Skip to main content
Top
Published in:
Cover of the book

2012 | OriginalPaper | Chapter

1. Hypermutability Associated with Double-Strand Break Repair

Author : Dmitry A. Gordenin

Published in: Radiobiology and Environmental Security

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Double-strand breaks (DSBs) are the most toxic kind of DNA damage caused by ionizing radiation as well as by a number of other environmental factors and drugs. DSBs lead to gross chromosome rearrangements, genetic disease, and cancer or cell death. However cells can be programmed to generate DSBs in their own DNA. Programmed DSBs are a key element of many biological functions such as meiotic recombination and segregation, adaptive immunity, regulation switches and viral life cycles. Either damage-induced or programmed DSBs should be repaired in order to retain cell viability. Over the last years it has been established that DSB repair can be associated with up to 10,000-fold increase in frequency of base substitutions and small insertions/deletions (indels). This localized hypermutability represents additional genotoxic threat as well as a potential for generating rare multiple mutant alleles with high fitness without overloading the rest of the genome with mutations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Amundsen SK, Smith GR (2003) Interchangeable parts of the Escherichia coli recombination machinery. Cell 112(6):741–744CrossRef Amundsen SK, Smith GR (2003) Interchangeable parts of the Escherichia coli recombination machinery. Cell 112(6):741–744CrossRef
2.
go back to reference Berglund J, Pollard KS, Webster MT (2009) Hotspots of biased nucleotide substitutions in human genes. PLoS Biol 7(1):e26CrossRef Berglund J, Pollard KS, Webster MT (2009) Hotspots of biased nucleotide substitutions in human genes. PLoS Biol 7(1):e26CrossRef
3.
go back to reference Bjursell G, Gussander E, Lindahl T (1979) Long regions of single-stranded DNA in human cells. Nature 280(5721):420–423CrossRef Bjursell G, Gussander E, Lindahl T (1979) Long regions of single-stranded DNA in human cells. Nature 280(5721):420–423CrossRef
4.
go back to reference Camps M, Herman A, Loh E, Loeb LA (2007) Genetic constraints on protein evolution. Crit Rev Biochem Mol Biol 42(5):313–326CrossRef Camps M, Herman A, Loh E, Loeb LA (2007) Genetic constraints on protein evolution. Crit Rev Biochem Mol Biol 42(5):313–326CrossRef
5.
go back to reference Chen Z, Feng J, Buzin CH, Sommer SS (2008) Epidemiology of doublet/multiplet mutations in lung cancers: evidence that a subset arises by chronocoordinate events. PLoS One 3(11):e3714CrossRef Chen Z, Feng J, Buzin CH, Sommer SS (2008) Epidemiology of doublet/multiplet mutations in lung cancers: evidence that a subset arises by chronocoordinate events. PLoS One 3(11):e3714CrossRef
6.
go back to reference Chen Z, Feng J, Saldivar JS, Gu D, Bockholt A, Sommer SS (2008) EGFR somatic doublets in lung cancer are frequent and generally arise from a pair of driver mutations uncommonly seen as singlet mutations: one-third of doublets occur at five pairs of amino acids. Oncogene 27(31):4336–4343CrossRef Chen Z, Feng J, Saldivar JS, Gu D, Bockholt A, Sommer SS (2008) EGFR somatic doublets in lung cancer are frequent and generally arise from a pair of driver mutations uncommonly seen as singlet mutations: one-third of doublets occur at five pairs of amino acids. Oncogene 27(31):4336–4343CrossRef
7.
go back to reference Colgin LM, Hackmann AF, Emond MJ, Monnat RJ Jr (2002) The unexpected landscape of in vivo somatic mutation in a human epithelial cell lineage. Proc Natl Acad Sci USA 99(3):1437–1442CrossRef Colgin LM, Hackmann AF, Emond MJ, Monnat RJ Jr (2002) The unexpected landscape of in vivo somatic mutation in a human epithelial cell lineage. Proc Natl Acad Sci USA 99(3):1437–1442CrossRef
8.
go back to reference De S, Babu MM (2010) A time-invariant principle of genome evolution. Proc Natl Acad Sci USA 107(29):13004–13009CrossRef De S, Babu MM (2010) A time-invariant principle of genome evolution. Proc Natl Acad Sci USA 107(29):13004–13009CrossRef
9.
go back to reference DePristo MA, Weinreich DM, Hartl DL (2005) Missense meanderings in sequence space: a biophysical view of protein evolution. Nat Rev Genet 6(9):678–687CrossRef DePristo MA, Weinreich DM, Hartl DL (2005) Missense meanderings in sequence space: a biophysical view of protein evolution. Nat Rev Genet 6(9):678–687CrossRef
10.
