Skip to main content
Top

2010 | OriginalPaper | Chapter

19. Hydrothermal and Ammonothermal Growth of ZnO and GaN

Authors : Michael J. Callahan, Qi-Sheng Chen

Published in: Springer Handbook of Crystal Growth

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Zinc oxide (ZnO) and gallium nitride (GaN) are wide-bandgap semiconductors with a wide array of applications in optoelectronic and electronics. The lack of low-cost, low-defect ZnO and GaN substrates has slowed development and hampered performance of devices based on these two materials. Their anisotropic crystal structure allows the polar solvents, water and ammonia, to dissolve and crystallize ZnO and GaN at high pressure. Applying the techniques used for hydrothermal production of industrial single-crystal quartz to ZnO and GaN opens a pathway for the inexpensive growth of relatively larger crystals that can be processed into semiconductor wafers. This chapter will focus on the specifics of the hydrothermal growth of ZnO and the ammonothermal growth of GaN, emphasizing requirements for industrial scale growth of large crystals. Phase stability and solubility of hydrothermal ZnO and ammonothermal GaN is covered. Modeling of thermal and fluid flow gradients is discussed and simulations of thermal and temperature profiles in research-grade pressure systems are shown. Growth kinetics for ZnO and GaN respectively are reviewed with special interest in the effects of crystalline anisotropy on thermodynamics and kinetics. Finally, the incorporation of dopants and impurities in ZnO and GaN and how their incorporation modifies electrical and optical properties are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
19.1.
go back to reference F. Bernardini, V. Fiorentini, D. Vanderbilt: Spontaneous polarization and piezoelectric contants of III-V nitrides, Phys. Rev. B 56(R10), 24–27 (1997) F. Bernardini, V. Fiorentini, D. Vanderbilt: Spontaneous polarization and piezoelectric contants of III-V nitrides, Phys. Rev. B 56(R10), 24–27 (1997)
19.2.
go back to reference S.J. Pearton, C.R. Abernathy, F. Ren: Gallium Nitride Processing for Electronics, Sensors and Spintronics (Springer, Berlin Heidelberg 2006) S.J. Pearton, C.R. Abernathy, F. Ren: Gallium Nitride Processing for Electronics, Sensors and Spintronics (Springer, Berlin Heidelberg 2006)
19.3.
go back to reference B. Gil: Low-Dimensional Nitride Semiconductors (Oxford Univ. Press, Oxford 2002) B. Gil: Low-Dimensional Nitride Semiconductors (Oxford Univ. Press, Oxford 2002)
19.4.
go back to reference C. Jagadish, S.J. Pearton: Zinc Oxide, Thin Films and Nanostructions: Processing, Properties, and Applications (Elsevier Science, Amsterdam 2006) C. Jagadish, S.J. Pearton: Zinc Oxide, Thin Films and Nanostructions: Processing, Properties, and Applications (Elsevier Science, Amsterdam 2006)
19.5.
go back to reference Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avruntin, S.-J. Cho, H. Morkoç: A comprehensive review of ZnO material and devices, Appl. Phys. Rev. 98(041301), 1–103 (2005) Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avruntin, S.-J. Cho, H. Morkoç: A comprehensive review of ZnO material and devices, Appl. Phys. Rev. 98(041301), 1–103 (2005)
19.6.
go back to reference I. Akasaki: Key inventions in the history of nitride-base blue LED and LD, J. Cryst. Growth 300, 2–10 (2007)ADSCrossRef I. Akasaki: Key inventions in the history of nitride-base blue LED and LD, J. Cryst. Growth 300, 2–10 (2007)ADSCrossRef
19.7.
go back to reference C. Klingshirn, R. Hauschild, H. Priller, M. Decker, J. Zeller, H. Kalt: ZnO rediscovered – once again!?, Superlattice Microstruct. 38, 209–222 (2005)ADSCrossRef C. Klingshirn, R. Hauschild, H. Priller, M. Decker, J. Zeller, H. Kalt: ZnO rediscovered – once again!?, Superlattice Microstruct. 38, 209–222 (2005)ADSCrossRef
19.8.
19.9.
go back to reference J. Nause, B. Nemeth: Pressurized melt growth of ZnO boules, Semicond. Sci. Technol. 20, S45–S48 (2005)ADSCrossRef J. Nause, B. Nemeth: Pressurized melt growth of ZnO boules, Semicond. Sci. Technol. 20, S45–S48 (2005)ADSCrossRef
19.10.
go back to reference J. Karpiński, J. Jun, S. Porowski: High pressure thermodynamics of GaN, J. Cryst. Growth 66, 1–10 (1984)ADSCrossRef J. Karpiński, J. Jun, S. Porowski: High pressure thermodynamics of GaN, J. Cryst. Growth 66, 1–10 (1984)ADSCrossRef
19.11.
go back to reference H.D. Sun, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma: Phonon replicas in ZnO/ZnMgO multiquantum wells, J. Appl. Phys. Lett. 91(10), 6450–6457 (2002)ADS H.D. Sun, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma: Phonon replicas in ZnO/ZnMgO multiquantum wells, J. Appl. Phys. Lett. 91(10), 6450–6457 (2002)ADS
19.12.
go back to reference D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, W.C. Harsch: Electrical properties of bulk ZnO, Solid-State Commun. 105, 399–401 (1998)ADSCrossRef D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, W.C. Harsch: Electrical properties of bulk ZnO, Solid-State Commun. 105, 399–401 (1998)ADSCrossRef
19.13.
go back to reference D. Ehrentraut, H. Sato, Y. Kagamitani, H. Sato, A. Yoshikawa, T. Fukuda: Solvothermal growth of ZnO, Prog. Cryst. Growth Charact. Mater. 52, 280–335 (2006)CrossRef D. Ehrentraut, H. Sato, Y. Kagamitani, H. Sato, A. Yoshikawa, T. Fukuda: Solvothermal growth of ZnO, Prog. Cryst. Growth Charact. Mater. 52, 280–335 (2006)CrossRef
19.14.
go back to reference D.A. Kramer: Nitrogen (fixed) Ammonia. In: US Geological Survey, ed. by US Department of the Interior (United States Government Printing Office, Washington 2005) pp. 116–117 D.A. Kramer: Nitrogen (fixed) Ammonia. In: US Geological Survey, ed. by US Department of the Interior (United States Government Printing Office, Washington 2005) pp. 116–117
19.15.
go back to reference K. Byrappa, M. Yoshimura: Handbook of Hydrothermal Technology (William Andrew, New York 2001) K. Byrappa, M. Yoshimura: Handbook of Hydrothermal Technology (William Andrew, New York 2001)
19.16.
