Skip to main content
Top
Published in: Thermal Engineering 11/2023

01-11-2023 | NUCLEAR POWER PLANTS

Hydrodynamics of the Coolant in the Outlet Section of a Fuel Cartridge with Heads of Different Designs of the Reactor Core RITM of a Low-Power Nuclear Plant

Authors: S. M. Dmitriev, T. D. Demkina, A. A. Dobrov, D. V. Doronkov, D. S. Doronkova, M. A. Legchanov, A. N. Pronin, A. V. Ryazanov, D. N. Solntsev, A. E. Khrobostov

Published in: Thermal Engineering | Issue 11/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The results of experimental studies and a comparative analysis of the coolant hydrodynamics in the outlet section of the fuel cartridge behind heads of different designs are presented. The considered fuel assemblies are designed for installation in the core of a RITM-type reactor of a small ground-based nuclear power plant. The aim of the work was to study the distribution of the axial velocity and flow rate of the coolant at the outlet of the fuel bundle, behind the heads of different designs, and in front of the coolant extraction pipe and in the holes of the upper base plate as well as to determine the areas of the fuel bundle from which the coolant flow is most likely to enter the sampling pipe and, accordingly, to the resistance thermometer installed in this pipe. The experiments were carried out on a research aerodynamic stand with an air working medium on a model of the outlet section of the fuel cartridge, which includes a fragment of the outlet part of the fuel bundle with spacer grids, dummies of two types of heads, an upper support plate, and a coolant extraction pipe. When studying the coolant flow rate in the outlet part of the fuel cartridge, the pneumometric method and the method of contrast impurity injection were used. The measurements were carried out over the entire cross section of the model. The hydrodynamic picture of the coolant flow is represented by cartograms of the distribution of axial velocity, coolant flow rate, and contrast impurities in the cross section of the model. The results of the research were used by specialists from the design and calculation departments of Afrikantov OKBM to justify engineering solutions in the design of new cores of RITM reactors. The results of the experiments were compiled into a database and used in the validation of the LOGOS CFD program developed by the employees of RFNC-VNIIEF and ITMP Moscow State University as analogues to foreign programs of the same class, which include ANSYS, Star CCM+, etc. Experimental data are also used to validate one-dimensional thermal-hydraulic codes used in Afrikantov OKBM when substantiating the thermal reliability of the cores of reactor installations; the thermal-hydraulic code KANAL also belongs to this class of programs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference D. L. Zverev, Yu. P. Fadeev, A. N. Pakhomov, V. Yu. Galitskikh, V. I. Polunichev, K. B. Veshnyakov, S. V. Kabin, and A. Yu. Turusov, “Reactor installations for nuclear icebreakers: Origination experience and current status,” At. Energy 129, 18–26 (2020).CrossRef D. L. Zverev, Yu. P. Fadeev, A. N. Pakhomov, V. Yu. Galitskikh, V. I. Polunichev, K. B. Veshnyakov, S. V. Kabin, and A. Yu. Turusov, “Reactor installations for nuclear icebreakers: Origination experience and current status,” At. Energy 129, 18–26 (2020).CrossRef
3.
go back to reference D. L. Zverev, O. B. Samoilov, O. A. Morozov, A. A. Zakharychev, V. Yu. Silaev, P. B. Matyash, A. Yu. Vishnev, M. M. Kashka, and O. E. Darbinyan, “Cores of operating nuclear icebreakers,” Sudostroenie, No. 1 (848), 13–16 (2020). D. L. Zverev, O. B. Samoilov, O. A. Morozov, A. A. Zakharychev, V. Yu. Silaev, P. B. Matyash, A. Yu. Vishnev, M. M. Kashka, and O. E. Darbinyan, “Cores of operating nuclear icebreakers,” Sudostroenie, No. 1 (848), 13–16 (2020).