go back to reference Drake JW (1999) The distribution of rates of spontaneous mutation over viruses, prokaryotes, and eukaryotes. Ann N Y Acad Sci 870:100–107CrossRef Drake JW (1999) The distribution of rates of spontaneous mutation over viruses, prokaryotes, and eukaryotes. Ann N Y Acad Sci 870:100–107CrossRef
11.
go back to reference Drake JW, Holland JJ (1999) Mutation rates among RNA viruses. Proc Natl Acad Sci USA 96(24):13910–13913CrossRef Drake JW, Holland JJ (1999) Mutation rates among RNA viruses. Proc Natl Acad Sci USA 96(24):13910–13913CrossRef
12.
go back to reference Dreszer TR, Wall GD, Haussler D, Pollard KS (2007) Biased clustered substitutions in the human genome: the footprints of male-driven biased gene conversion. Genome Res 17(10):1420–1430CrossRef Dreszer TR, Wall GD, Haussler D, Pollard KS (2007) Biased clustered substitutions in the human genome: the footprints of male-driven biased gene conversion. Genome Res 17(10):1420–1430CrossRef
13.
go back to reference Duret L, Arndt PF (2008) The impact of recombination on nucleotide substitutions in the human genome. PLoS Genet 4(5):e1000071CrossRef Duret L, Arndt PF (2008) The impact of recombination on nucleotide substitutions in the human genome. PLoS Genet 4(5):e1000071CrossRef
14.
go back to reference Friedberg EC (2005) Suffering in silence: the tolerance of DNA damage. Nat Rev Mol Cell Biol 6(12):943–953CrossRef Friedberg EC (2005) Suffering in silence: the tolerance of DNA damage. Nat Rev Mol Cell Biol 6(12):943–953CrossRef
15.
go back to reference Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2006) DNA repair and mutagenesis. ASM Press, Washington, DC Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2006) DNA repair and mutagenesis. ASM Press, Washington, DC
16.
go back to reference Galhardo RS, Hastings PJ, Rosenberg SM (2007) Mutation as a stress response and the regulation of evolvability. Crit Rev Biochem Mol Biol 42(5):399–435CrossRef Galhardo RS, Hastings PJ, Rosenberg SM (2007) Mutation as a stress response and the regulation of evolvability. Crit Rev Biochem Mol Biol 42(5):399–435CrossRef
17.
go back to reference Gonzalez C, Hadany L, Ponder RG, Price M, Hastings PJ, Rosenberg SM (2008) Mutability and importance of a hypermutable cell subpopulation that produces stress-induced mutants in Escherichia coli. PLoS Genet 4(10):e1000208CrossRef Gonzalez C, Hadany L, Ponder RG, Price M, Hastings PJ, Rosenberg SM (2008) Mutability and importance of a hypermutable cell subpopulation that produces stress-induced mutants in Escherichia coli. PLoS Genet 4(10):e1000208CrossRef
18.
go back to reference Gordenin DA, Resnick MA (1998) Yeast ARMs (DNA at-risk motifs) can reveal sources of genome instability. Mutat Res 400(1–2):45–58 Gordenin DA, Resnick MA (1998) Yeast ARMs (DNA at-risk motifs) can reveal sources of genome instability. Mutat Res 400(1–2):45–58
19.
go back to reference Hamdan SM, van Oijen AM (2010) Timing, coordination, and rhythm: acrobatics at the DNA replication fork. J Biol Chem 285(25):18979–18983CrossRef Hamdan SM, van Oijen AM (2010) Timing, coordination, and rhythm: acrobatics at the DNA replication fork. J Biol Chem 285(25):18979–18983CrossRef
20.
go back to reference Harris RS, Longerich S, Rosenberg SM (1994) Recombination in adaptive mutation. Science 264(5156):258–260CrossRef Harris RS, Longerich S, Rosenberg SM (1994) Recombination in adaptive mutation. Science 264(5156):258–260CrossRef
21.
go back to reference Hassa PO, Hottiger MO (2005) An epigenetic code for DNA damage repair pathways? Biochem Cell Biol 83(3):270–285CrossRef Hassa PO, Hottiger MO (2005) An epigenetic code for DNA damage repair pathways? Biochem Cell Biol 83(3):270–285CrossRef
22.