go back to reference M.T. Harris, J.J. Larkin, J.J. Martin: Low-defect colorless Bi_12SiO_20 grown by hydrothermal techniques, Appl. Phys. Lett. 60, 2162–2163 (1992)ADSCrossRef M.T. Harris, J.J. Larkin, J.J. Martin: Low-defect colorless Bi_12SiO_20 grown by hydrothermal techniques, Appl. Phys. Lett. 60, 2162–2163 (1992)ADSCrossRef
19.17.
go back to reference T. Hashimoto, K. Fujito, M. Saito, J.S. Speck, S. Nakamura: Ammonothermal growth of GaN on an over-1-inch seed crystal, Jpn. J. Appl. Phys. 44, L1570–1572 (2005)ADSCrossRef T. Hashimoto, K. Fujito, M. Saito, J.S. Speck, S. Nakamura: Ammonothermal growth of GaN on an over-1-inch seed crystal, Jpn. J. Appl. Phys. 44, L1570–1572 (2005)ADSCrossRef
19.18.
go back to reference R.A. Laudise: Hydrothermal Growth in The Growth of Single Crystals (Prentice-Hall, New Jersey 1970) pp. 275–293 R.A. Laudise: Hydrothermal Growth in The Growth of Single Crystals (Prentice-Hall, New Jersey 1970) pp. 275–293
19.19.
go back to reference H. Jacobs, D. Schmidt: High-pressure ammonolosis in solid-state chemistry. In: Current Topics in Materials Science, Vol. 8, ed. by E. Kaldis (North Holland, Amsterdam 1982) pp. 381–427 H. Jacobs, D. Schmidt: High-pressure ammonolosis in solid-state chemistry. In: Current Topics in Materials Science, Vol. 8, ed. by E. Kaldis (North Holland, Amsterdam 1982) pp. 381–427
19.20.
go back to reference B. Wang, M.J. Callahan: Ammonothermal synthesis of III-nitride crystals, Cryst. Growth Des. 6(6), 1227–1246 (2006)CrossRef B. Wang, M.J. Callahan: Ammonothermal synthesis of III-nitride crystals, Cryst. Growth Des. 6(6), 1227–1246 (2006)CrossRef
19.21.
go back to reference M. Suscavage, M. Harris, D. Bliss, P. Yip, S.Q. Wang, D. Schwall, L. Bouthillette, J. Bailey, M. Callahan, D.C. Look, D.C. Reynolds, R.L. Jones, C.W. Litton: High quality ZnO crystal, Mater. Res. Soc. Symp. Proc. 537, 294–299 (1999) M. Suscavage, M. Harris, D. Bliss, P. Yip, S.Q. Wang, D. Schwall, L. Bouthillette, J. Bailey, M. Callahan, D.C. Look, D.C. Reynolds, R.L. Jones, C.W. Litton: High quality ZnO crystal, Mater. Res. Soc. Symp. Proc. 537, 294–299 (1999)
19.22.
go back to reference R. R. Monchamp, R. C. Puttbach, J. W. Nielson: Hydrothermal growth of ZnO crystals (Airtron Division of Litton Industries, Morris Plains, technical report AFML-TR-67-144 1967) R. R. Monchamp, R. C. Puttbach, J. W. Nielson: Hydrothermal growth of ZnO crystals (Airtron Division of Litton Industries, Morris Plains, technical report AFML-TR-67-144 1967)
19.23.
go back to reference R.A. Laudise, E.D. Kolb: The solubity of zincite in basic hydrothermal solvents, Am. Mineral. 48(3), 642–648 (1963) R.A. Laudise, E.D. Kolb: The solubity of zincite in basic hydrothermal solvents, Am. Mineral. 48(3), 642–648 (1963)
19.24.
go back to reference D.F. Croxall, R.C.C. Ward, C.A. Wallace, R.C. Kell: Hydrothermal growth and investigation of Li-doped zinc oxide crystals of high purity and perfection, J. Cryst. Growth 22, 117 (1974)ADSCrossRef D.F. Croxall, R.C.C. Ward, C.A. Wallace, R.C. Kell: Hydrothermal growth and investigation of Li-doped zinc oxide crystals of high purity and perfection, J. Cryst. Growth 22, 117 (1974)ADSCrossRef
19.25.
go back to reference N. Sakagami: Hydrothermal growth and characterization of ZnO single crystals of high purity, J. Cryst. Growth 99, 905–909 (1990)ADSCrossRef N. Sakagami: Hydrothermal growth and characterization of ZnO single crystals of high purity, J. Cryst. Growth 99, 905–909 (1990)ADSCrossRef
19.26.
go back to reference L. Demianets, D. Kostomaro: Mechanism of zinc oxide single crystal growth under hydrothermal conditions, Ann. Chim. Sci. Mater. 26(1), 193–198 (2001)CrossRef L. Demianets, D. Kostomaro: Mechanism of zinc oxide single crystal growth under hydrothermal conditions, Ann. Chim. Sci. Mater. 26(1), 193–198 (2001)CrossRef
19.27.
go back to reference I.P. Kuzʼmina, A.N. Lobachev, N.S. Triodina: Synthesis of Zincite by the Hydrothermal Method in Crystallization Process Under Hydrothermal Conditions (Nauka, Moscow 1973) pp. 27–41CrossRef I.P. Kuzʼmina, A.N. Lobachev, N.S. Triodina: Synthesis of Zincite by the Hydrothermal Method in Crystallization Process Under Hydrothermal Conditions (Nauka, Moscow 1973) pp. 27–41CrossRef
19.28.
go back to reference T. Fukuda, D. Ehrentraut: Prospects for the ammonothermal growth of large GaN crystals, J. Cryst. Growth 305, 304–310 (2007)ADSCrossRef T. Fukuda, D. Ehrentraut: Prospects for the ammonothermal growth of large GaN crystals, J. Cryst. Growth 305, 304–310 (2007)ADSCrossRef
19.29.
go back to reference E.V. Kortunova, P.P. Chvanski, N.G. Nikolaeva: The first attempts of industrial manufacture of ZnO single crystals, J. Phys. IV France 126, 39–42 (2005)CrossRef E.V. Kortunova, P.P. Chvanski, N.G. Nikolaeva: The first attempts of industrial manufacture of ZnO single crystals, J. Phys. IV France 126, 39–42 (2005)CrossRef
19.30.
go back to reference L.E. McCandlish, R. Urhin: Mild conditions for hydrothermal growth of ZnO with potential for p-type semiconductor behavior, Poster Presentation at 5th Int. Conf. Solvotherm. React. Conf (East Brunswick, 2002), image supplied directly by L.E. McCandlish L.E. McCandlish, R. Urhin: Mild conditions for hydrothermal growth of ZnO with potential for p-type semiconductor behavior, Poster Presentation at 5th Int. Conf. Solvotherm. React. Conf (East Brunswick, 2002), image supplied directly by L.E. McCandlish
19.31.
