Compression Handbook (2001) Walker, J.S., Nguyen, T.Q.: Wavelet-Based Image Compression. Wavelet-Based Image Compression. The Transform and Data Compression Handbook (2001)
9.
go back to reference Boopathiraja, S., Kalavathi, P., Dhanalakshmi, C.: Significance of image compression and its upshots - a survey. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 1203–1208 (2019) Boopathiraja, S., Kalavathi, P., Dhanalakshmi, C.: Significance of image compression and its upshots - a survey. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 1203–1208 (2019)
10.
go back to reference Boopathiraja, S., Palanisamy, K., Surya Prasath, V.B.: On a hybrid lossless compression technique for three-dimensional medical images. J. Appl. Clin. Med. Phys.Clin. Med. Phys. 22(8), 191–203 (2021)CrossRef Boopathiraja, S., Palanisamy, K., Surya Prasath, V.B.: On a hybrid lossless compression technique for three-dimensional medical images. J. Appl. Clin. Med. Phys.Clin. Med. Phys. 22(8), 191–203 (2021)CrossRef
11.
go back to reference Boopathiraja, S., Kalavathi, P.: A near lossless three-dimensional medical image compression technique using 3D-discrete wavelet transform. Int. J. Biomed. Eng. Technol. 35, 191–206 (2019)CrossRef Boopathiraja, S., Kalavathi, P.: A near lossless three-dimensional medical image compression technique using 3D-discrete wavelet transform. Int. J. Biomed. Eng. Technol. 35, 191–206 (2019)CrossRef
12.
go back to reference Sharma, U., Sood, M., Puthooran, E.: A block adaptive near-lossless compression algorithm for medical image sequences and diagnostic quality assessment. J. Digit. Imaging 33(2), 516–530 (2020)CrossRef Sharma, U., Sood, M., Puthooran, E.: A block adaptive near-lossless compression algorithm for medical image sequences and diagnostic quality assessment. J. Digit. Imaging 33(2), 516–530 (2020)CrossRef
13.
go back to reference Kasute, S.D., Kolhekar, M.: ROI based medical image compression. Int. J. Sc. Res. Netw. Secur. Commun. 5(1) (2017). ISSN 2321-3256 Kasute, S.D., Kolhekar, M.: ROI based medical image compression. Int. J. Sc. Res. Netw. Secur. Commun. 5(1) (2017). ISSN 2321-3256
14.
go back to reference Kaur, M., Wasson, V.: ROI based medical image compression for telemedicine application. Procedia Comput. Sci. 70, 579–585 (2015)CrossRef Kaur, M., Wasson, V.: ROI based medical image compression for telemedicine application. Procedia Comput. Sci. 70, 579–585 (2015)CrossRef
15.
go back to reference Chen, Y.T., Tseng, D.C.: Wavelet-based medical image compression with adaptive prediction. Comput. Med. Imaging Graph. 31(1), 1–8 (2007)CrossRef Chen, Y.T., Tseng, D.C.: Wavelet-based medical image compression with adaptive prediction. Comput. Med. Imaging Graph. 31(1), 1–8 (2007)CrossRef
19.
go back to reference Ansari, M.A., Anand, R.S.: Context based medical image compression for ultrasound images with contextual set partitioning in hierarchical trees algorithm. Adv. Eng. Softw.Softw. 40(7), 487–496 (2009)CrossRef Ansari, M.A., Anand, R.S.: Context based medical image compression for ultrasound images with contextual set partitioning in hierarchical trees algorithm. Adv. Eng. Softw.Softw. 40(7), 487–496 (2009)CrossRef
20.
go back to reference Bairagi, V.K., Sapkal, A.M.: ROI-based DICOM image compression for telemedicine. Sadhana – Acad. Proc. Eng. Sci. 38(1), 123–131 (2013) Bairagi, V.K., Sapkal, A.M.: ROI-based DICOM image compression for telemedicine. Sadhana – Acad. Proc. Eng. Sci. 38(1), 123–131 (2013)
21.
go back to reference Zuo, Z., Lan, X., Deng, L., Yao, S., Wang, X.: An improved medical image compression technique with lossless region of interest. Optik 126(21), 2825–2831 (2015)CrossRef Zuo, Z., Lan, X., Deng, L., Yao, S., Wang, X.: An improved medical image compression technique with lossless region of interest. Optik 126(21), 2825–2831 (2015)CrossRef
22.
go back to reference Devadoss, C.P., Sankaragomathi, B.: Near lossless medical image compression using block BWT–MTF and hybrid fractal compression techniques. Cluster Comput. 22(s5), 12929–12937 (2019)CrossRef Devadoss, C.P., Sankaragomathi, B.: Near lossless medical image compression using block BWT–MTF and hybrid fractal compression techniques. Cluster Comput. 22(s5), 12929–12937 (2019)CrossRef
23.
go back to reference Liu, H., et al.: Deep image compression via end-to-end learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2018) Liu, H., et al.: Deep image compression via end-to-end learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2018)
24.