go back to reference Hicks WM, Kim M, Haber JE (2010) Increased mutagenesis and unique mutation signature associated with mitotic gene conversion. Science 329(5987):82–85CrossRef Hicks WM, Kim M, Haber JE (2010) Increased mutagenesis and unique mutation signature associated with mitotic gene conversion. Science 329(5987):82–85CrossRef
23.
go back to reference Kashuba VI, Pavlova TV, Grigorieva EV, Kutsenko A, Yenamandra SP, Li J, Wang F, Protopopov AI, Zabarovska VI, Senchenko V, Haraldson K, Eshchenko T, Kobliakova J, Vorontsova O, Kuzmin I, Braga E, Blinov VM, Kisselev LL, Zeng YX, Ernberg I, Lerman MI, Klein G, Zabarovsky ER (2009) High mutability of the tumor suppressor genes RASSF1 and RBSP3 (CTDSPL) in cancer. PLoS One 4(5):e5231CrossRef Kashuba VI, Pavlova TV, Grigorieva EV, Kutsenko A, Yenamandra SP, Li J, Wang F, Protopopov AI, Zabarovska VI, Senchenko V, Haraldson K, Eshchenko T, Kobliakova J, Vorontsova O, Kuzmin I, Braga E, Blinov VM, Kisselev LL, Zeng YX, Ernberg I, Lerman MI, Klein G, Zabarovsky ER (2009) High mutability of the tumor suppressor genes RASSF1 and RBSP3 (CTDSPL) in cancer. PLoS One 4(5):e5231CrossRef
24.
go back to reference Kogenaru M, de Vos MG, Tans SJ (2009) Revealing evolutionary pathways by fitness landscape reconstruction. Crit Rev Biochem Mol Biol 44(4):169–174CrossRef Kogenaru M, de Vos MG, Tans SJ (2009) Revealing evolutionary pathways by fitness landscape reconstruction. Crit Rev Biochem Mol Biol 44(4):169–174CrossRef
25.
go back to reference Kunkel TA, Bebenek K (2000) DNA replication fidelity. Annu Rev Biochem 69:497–529CrossRef Kunkel TA, Bebenek K (2000) DNA replication fidelity. Annu Rev Biochem 69:497–529CrossRef
26.
go back to reference Lang GI, Murray AW (2008) Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae. Genetics 178(1):67–82CrossRef Lang GI, Murray AW (2008) Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae. Genetics 178(1):67–82CrossRef
27.
go back to reference Lercher MJ, Hurst LD (2002) Human SNP variability and mutation rate are higher in regions of high recombination. Trends Genet 18(7):337–340CrossRef Lercher MJ, Hurst LD (2002) Human SNP variability and mutation rate are higher in regions of high recombination. Trends Genet 18(7):337–340CrossRef
28.
go back to reference Lindahl T, Barnes DE (2000) Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol 65:127–133CrossRef Lindahl T, Barnes DE (2000) Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol 65:127–133CrossRef
29.
go back to reference Liu M, Schatz DG (2009) Balancing AID and DNA repair during somatic hypermutation. Trends Immunol 30(4):173–181CrossRef Liu M, Schatz DG (2009) Balancing AID and DNA repair during somatic hypermutation. Trends Immunol 30(4):173–181CrossRef
30.
go back to reference Liu M, Duke JL, Richter DJ, Vinuesa CG, Goodnow CC, Kleinstein SH, Schatz DG (2008) Two levels of protection for the B cell genome during somatic hypermutation. Nature 451(7180):841–845CrossRef Liu M, Duke JL, Richter DJ, Vinuesa CG, Goodnow CC, Kleinstein SH, Schatz DG (2008) Two levels of protection for the B cell genome during somatic hypermutation. Nature 451(7180):841–845CrossRef
31.
go back to reference Lopes M, Foiani M, Sogo JM (2006) Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21(1):15–27CrossRef Lopes M, Foiani M, Sogo JM (2006) Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21(1):15–27CrossRef
32.
go back to reference Ma W, Resnick MA, Gordenin DA (2008) Apn1 and Apn2 endonucleases prevent accumulation of repair-associated DNA breaks in budding yeast as revealed by direct chromosomal analysis. Nucleic Acids Res 36(6):1836–1846CrossRef Ma W, Resnick MA, Gordenin DA (2008) Apn1 and Apn2 endonucleases prevent accumulation of repair-associated DNA breaks in budding yeast as revealed by direct chromosomal analysis. Nucleic Acids Res 36(6):1836–1846CrossRef
33.