go back to reference G.F. Hüttig, H. Möldner: The specific heat of crystallized zinc hydroxide and calculation of the affinities between zinc oxide and water, Z. Anorg. Chem. 211, 368–378 (1933)CrossRef G.F. Hüttig, H. Möldner: The specific heat of crystallized zinc hydroxide and calculation of the affinities between zinc oxide and water, Z. Anorg. Chem. 211, 368–378 (1933)CrossRef
19.32.
go back to reference C.H. Lu, C.H. Yeh: Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder, Ceram. Int. 26, 351–357 (2000)CrossRef C.H. Lu, C.H. Yeh: Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder, Ceram. Int. 26, 351–357 (2000)CrossRef
19.33.
go back to reference R.A. Laudise, A.A. Ballman: Hydrothermal synthesis of zinc oxide and zinc sulfide, J. Phys. Chem. 64(5), 688–691 (1960)CrossRef R.A. Laudise, A.A. Ballman: Hydrothermal synthesis of zinc oxide and zinc sulfide, J. Phys. Chem. 64(5), 688–691 (1960)CrossRef
19.34.
go back to reference M.M. Lencka, R.E. Riman: Synthesis of lead titanate: thermodynamic modeling and experimental verification, J. Am. Ceram. Soc. 76, 2649–2659 (1993)CrossRef M.M. Lencka, R.E. Riman: Synthesis of lead titanate: thermodynamic modeling and experimental verification, J. Am. Ceram. Soc. 76, 2649–2659 (1993)CrossRef
19.35.
go back to reference M.M. Lencka, A. Anderko, R.E. Riman: Hydrothermal precipitation of lead zirconate titanate solid solutions: thermodynamic modeling and experimental synthesis, J. Am. Ceram. Soc. 78, 2609–2618 (1995)CrossRef M.M. Lencka, A. Anderko, R.E. Riman: Hydrothermal precipitation of lead zirconate titanate solid solutions: thermodynamic modeling and experimental synthesis, J. Am. Ceram. Soc. 78, 2609–2618 (1995)CrossRef
19.36.
go back to reference M.M. Lencka, R.E. Riman: Themodynamic modeling of hydrothermal synthesis of ceramic powders, Chem. Mater. 5, 61–70 (1993)CrossRef M.M. Lencka, R.E. Riman: Themodynamic modeling of hydrothermal synthesis of ceramic powders, Chem. Mater. 5, 61–70 (1993)CrossRef
19.37.
go back to reference R. Dwilinski, R. Doradzinski, J. Garczynski, L. Sierzputowski, J.M. Baranowski, M. Kaminska: AMMONO method of GaN and AlN production, Diam. Relat. Mater. 7, 1348–1350 (1998)ADSCrossRef R. Dwilinski, R. Doradzinski, J. Garczynski, L. Sierzputowski, J.M. Baranowski, M. Kaminska: AMMONO method of GaN and AlN production, Diam. Relat. Mater. 7, 1348–1350 (1998)ADSCrossRef
19.38.
go back to reference A.P. Purdy: Ammonothermal sythesis of cubic gallium nitride, Chem. Mater. 11, 1648–1651 (1999)CrossRef A.P. Purdy: Ammonothermal sythesis of cubic gallium nitride, Chem. Mater. 11, 1648–1651 (1999)CrossRef
19.39.
go back to reference D.R. Ketchum, J.W. Kolis: Crystal growth of gallium nitride in supercritical ammonia, J. Cryst. Growth 222, 431–434 (2001)ADSCrossRef D.R. Ketchum, J.W. Kolis: Crystal growth of gallium nitride in supercritical ammonia, J. Cryst. Growth 222, 431–434 (2001)ADSCrossRef
19.40.
go back to reference A. Yoshikawa, E. Ohshima, T. Fukuda, H. Tsuji, K. Oshima: Crystal growth of GaN by ammonothermal method, J. Cryst. Growth 260, 67–72 (2004)ADSCrossRef A. Yoshikawa, E. Ohshima, T. Fukuda, H. Tsuji, K. Oshima: Crystal growth of GaN by ammonothermal method, J. Cryst. Growth 260, 67–72 (2004)ADSCrossRef
19.41.
go back to reference Y.C. Lan, X.L. Chen, M.A. Crimp, Y.G. Cao, Y.P. Xu, T. Xu, K.Q. Lu: Single crystal growth of gallium nitride in supercritical ammonia, Phys. Status Solidi (c) 2(7), 2066–2069 (2005)ADSCrossRef Y.C. Lan, X.L. Chen, M.A. Crimp, Y.G. Cao, Y.P. Xu, T. Xu, K.Q. Lu: Single crystal growth of gallium nitride in supercritical ammonia, Phys. Status Solidi (c) 2(7), 2066–2069 (2005)ADSCrossRef
19.42.
go back to reference B. Wang, M.J. Callahan, K. Rakes, D.F. Bliss, L.O. Bouthillette, S.-Q. Wang, J.W. Kolis: Ammonothermal growth of GaN crystals in alkaline solutions, J. Cryst. Growth 287, 376–380 (2006)ADSCrossRef B. Wang, M.J. Callahan, K. Rakes, D.F. Bliss, L.O. Bouthillette, S.-Q. Wang, J.W. Kolis: Ammonothermal growth of GaN crystals in alkaline solutions, J. Cryst. Growth 287, 376–380 (2006)ADSCrossRef
19.43.
go back to reference Y. Kagamitani, D. Ehrentraut, A. Yoshikawa, N. Hoshino, T. Fukuda, S. Kawabata, K. Inaba: Ammonothermal epitaxy of thick GaN film using NH_4Cl mineralizer, Jpn. J. Appl. Phys. 45(5A), 4018–4020 (2006)ADSCrossRef Y. Kagamitani, D. Ehrentraut, A. Yoshikawa, N. Hoshino, T. Fukuda, S. Kawabata, K. Inaba: Ammonothermal epitaxy of thick GaN film using NH_4Cl mineralizer, Jpn. J. Appl. Phys. 45(5A), 4018–4020 (2006)ADSCrossRef
19.44.
go back to reference D. Peters: Ammonothermal synthesis of aluminium nitride, J. Cryst. Growth 104, 411–418 (1990)ADSCrossRef D. Peters: Ammonothermal synthesis of aluminium nitride, J. Cryst. Growth 104, 411–418 (1990)ADSCrossRef
19.45.