4.
go back to reference V. M. Belyaev, M. A. Bol’shukhin, A. N. Pakhomov, A. M. Khizbullin, A. N. Lepekhin, V. I. Polunichev, K. B. Veshnyakov, A. N. Sokolov, and A. Yu. Turusov, “The world’s first floating NPP: Origination and direction of future development,” At. Energy 129, 27–34 (2020).CrossRef V. M. Belyaev, M. A. Bol’shukhin, A. N. Pakhomov, A. M. Khizbullin, A. N. Lepekhin, V. I. Polunichev, K. B. Veshnyakov, A. N. Sokolov, and A. Yu. Turusov, “The world’s first floating NPP: Origination and direction of future development,” At. Energy 129, 27–34 (2020).CrossRef
5.
go back to reference A. A. Zakharychev, G. Sh. Iksanova, A. V. Kupriyanov, A. B. Osin, V. V. Petrunin, O. B. Samoilov, and D. L. Shipov, “Methodological issues and results of experimental and computational studies of critical heat flows in RITM-200 reactor fuel assemblies for small NPP,” At. Energy 130, 63–68 (2021).CrossRef A. A. Zakharychev, G. Sh. Iksanova, A. V. Kupriyanov, A. B. Osin, V. V. Petrunin, O. B. Samoilov, and D. L. Shipov, “Methodological issues and results of experimental and computational studies of critical heat flows in RITM-200 reactor fuel assemblies for small NPP,” At. Energy 130, 63–68 (2021).CrossRef
6.
go back to reference A. A. Barinov, S. M. Dmitriev, A. E. Khrobostov, and O. B. Samoilov, “Methods of thermomechanical reliability validation of thermal water-moderated and water-cooled reactor cores,” At. Energy 120, 335–341 (2016).CrossRef A. A. Barinov, S. M. Dmitriev, A. E. Khrobostov, and O. B. Samoilov, “Methods of thermomechanical reliability validation of thermal water-moderated and water-cooled reactor cores,” At. Energy 120, 335–341 (2016).CrossRef
7.
go back to reference S. M. Dmitriev, A. V. Varentsov, A. A. Dobrov, D. V. Doronkov, A. N. Pronin, V. D. Sorokin, and A. E. Khrobostov, “Computational and experimental investigations of the coolant flow in the cassette fissile core of a KLT-40S reactor,” J. Eng. Phys. Thermophys. 90, 941–950 (2017).CrossRef S. M. Dmitriev, A. V. Varentsov, A. A. Dobrov, D. V. Doronkov, A. N. Pronin, V. D. Sorokin, and A. E. Khrobostov, “Computational and experimental investigations of the coolant flow in the cassette fissile core of a KLT-40S reactor,” J. Eng. Phys. Thermophys. 90, 941–950 (2017).CrossRef
8.
9.
go back to reference A. A. Gukhman, Introduction to the Theory of Similarity (Vysshaya Shkola, Moscow, 1973; Academic, New York, 1965). A. A. Gukhman, Introduction to the Theory of Similarity (Vysshaya Shkola, Moscow, 1973; Academic, New York, 1965).
Metadata
Title
Hydrodynamics of the Coolant in the Outlet Section of a Fuel Cartridge with Heads of Different Designs of the Reactor Core RITM of a Low-Power Nuclear Plant
Authors
S. M. Dmitriev
T. D. Demkina
A. A. Dobrov
D. V. Doronkov
D. S. Doronkova
M. A. Legchanov
A. N. Pronin
A. V. Ryazanov
D. N. Solntsev
A. E. Khrobostov
Publication date
01-11-2023
Publisher
Pleiades Publishing
Published in
Thermal Engineering / Issue 11/2023
Print ISSN: 0040-6015
Electronic ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601523110046

Other articles of this Issue 11/2023

Thermal Engineering 11/2023 Go to the issue

STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

Some Features Relating to the Occurrence of Low-Frequency Vibration in Large Steam Turbines and Methods for Removing It

HEAT AND MASS TRANSFER, AND PROPERTIES OF WORKING FLUIDS AND MATERIALS

Simulation of the Condensation Processes of R113 in a Horizontal Pipe by the VOF Method

Premium Partner