25.
go back to reference Cheng, Z., et al.: Energy compaction-based image compression using convolution al autoencoder. IEEE Trans. Multimed. 22(4), 860–873 (2019)CrossRef Cheng, Z., et al.: Energy compaction-based image compression using convolution al autoencoder. IEEE Trans. Multimed. 22(4), 860–873 (2019)CrossRef
26.
go back to reference Guo, P., Li, D., Li, X.: Deep OCT image compression with convolutional neural networks. Biomed. Opt. Express 11(7), 3543–3554 (2020)CrossRef Guo, P., Li, D., Li, X.: Deep OCT image compression with convolutional neural networks. Biomed. Opt. Express 11(7), 3543–3554 (2020)CrossRef
27.
go back to reference Krishnaraj, N., et al.: Deep learning model for real-time image compression in Internet of Underwater Things (IoUT). J. Real-Time Image Proc. 17(6), 2097–2111 (2020)CrossRef Krishnaraj, N., et al.: Deep learning model for real-time image compression in Internet of Underwater Things (IoUT). J. Real-Time Image Proc. 17(6), 2097–2111 (2020)CrossRef
30.
go back to reference Mohsin, S., Sajjad, S., Malik, Z., Abdullah, A.H.: Efficient way of skull stripping in MRI to detect brain Tumor by applying morphological operations, after detection of false background. Int. J. Inf. Educ. Technol. (2012) Mohsin, S., Sajjad, S., Malik, Z., Abdullah, A.H.: Efficient way of skull stripping in MRI to detect brain Tumor by applying morphological operations, after detection of false background. Int. J. Inf. Educ. Technol. (2012)
31.
go back to reference Kalavathi, P., Prasath, V.B.S.: Methods on skull stripping of MRI head scan images—a review. J. Digit. Imaging 29(3), 365–379 (2016)CrossRef Kalavathi, P., Prasath, V.B.S.: Methods on skull stripping of MRI head scan images—a review. J. Digit. Imaging 29(3), 365–379 (2016)CrossRef
32.
33.
go back to reference Gokturk, S.B., Tomasi, C., Girod, B., Beaulieu, C.: Medical image compression based on region of interest, with application to colon CT images. Ann. Rep. Res. Reactor Inst. 3, 2453–2456 (2001) Gokturk, S.B., Tomasi, C., Girod, B., Beaulieu, C.: Medical image compression based on region of interest, with application to colon CT images. Ann. Rep. Res. Reactor Inst. 3, 2453–2456 (2001)
34.
go back to reference Varma, M.K., Bagadi, M.: ROI based image compression in baseline JPEG. Int. J. Eng. Res. Appl. 4(9), 168–173 (2014) Varma, M.K., Bagadi, M.: ROI based image compression in baseline JPEG. Int. J. Eng. Res. Appl. 4(9), 168–173 (2014)
35.
go back to reference Abu-hajar, A., Sankar, R.: Region of interest coding using partial-SPIHT. In: IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 3, pp. 257–260 (2004) Abu-hajar, A., Sankar, R.: Region of interest coding using partial-SPIHT. In: IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 3, pp. 257–260 (2004)
39.
go back to reference Kalavathi, P., Boopathiraja, S.: A wavelet based image compression with RLC encoder. Comput. Methods Commun. Tech. Inform. 289–292 (2017). ISBN 978-81-933316-1-3 Kalavathi, P., Boopathiraja, S.: A wavelet based image compression with RLC encoder. Comput. Methods Commun. Tech. Inform. 289–292 (2017). ISBN 978-81-933316-1-3
40.
go back to reference Boopathiraja, S., Kalavathi, P.: A medical image compression technique using 2D-DWT with Run length encoding. Glob. J. Pure Appl. Math. 13(5), 87–96 (2017) Boopathiraja, S., Kalavathi, P.: A medical image compression technique using 2D-DWT with Run length encoding. Glob. J. Pure Appl. Math. 13(5), 87–96 (2017)
41.
go back to reference Belyaev, A.A., Yevtushok, O.S., Ryaboshchuk, N.M.: Lossless image compression algorithm based on haar transform. In: 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). IEEE (2021) Belyaev, A.A., Yevtushok, O.S., Ryaboshchuk, N.M.: Lossless image compression algorithm based on haar transform. In: 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). IEEE (2021)
42.
go back to reference Kamargaonkar, C., Sharma, M.: Hybrid medical image compression method using SPIHT algorithm and Haar wavelet transform. In: 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). IEEE (2016) Kamargaonkar, C., Sharma, M.: Hybrid medical image compression method using SPIHT algorithm and Haar wavelet transform. In: 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). IEEE (2016)
Metadata
Title
Hybrid Region of Interest Based Near-Lossless Codec for Brain Tumour Images Using Convolutional Autoencoder
Authors
Muthalaguraja Venugopal
Kalavathi Palanisamy
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-50993-3_27

Premium Partner