go back to reference B. Wang, M.J. Callahan: Transport growth of GaN crystals by the ammonothermal technique using various nutrients, J. Cryst. Growth 291, 455–460 (2006)ADSCrossRef B. Wang, M.J. Callahan: Transport growth of GaN crystals by the ammonothermal technique using various nutrients, J. Cryst. Growth 291, 455–460 (2006)ADSCrossRef
19.46.
go back to reference A.P. Purdy, R.J. Jouet, F.G. Clifford: Ammonothermal recrystallization of gallium nitride with acidic mineralizers, Cryst. Growth Des. 2(2), 141–145 (2002)CrossRef A.P. Purdy, R.J. Jouet, F.G. Clifford: Ammonothermal recrystallization of gallium nitride with acidic mineralizers, Cryst. Growth Des. 2(2), 141–145 (2002)CrossRef
19.47.
go back to reference D. Ehrentraut, N. Hoshino, Y. Kagamitani, A. Yoshikawa, T. Fukuda, H. Itoh, S. Kawabata: Temperature effect of ammonium halogenides as mineralizers on the phase stability of gallium nitride synthesized under acidic ammonothermal conditions, J. Mater. Chem. 17, 886–893 (2007)CrossRef D. Ehrentraut, N. Hoshino, Y. Kagamitani, A. Yoshikawa, T. Fukuda, H. Itoh, S. Kawabata: Temperature effect of ammonium halogenides as mineralizers on the phase stability of gallium nitride synthesized under acidic ammonothermal conditions, J. Mater. Chem. 17, 886–893 (2007)CrossRef
19.48.
go back to reference B. Raghothamachar, W.M. Vetter, M. Dudley, R. Dalmau, R. Schlesser, Z. Sitar, E. Michael, J.W. Kolis: Synchrontron white beam topography charctrization of physical vapor transport grown AlN and ammonothermal GaN, J. Cryst. Growth 246, 271–280 (2002)ADSCrossRef B. Raghothamachar, W.M. Vetter, M. Dudley, R. Dalmau, R. Schlesser, Z. Sitar, E. Michael, J.W. Kolis: Synchrontron white beam topography charctrization of physical vapor transport grown AlN and ammonothermal GaN, J. Cryst. Growth 246, 271–280 (2002)ADSCrossRef
19.49.
go back to reference A.P. Purdy, S. Case, N. Murastore: Synthesis of GaN by high-pressure ammonolysis of gallium triiodide, J. Cryst. Growth 252, 136–143 (2003)ADSCrossRef A.P. Purdy, S. Case, N. Murastore: Synthesis of GaN by high-pressure ammonolysis of gallium triiodide, J. Cryst. Growth 252, 136–143 (2003)ADSCrossRef
19.50.
go back to reference T. Hashimoto, K. Fujito, R. Sharma, E.R. Letts, P.T. Fini, J.S. Speck, S. Nakamura: Phase selection of microcrystalline GaN synthesized in supercritical ammonia, J. Cryst. Growth 291, 100–106 (2006)ADSCrossRef T. Hashimoto, K. Fujito, R. Sharma, E.R. Letts, P.T. Fini, J.S. Speck, S. Nakamura: Phase selection of microcrystalline GaN synthesized in supercritical ammonia, J. Cryst. Growth 291, 100–106 (2006)ADSCrossRef
19.51.
go back to reference A. Purdy: Growth of cubic GaN crystals from hexagonal GaN feedstock, J. Cryst. Growth 281, 355–363 (2005)ADSCrossRef A. Purdy: Growth of cubic GaN crystals from hexagonal GaN feedstock, J. Cryst. Growth 281, 355–363 (2005)ADSCrossRef
19.52.
go back to reference A.N. Mariano, R.E. Hanneman: Crystallographic polarity of ZnO crystals, J. Appl. Phys. 34, 384–389 (1963)ADSCrossRef A.N. Mariano, R.E. Hanneman: Crystallographic polarity of ZnO crystals, J. Appl. Phys. 34, 384–389 (1963)ADSCrossRef
19.53.
go back to reference B. Wang, M.J. Callahan, L.O. Bouthillette: Hydrothermal growth and photoluminescence of Zn_1-xMg_xO alloy crystals, Cryst. Growth Des. 6, 1256–1260 (2006)CrossRef B. Wang, M.J. Callahan, L.O. Bouthillette: Hydrothermal growth and photoluminescence of Zn_1-xMg_xO alloy crystals, Cryst. Growth Des. 6, 1256–1260 (2006)CrossRef
19.54.
go back to reference M. J. Callahan, B. Wang, unpublished results M. J. Callahan, B. Wang, unpublished results
19.55.
go back to reference Q.-S. Chen, V. Prasad, W.R. Hu: Modeling of ammonothermal growth of nitrides, J. Cryst. Growth 258, 181–187 (2003)ADSCrossRef Q.-S. Chen, V. Prasad, W.R. Hu: Modeling of ammonothermal growth of nitrides, J. Cryst. Growth 258, 181–187 (2003)ADSCrossRef
19.56.
19.57.
go back to reference V. Prasad: Convective flow interaction and heat transfer between fluid and porous layers. In: Convective Heat and Mass Transfer in Porous Media, ed. by S. Kakaç, B. Kilkiş, F.A. Kulacki, F. Arinç (Kluwer, Netherlands 1991) pp. 563–615CrossRef V. Prasad: Convective flow interaction and heat transfer between fluid and porous layers. In: Convective Heat and Mass Transfer in Porous Media, ed. by S. Kakaç, B. Kilkiş, F.A. Kulacki, F. Arinç (Kluwer, Netherlands 1991) pp. 563–615CrossRef
19.58.
go back to reference Q.-S. Chen, V. Prasad, A. Chatterjee, J. Larkin: A porous media-based transport model for hydrothermal growth, J. Cryst. Growth 198/199, 710–715 (1999)ADSCrossRef Q.-S. Chen, V. Prasad, A. Chatterjee, J. Larkin: A porous media-based transport model for hydrothermal growth, J. Cryst. Growth 198/199, 710–715 (1999)ADSCrossRef
19.59.
go back to reference Q.-S. Chen, V. Prasad, A. Chatterjee: Modeling of fluid flow and heat transfer in a hydrothermal crystal growth system: use of fluid-superposed porous layer theory, J. Heat Transf. 121, 1049–1058 (1999)CrossRef Q.-S. Chen, V. Prasad, A. Chatterjee: Modeling of fluid flow and heat transfer in a hydrothermal crystal growth system: use of fluid-superposed porous layer theory, J. Heat Transf. 121, 1049–1058 (1999)CrossRef
19.60.