go back to reference Ma W, Panduri V, Sterling JF, Van Houten B, Gordenin DA, Resnick MA (2009) The transition of closely opposed lesions to double-strand breaks during long-patch base excision repair is prevented by the coordinated action of DNA polymerase delta and Rad27/Fen1. Mol Cell Biol 29(5):1212–1221CrossRef Ma W, Panduri V, Sterling JF, Van Houten B, Gordenin DA, Resnick MA (2009) The transition of closely opposed lesions to double-strand breaks during long-patch base excision repair is prevented by the coordinated action of DNA polymerase delta and Rad27/Fen1. Mol Cell Biol 29(5):1212–1221CrossRef
34.
go back to reference Mimitou EP, Symington LS (2009) DNA end resection: many nucleases make light work. DNA Repair (Amst) 8(9):983–995CrossRef Mimitou EP, Symington LS (2009) DNA end resection: many nucleases make light work. DNA Repair (Amst) 8(9):983–995CrossRef
35.
go back to reference Morrison A, Johnson AL, Johnston LH, Sugino A (1993) Pathway correcting DNA replication errors in Saccharomyces cerevisiae. EMBO J 12(4):1467–1473 Morrison A, Johnson AL, Johnston LH, Sugino A (1993) Pathway correcting DNA replication errors in Saccharomyces cerevisiae. EMBO J 12(4):1467–1473
36.
go back to reference Nishant KT, Singh ND, Alani E (2009) Genomic mutation rates: what high-throughput methods can tell us. Bioessays 31(9):912–920CrossRef Nishant KT, Singh ND, Alani E (2009) Genomic mutation rates: what high-throughput methods can tell us. Bioessays 31(9):912–920CrossRef
37.
go back to reference Nishant KT, Wei W, Mancera E, Argueso JL, Schlattl A, Delhomme N, Ma X, Bustamante CD, Korbel JO, Gu Z, Steinmetz LM, Alani E (2010) The baker’s yeast diploid genome is remarkably stable in vegetative growth and meiosis. PLoS Genet 6(9):e1001109CrossRef Nishant KT, Wei W, Mancera E, Argueso JL, Schlattl A, Delhomme N, Ma X, Bustamante CD, Korbel JO, Gu Z, Steinmetz LM, Alani E (2010) The baker’s yeast diploid genome is remarkably stable in vegetative growth and meiosis. PLoS Genet 6(9):e1001109CrossRef
38.
go back to reference Odegard VH, Schatz DG (2006) Targeting of somatic hypermutation. Nat Rev Immunol 6(8):573–583CrossRef Odegard VH, Schatz DG (2006) Targeting of somatic hypermutation. Nat Rev Immunol 6(8):573–583CrossRef
39.
go back to reference Pachkowski BF, Tano K, Afonin V, Elder RH, Takeda S, Watanabe M, Swenberg JA, Nakamura J (2009) Cells deficient in PARP-1 show an accelerated accumulation of DNA single strand breaks, but not AP sites, over the PARP-1-proficient cells exposed to MMS. Mutat Res 671(1–2):93–99 Pachkowski BF, Tano K, Afonin V, Elder RH, Takeda S, Watanabe M, Swenberg JA, Nakamura J (2009) Cells deficient in PARP-1 show an accelerated accumulation of DNA single strand breaks, but not AP sites, over the PARP-1-proficient cells exposed to MMS. Mutat Res 671(1–2):93–99
40.
go back to reference Plosky BS, Woodgate R (2004) Switching from high-fidelity replicases to low-fidelity lesion-bypass polymerases. Curr Opin Genet Dev 14(2):113–119CrossRef Plosky BS, Woodgate R (2004) Switching from high-fidelity replicases to low-fidelity lesion-bypass polymerases. Curr Opin Genet Dev 14(2):113–119CrossRef
41.
go back to reference Pollard KS, Salama SR, King B, Kern AD, Dreszer T, Katzman S, Siepel A, Pedersen JS, Bejerano G, Baertsch R, Rosenbloom KR, Kent J, Haussler D (2006) Forces shaping the fastest evolving regions in the human genome. PLoS Genet 2(10):e168CrossRef Pollard KS, Salama SR, King B, Kern AD, Dreszer T, Katzman S, Siepel A, Pedersen JS, Bejerano G, Baertsch R, Rosenbloom KR, Kent J, Haussler D (2006) Forces shaping the fastest evolving regions in the human genome. PLoS Genet 2(10):e168CrossRef
42.
go back to reference Ponder RG, Fonville NC, Rosenberg SM (2005) A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation. Mol Cell 19(6):791–804CrossRef Ponder RG, Fonville NC, Rosenberg SM (2005) A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation. Mol Cell 19(6):791–804CrossRef
43.