go back to reference H. Zhang, V. Prasad, M.K. Moallemi: Numerical algorithm using multizone adaptive grid generation for multiphase transport processes with moving and free boundaries, Num. Heat Transf. 29(B), 399–421 (1996)ADSCrossRef H. Zhang, V. Prasad, M.K. Moallemi: Numerical algorithm using multizone adaptive grid generation for multiphase transport processes with moving and free boundaries, Num. Heat Transf. 29(B), 399–421 (1996)ADSCrossRef
19.61.
go back to reference H. Zhang, V. Prasad: An advanced numerical scheme for materials process modeling, Comput. Model. Simul. Eng. 2, 322–343 (1997) H. Zhang, V. Prasad: An advanced numerical scheme for materials process modeling, Comput. Model. Simul. Eng. 2, 322–343 (1997)
19.62.
go back to reference Q.-S. Chen, S. Pendurti, V. Prasad: Effects of baffle design on fluid flow and heat transfer in ammonothermal growth of nitrides, J. Cryst. Growth 266, 271–277 (2004)ADSCrossRef Q.-S. Chen, S. Pendurti, V. Prasad: Effects of baffle design on fluid flow and heat transfer in ammonothermal growth of nitrides, J. Cryst. Growth 266, 271–277 (2004)ADSCrossRef
19.63.
go back to reference A.J. Chapman: Heat Transfer (Macmillan, New York 1984) A.J. Chapman: Heat Transfer (Macmillan, New York 1984)
19.64.
go back to reference M. Callahan, B.-G. Wang, K. Rakes, D. Bliss, L. Bouthillette, M. Suscavage, S.-Q. Wang: GaN single crystals grown on HVPE seeds in alkaline supercritical ammonia, J. Mater. Sci. 41, 1399–1407 (2006)ADSCrossRef M. Callahan, B.-G. Wang, K. Rakes, D. Bliss, L. Bouthillette, M. Suscavage, S.-Q. Wang: GaN single crystals grown on HVPE seeds in alkaline supercritical ammonia, J. Mater. Sci. 41, 1399–1407 (2006)ADSCrossRef
19.65.
go back to reference Q.-S. Chen, S. Pendurti, V. Prasad: Modeling of ammonothermal growth of gallium nitride single crystals, J. Mater. Sci. 41, 1409–1414 (2006)ADSCrossRef Q.-S. Chen, S. Pendurti, V. Prasad: Modeling of ammonothermal growth of gallium nitride single crystals, J. Mater. Sci. 41, 1409–1414 (2006)ADSCrossRef
19.66.
go back to reference T. Sekiguchi, S. Miyashita, K. Obara, T. Shishido, N. Sakagami: Hydrothermal growth of ZnO single crystals and their optical characterization, J. Cryst. Growth 214/215, 72–76 (2000)ADSCrossRef T. Sekiguchi, S. Miyashita, K. Obara, T. Shishido, N. Sakagami: Hydrothermal growth of ZnO single crystals and their optical characterization, J. Cryst. Growth 214/215, 72–76 (2000)ADSCrossRef
19.67.
go back to reference L.N. Demianets, D.V. Kostomarov, I.P. Kuzʼmina, S.V. Pushko: Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions, Cryst. Rep. 47, S86–S98 (2002), Supp 1CrossRef L.N. Demianets, D.V. Kostomarov, I.P. Kuzʼmina, S.V. Pushko: Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions, Cryst. Rep. 47, S86–S98 (2002), Supp 1CrossRef
19.68.
go back to reference B.G. Wang: Understanding and controlling the morphology of ZnO crystallites under hydrothermal conditions, Cryst. Res. Technol. 32, 659–667 (1997)ADSCrossRef B.G. Wang: Understanding and controlling the morphology of ZnO crystallites under hydrothermal conditions, Cryst. Res. Technol. 32, 659–667 (1997)ADSCrossRef
19.69.
go back to reference W.J. Li, E.W. Shi, W.Z. Zhong, Z.W. Yin: Growth mechanism and growth habit of oxide crystals, J. Cryst. Growth 203, 186–196 (1999)ADSCrossRef W.J. Li, E.W. Shi, W.Z. Zhong, Z.W. Yin: Growth mechanism and growth habit of oxide crystals, J. Cryst. Growth 203, 186–196 (1999)ADSCrossRef
19.70.
go back to reference I.L. Khodakovskiy, A.Y. Yelkin: Measurement of the solubility of zincite in aqueous NaOH at 100, 150, and 200 °C, Geokhimiya 10, 1490–1498 (1975) I.L. Khodakovskiy, A.Y. Yelkin: Measurement of the solubility of zincite in aqueous NaOH at 100, 150, and 200 °C, Geokhimiya 10, 1490–1498 (1975)
19.71.
go back to reference P. Bénézeth, D. Palmer, D. Wesolowski: The solubility of zinc oxide in 0.03 m NaTr as a function of temperature with in-situ pH measurement, Geochim. Cosmochi. Acta 63, 1571–1586 (1999)ADSCrossRef P. Bénézeth, D. Palmer, D. Wesolowski: The solubility of zinc oxide in 0.03 m NaTr as a function of temperature with in-situ pH measurement, Geochim. Cosmochi. Acta 63, 1571–1586 (1999)ADSCrossRef
19.72.
go back to reference B.G. Wang, E.W. Shi, W.Z. Zhong: Twinning morphologies and mechanisms of ZnO crystallites under hydrothermal conditions, Cryst. Res. Technol. 33, 937–941 (1998)CrossRef B.G. Wang, E.W. Shi, W.Z. Zhong: Twinning morphologies and mechanisms of ZnO crystallites under hydrothermal conditions, Cryst. Res. Technol. 33, 937–941 (1998)CrossRef
19.73.
go back to reference M.M. Lukina, M.V. Lelekova, V.E. Khadzhi: Effect of lithium on the growth rate of zincite and quartz under hydrothermal conditions, Sov. Phys. Crystallogr. 15, 530–531 (1970) M.M. Lukina, M.V. Lelekova, V.E. Khadzhi: Effect of lithium on the growth rate of zincite and quartz under hydrothermal conditions, Sov. Phys. Crystallogr. 15, 530–531 (1970)
19.74.
go back to reference R.A. Laudise, R.L. Barnes: Perfection of quartz and its connection to crystal growth, IEEE Trans. Ultrasonics Ferroelectr. Freq. Control. 35, 277–287 (1998)CrossRef R.A. Laudise, R.L. Barnes: Perfection of quartz and its connection to crystal growth, IEEE Trans. Ultrasonics Ferroelectr. Freq. Control. 35, 277–287 (1998)CrossRef
19.75.
go back to reference A.F. Armington: Recent advances in the growth of high quality quartz, Prog. Cryst. Growth Charact. 21, 97–111 (1990)CrossRef A.F. Armington: Recent advances in the growth of high quality quartz, Prog. Cryst. Growth Charact. 21, 97–111 (1990)CrossRef
19.76.
go back to reference E.D. Kolb, R.A. Laudise: Hydrothermally grown ZnO crystals of low and intermediate resistivity, J. Am. Ceram. Soc. 49, 302–305 (1966)CrossRef E.D. Kolb, R.A. Laudise: Hydrothermally grown ZnO crystals of low and intermediate resistivity, J. Am. Ceram. Soc. 49, 302–305 (1966)CrossRef
19.77.
go back to reference E.D. Kolb, S. Coriell, R.A. Laudise, A.R. Hutson: The hydrothermal growth of low carrier concentration ZnO at high water and hydrogen pressures, Mater. Res. Bull 2, 1099–1106 (1967)CrossRef E.D. Kolb, S. Coriell, R.A. Laudise, A.R. Hutson: The hydrothermal growth of low carrier concentration ZnO at high water and hydrogen pressures, Mater. Res. Bull 2, 1099–1106 (1967)CrossRef
19.78.
go back to reference I.P. Kuzʼmina: Crystallization kinetics of zincite under hydrothermal conditions, Sov. Phys. Crystallogr. 13(5), 803–805 (1969), translated from Kristallogr., Vol. 13, No.5 I.P. Kuzʼmina: Crystallization kinetics of zincite under hydrothermal conditions, Sov. Phys. Crystallogr. 13(5), 803–805 (1969), translated from Kristallogr., Vol. 13, No.5
19.79.
go back to reference G. Dhanaraj, M. Dudley, D. Bliss, M. Callahan, M. Harris: Growth and process induced dislocation in zinc oxide crystals, J. Cryst. Growth 297, 74–79 (2006)ADSCrossRef G. Dhanaraj, M. Dudley, D. Bliss, M. Callahan, M. Harris: Growth and process induced dislocation in zinc oxide crystals, J. Cryst. Growth 297, 74–79 (2006)ADSCrossRef
19.80.
go back to reference H. Youping, Z. Jinbo, W. Dexang, S. Genbo, Y. Mingshan: New technology of KDP crystal growth, J. Cryst. Growth 169, 196–198 (1996)CrossRef H. Youping, Z. Jinbo, W. Dexang, S. Genbo, Y. Mingshan: New technology of KDP crystal growth, J. Cryst. Growth 169, 196–198 (1996)CrossRef
19.81.
go back to reference B. Wang, M.J. Callahan, C. Xu, L.O. Bouthillette, N.C. Giles, D.F. Bliss: Hydrothermal growth and characterization of indium-doped-conducting ZnO crystals, J. Cryst. Growth 304, 73–79 (2007)ADSCrossRef B. Wang, M.J. Callahan, C. Xu, L.O. Bouthillette, N.C. Giles, D.F. Bliss: Hydrothermal growth and characterization of indium-doped-conducting ZnO crystals, J. Cryst. Growth 304, 73–79 (2007)ADSCrossRef
19.82.
go back to reference N.Y. Garces, L. Wang, L. Bai, N.C. Giles, L.E. Halliburton, G. Cantwell: Role of copper in the green luminescence from ZnO crystals, Appl. Phys. Lett. 81, 622–624 (2002)ADSCrossRef N.Y. Garces, L. Wang, L. Bai, N.C. Giles, L.E. Halliburton, G. Cantwell: Role of copper in the green luminescence from ZnO crystals, Appl. Phys. Lett. 81, 622–624 (2002)ADSCrossRef
19.83.
go back to reference E.D. Kolb, R.A. Laudise: Hydrothermally grown ZnO crystals of low and intermediate resistivity, J. Am. Ceram. Soc. 49, 302–305 (1966)CrossRef E.D. Kolb, R.A. Laudise: Hydrothermally grown ZnO crystals of low and intermediate resistivity, J. Am. Ceram. Soc. 49, 302–305 (1966)CrossRef
19.84.
go back to reference C.G. Van de Walle: Hydrogen as a cause of doping in zinc oxide, Phys. Rev. Lett. 85(5), 1012–1015 (2000)ADSCrossRef C.G. Van de Walle: Hydrogen as a cause of doping in zinc oxide, Phys. Rev. Lett. 85(5), 1012–1015 (2000)ADSCrossRef
19.85.
go back to reference R. Littbarski: Carrier concentration and mobility. In: Current Topics in Materials Science, Vol. 7, ed. by E. Kaldis (North-Holland, Amsterdam 1981) pp. 212–225 R. Littbarski: Carrier concentration and mobility. In: Current Topics in Materials Science, Vol. 7, ed. by E. Kaldis (North-Holland, Amsterdam 1981) pp. 212–225
19.86.
go back to reference B. Theys, V. Sallet, F. Jomard, A. Lusson, J. Rommeluère, Z. Teukam: Effects of intentionally introduced hydrogen on the electric properties of ZnO layers grown by metalorganic chemical vapor deposition, J. Appl. Phys. 91, 3922–3924 (2002)ADSCrossRef B. Theys, V. Sallet, F. Jomard, A. Lusson, J. Rommeluère, Z. Teukam: Effects of intentionally introduced hydrogen on the electric properties of ZnO layers grown by metalorganic chemical vapor deposition, J. Appl. Phys. 91, 3922–3924 (2002)ADSCrossRef
19.87.
go back to reference D.C. Look, J.W. Hemsky, J.R. Sizelove: Residual native shallow donor in ZnO, Phys. Rev. Lett. 82, 2552–2555 (1999)ADSCrossRef D.C. Look, J.W. Hemsky, J.R. Sizelove: Residual native shallow donor in ZnO, Phys. Rev. Lett. 82, 2552–2555 (1999)ADSCrossRef
19.88.
go back to reference A. Urbieta, P. Fernández, J. Piqueras, T. Sekiguchi: Scanning tunneling spectroscopy characterization of ZnO single crystals, Semicond. Sci. Technol. 16, 589–593 (2001)ADSCrossRef A. Urbieta, P. Fernández, J. Piqueras, T. Sekiguchi: Scanning tunneling spectroscopy characterization of ZnO single crystals, Semicond. Sci. Technol. 16, 589–593 (2001)ADSCrossRef
19.89.
go back to reference N. Sakagami, M. Yamashita, T. Sekiguchi, S. Miyashita, K. Obara, T. Shishido: Variation of electrical properties on growth sectors of ZnO single crystals, J. Cryst. Growth 229, 98–103 (2001)ADSCrossRef N. Sakagami, M. Yamashita, T. Sekiguchi, S. Miyashita, K. Obara, T. Shishido: Variation of electrical properties on growth sectors of ZnO single crystals, J. Cryst. Growth 229, 98–103 (2001)ADSCrossRef
19.90.
go back to reference M. Yoneta, K. Yoshino, M. Ohishi, H. Saito: Photoluminescense studies of high-quality ZnO single crystals by hydrothermal method, Phys. B 376–377, 745–748 (2006)CrossRef M. Yoneta, K. Yoshino, M. Ohishi, H. Saito: Photoluminescense studies of high-quality ZnO single crystals by hydrothermal method, Phys. B 376–377, 745–748 (2006)CrossRef
19.91.
go back to reference J. Mass, M. Avella, J. Jiménez, M. Callahan, E. Grant, K. Rakes, D. Bliss, B. Wang: Cathodoluminescence characterization of hydrothermal ZnO crystals, Superlattice Microstruct. 38, 223–230 (2005)ADSCrossRef J. Mass, M. Avella, J. Jiménez, M. Callahan, E. Grant, K. Rakes, D. Bliss, B. Wang: Cathodoluminescence characterization of hydrothermal ZnO crystals, Superlattice Microstruct. 38, 223–230 (2005)ADSCrossRef
19.92.
go back to reference L.N. Demʼyanets, V.I. Lyutin: Status of hydrothermal growth of bulk ZnO: latest issues and advantages, J. Cryst. Growth 310, 993–999 (2008)ADSCrossRef L.N. Demʼyanets, V.I. Lyutin: Status of hydrothermal growth of bulk ZnO: latest issues and advantages, J. Cryst. Growth 310, 993–999 (2008)ADSCrossRef
19.93.
go back to reference J. Mass, M. Avella, J. Jiménez, A. Rodriquez, T. Rodriquez, M. Callahan, D. Bliss, B. Wang: Cathodoluminescence study of ZnO wafer cut from hydrothermal crystals, J. Cryst. Growth 310, 1000–1005 (2008)ADSCrossRef J. Mass, M. Avella, J. Jiménez, A. Rodriquez, T. Rodriquez, M. Callahan, D. Bliss, B. Wang: Cathodoluminescence study of ZnO wafer cut from hydrothermal crystals, J. Cryst. Growth 310, 1000–1005 (2008)ADSCrossRef
19.94.
go back to reference D.C. Reynolds, D.C. Look, B. Jogai, H. Morkoç: Simililarities in the bandedge and deep-centre photoluminescence mechanisms of ZnO and GaN, Solid State Commun. 101, 643–646 (1997)ADSCrossRef D.C. Reynolds, D.C. Look, B. Jogai, H. Morkoç: Simililarities in the bandedge and deep-centre photoluminescence mechanisms of ZnO and GaN, Solid State Commun. 101, 643–646 (1997)ADSCrossRef
19.95.
go back to reference A. Urbieta, P. Fernández, J. Piqueras, C. Hardalov, T. Sekiguchi: Cathodoluminescence microscopy of hydrothermal and flux grown ZnO single crystals, J. Phys. D Appl. Phys. 34, 2945–2949 (2001)ADSCrossRef A. Urbieta, P. Fernández, J. Piqueras, C. Hardalov, T. Sekiguchi: Cathodoluminescence microscopy of hydrothermal and flux grown ZnO single crystals, J. Phys. D Appl. Phys. 34, 2945–2949 (2001)ADSCrossRef
19.96.
go back to reference A. Urbieta, P. Fernández, C. Hardalov, J. Piqueras, T. Sekiguchi: Cathodoluminescense and scanning tunneling spectroscopy, Mater. Sci. Eng. B91–92, 345–348 (2002)CrossRef A. Urbieta, P. Fernández, C. Hardalov, J. Piqueras, T. Sekiguchi: Cathodoluminescense and scanning tunneling spectroscopy, Mater. Sci. Eng. B91–92, 345–348 (2002)CrossRef
19.97.
go back to reference J. Mass, M. Avella, J. Jiménez, M. Callahan, E. Grant, K. Rakes, D. Bliss, B. Wang: Visable luminescence in ZnO. In: New Materials and Procecesses for Incoming Semiconductor Technologies, ed. by S. Dueñas, H. Castán (Transworld Research Network, Kerala 2006) J. Mass, M. Avella, J. Jiménez, M. Callahan, E. Grant, K. Rakes, D. Bliss, B. Wang: Visable luminescence in ZnO. In: New Materials and Procecesses for Incoming Semiconductor Technologies, ed. by S. Dueñas, H. Castán (Transworld Research Network, Kerala 2006)
19.98.
go back to reference D. Bliss: Zinc oxide. In: Encyclopedia of Advanced Materials, ed. by D. Bloor, M.C. Flemings, R.J. Brook, S. Mahajan, R.W. Cahn (Pergamon, Oxford 1994) pp. 9888–9891 D. Bliss: Zinc oxide. In: Encyclopedia of Advanced Materials, ed. by D. Bloor, M.C. Flemings, R.J. Brook, S. Mahajan, R.W. Cahn (Pergamon, Oxford 1994) pp. 9888–9891
19.99.
go back to reference C. Woods, A.J. Drehman: Presentation, Natl. Space Missile Mater. Symp. (Monterey, 2001) C. Woods, A.J. Drehman: Presentation, Natl. Space Missile Mater. Symp. (Monterey, 2001)
19.100.
go back to reference B. Wang, M. Callahan, J. Bailey: Synthesis of dense polycrystalline GaN of high purity by the chemical vapor reaction process, J. Cryst. Growth 286, 50–54 (2005)ADSCrossRef B. Wang, M. Callahan, J. Bailey: Synthesis of dense polycrystalline GaN of high purity by the chemical vapor reaction process, J. Cryst. Growth 286, 50–54 (2005)ADSCrossRef
19.101.
go back to reference K. Lee, K. Auh: Dislocation density of GaN grown by hydride vapor phase epitaxy, MRS Int. J. Nitride Semicond. Res. 6, 9 (2001) K. Lee, K. Auh: Dislocation density of GaN grown by hydride vapor phase epitaxy, MRS Int. J. Nitride Semicond. Res. 6, 9 (2001)
19.102.
go back to reference B. Raghothamacher, J. Bai, M. Dudley, R. Dalmau, D. Zhuang, Z. Herro, R. Schlesser, Z. Sitar, B. Wang, M. Callahan, K. Rakes, P. Konkapaka, M. Spencer: Characterization of bulk-grown GaN and AlN single-crystals materials, J. Cryst. Growth 287, 349–353 (2006)ADSCrossRef B. Raghothamacher, J. Bai, M. Dudley, R. Dalmau, D. Zhuang, Z. Herro, R. Schlesser, Z. Sitar, B. Wang, M. Callahan, K. Rakes, P. Konkapaka, M. Spencer: Characterization of bulk-grown GaN and AlN single-crystals materials, J. Cryst. Growth 287, 349–353 (2006)ADSCrossRef
19.103.
go back to reference M.J. Callahan, B. Wang, L. Bouthillette, S.-Q. Wang, J.W. Kolis, D. Bliss: Growth of GaN crystals under ammonothermal conditions, MRS Fall Meet. Symp. Proc. 798, Y2.10 (2004) M.J. Callahan, B. Wang, L. Bouthillette, S.-Q. Wang, J.W. Kolis, D. Bliss: Growth of GaN crystals under ammonothermal conditions, MRS Fall Meet. Symp. Proc. 798, Y2.10 (2004)
19.104.
go back to reference T. Hashimoto, M. Saito, K. Fujito, F. Wu, J.S. Speck, S. Nakamura: Seeded growth of GaN by the basic ammonothermal method, J. Cryst. Growth 305, 311–316 (2007)ADSCrossRef T. Hashimoto, M. Saito, K. Fujito, F. Wu, J.S. Speck, S. Nakamura: Seeded growth of GaN by the basic ammonothermal method, J. Cryst. Growth 305, 311–316 (2007)ADSCrossRef
19.105.
go back to reference Images provided by Prof. Brian Skrommeʼs group, Arizona St. Univ. Images provided by Prof. Brian Skrommeʼs group, Arizona St. Univ.
19.106.
go back to reference T. Hashimoto, K. Fujito, F. Wu, B.A. Haskell, P.T. Fini, J.S. Speck, S. Nakamura: Structural characterization of thick GaN films grown on free-standing GaN seeds by the ammonothermal method using basic ammonia, Jpn. J. Appl. Phys. 44(25), L797–L799 (2005)ADSCrossRef T. Hashimoto, K. Fujito, F. Wu, B.A. Haskell, P.T. Fini, J.S. Speck, S. Nakamura: Structural characterization of thick GaN films grown on free-standing GaN seeds by the ammonothermal method using basic ammonia, Jpn. J. Appl. Phys. 44(25), L797–L799 (2005)ADSCrossRef
19.107.
go back to reference R. Dwilinski, R. Doradzinski, J. Garzynski, L.P. Sierzputowski, A. Puchalski, Y. Kanaba, K. Yagi, H. Minakuchi, H. Hayashi: Excellent crystallinity of truly bulk ammonothermal GaN, J. Cryst. Growth 310, 3911–3916 (2008)ADSCrossRef R. Dwilinski, R. Doradzinski, J. Garzynski, L.P. Sierzputowski, A. Puchalski, Y. Kanaba, K. Yagi, H. Minakuchi, H. Hayashi: Excellent crystallinity of truly bulk ammonothermal GaN, J. Cryst. Growth 310, 3911–3916 (2008)ADSCrossRef
19.108.
go back to reference J. Bai, M. Dudley, B. Raghothamachar, P. Gouma, B.J. Skrome, L. Chen, P.J. Hartlieb, E. Michaels, J. Kolis: Correlated structural and optical characterization of ammonothermally grown bulk GaN, Appl. Phys. Lett. 84(17), 3289–3291 (2004)ADSCrossRef J. Bai, M. Dudley, B. Raghothamachar, P. Gouma, B.J. Skrome, L. Chen, P.J. Hartlieb, E. Michaels, J. Kolis: Correlated structural and optical characterization of ammonothermally grown bulk GaN, Appl. Phys. Lett. 84(17), 3289–3291 (2004)ADSCrossRef
19.109.
go back to reference M.P. DʼEvelyn, H.C. Hong, D.-S. Park, H. Lu, E. Kaminsky, R.R. Melkote, P. Perlin, M. Lesczynski, S. Porowski, R.J. Molnar: Bulk GaN crystal growth by th high-pressure ammonothermal method, J. Cryst. Growth 300, 11–16 (2007)ADSCrossRef M.P. DʼEvelyn, H.C. Hong, D.-S. Park, H. Lu, E. Kaminsky, R.R. Melkote, P. Perlin, M. Lesczynski, S. Porowski, R.J. Molnar: Bulk GaN crystal growth by th high-pressure ammonothermal method, J. Cryst. Growth 300, 11–16 (2007)ADSCrossRef
19.110.
go back to reference S.V. Bhat, K. Biswas, C.N.R. Rao: Synthesis and optical properties of In-doped GaN nanocrystals, Solid State Commun. 141, 325–328 (2007)ADSCrossRef S.V. Bhat, K. Biswas, C.N.R. Rao: Synthesis and optical properties of In-doped GaN nanocrystals, Solid State Commun. 141, 325–328 (2007)ADSCrossRef
19.111.
go back to reference B.T. Adekore, K. Rakes, B. Wang, M.J. Callahan, S. Pendurti, Z. Sitar: Ammonothermal synthesis of aluminum nitride crystals on group III-nitride templates, J. Electron. Mater. 35, 1104–1111 (2006)ADSCrossRef B.T. Adekore, K. Rakes, B. Wang, M.J. Callahan, S. Pendurti, Z. Sitar: Ammonothermal synthesis of aluminum nitride crystals on group III-nitride templates, J. Electron. Mater. 35, 1104–1111 (2006)ADSCrossRef
19.112.
go back to reference M. Zajac, J. Gosk, E. Grzanka, S. Stelmakh, M. Palczewska, A. Wysmołek, K. Korona, M. Kamińska, A. Twardowski: Ammomonothermal sythesis of GaN doped with transition metal ions (Mn, Fe, Cr), J. Alloys Compd. 456, 324–338 (2008)CrossRef M. Zajac, J. Gosk, E. Grzanka, S. Stelmakh, M. Palczewska, A. Wysmołek, K. Korona, M. Kamińska, A. Twardowski: Ammomonothermal sythesis of GaN doped with transition metal ions (Mn, Fe, Cr), J. Alloys Compd. 456, 324–338 (2008)CrossRef
19.113.
go back to reference A. Denis, G. Goglio, G. Demazeau: Gallium nitride bulk crystal growth processes: a review, Mater. Sci. Eng. R 50, 167–194 (2006)CrossRef A. Denis, G. Goglio, G. Demazeau: Gallium nitride bulk crystal growth processes: a review, Mater. Sci. Eng. R 50, 167–194 (2006)CrossRef
Metadata
Title
Hydrothermal and Ammonothermal Growth of ZnO and GaN
Authors
Michael J. Callahan
Qi-Sheng Chen
Copyright Year
2010
DOI
https://doi.org/10.1007/978-3-540-74761-1_19

Premium Partners