go back to reference Povolotskaya IS, Kondrashov FA (2010) Sequence space and the ongoing expansion of the protein universe. Nature 465(7300):922–926CrossRef Povolotskaya IS, Kondrashov FA (2010) Sequence space and the ongoing expansion of the protein universe. Nature 465(7300):922–926CrossRef
44.
go back to reference Rattray AJ, Strathern JN (2003) Error-prone DNA polymerases: when making a mistake is the only way to get ahead. Annu Rev Genet 37:31–66CrossRef Rattray AJ, Strathern JN (2003) Error-prone DNA polymerases: when making a mistake is the only way to get ahead. Annu Rev Genet 37:31–66CrossRef
45.
go back to reference Rattray AJ, Shafer BK, McGill CB, Strathern JN (2002) The roles of REV3 and RAD57 in double-strand-break-repair-induced mutagenesis of Saccharomyces cerevisiae. Genetics 162(3):1063–1077 Rattray AJ, Shafer BK, McGill CB, Strathern JN (2002) The roles of REV3 and RAD57 in double-strand-break-repair-induced mutagenesis of Saccharomyces cerevisiae. Genetics 162(3):1063–1077
46.
go back to reference Resnick MA, Setlow JK (1972) Repair of pyrimidine dimer damage induced in yeast by ultraviolet light. J Bacteriol 109(3):979–986 Resnick MA, Setlow JK (1972) Repair of pyrimidine dimer damage induced in yeast by ultraviolet light. J Bacteriol 109(3):979–986
47.
go back to reference Romero PA, Arnold FH (2009) Exploring protein fitness landscapes by directed evolution. Nat Rev Mol Cell Biol 10(12):866–876CrossRef Romero PA, Arnold FH (2009) Exploring protein fitness landscapes by directed evolution. Nat Rev Mol Cell Biol 10(12):866–876CrossRef
48.
go back to reference Rosenberg SM, Longerich S, Gee P, Harris RS (1994) Adaptive mutation by deletions in small mononucleotide repeats. Science 265(5170):405–407CrossRef Rosenberg SM, Longerich S, Gee P, Harris RS (1994) Adaptive mutation by deletions in small mononucleotide repeats. Science 265(5170):405–407CrossRef
49.
go back to reference Santos JH, Meyer JN, Mandavilli BS, Van Houten B (2006) Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol Biol 314:183–199CrossRef Santos JH, Meyer JN, Mandavilli BS, Van Houten B (2006) Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol Biol 314:183–199CrossRef
50.
go back to reference Sartori AA, Lukas C, Coates J, Mistrik M, Fu S, Bartek J, Baer R, Lukas J, Jackson SP (2007) Human CtIP promotes DNA end resection. Nature 450(7169):509–514CrossRef Sartori AA, Lukas C, Coates J, Mistrik M, Fu S, Bartek J, Baer R, Lukas J, Jackson SP (2007) Human CtIP promotes DNA end resection. Nature 450(7169):509–514CrossRef
51.
go back to reference Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18(1):134–147CrossRef Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18(1):134–147CrossRef
52.
go back to reference Stamatoyannopoulos JA, Adzhubei I, Thurman RE, Kryukov GV, Mirkin SM, Sunyaev SR (2009) Human mutation rate associated with DNA replication timing. Nat Genet 41(4):393–395CrossRef Stamatoyannopoulos JA, Adzhubei I, Thurman RE, Kryukov GV, Mirkin SM, Sunyaev SR (2009) Human mutation rate associated with DNA replication timing. Nat Genet 41(4):393–395CrossRef
53.
go back to reference Strathern JN, Shafer BK, McGill CB (1995) DNA synthesis errors associated with double-strand-break repair. Genetics 140(3):965–972 Strathern JN, Shafer BK, McGill CB (1995) DNA synthesis errors associated with double-strand-break repair. Genetics 140(3):965–972
54.
go back to reference Unniraman S, Schatz DG (2007) Strand-biased spreading of mutations during somatic hypermutation. Science 317(5842):1227–1230CrossRef Unniraman S, Schatz DG (2007) Strand-biased spreading of mutations during somatic hypermutation. Science 317(5842):1227–1230CrossRef
55.
go back to reference Wang J, Gonzalez KD, Scaringe WA, Tsai K, Liu N, Gu D, Li W, Hill KA, Sommer SS (2007) Evidence for mutation showers. Proc Natl Acad Sci USA 104(20):8403–8408CrossRef Wang J, Gonzalez KD, Scaringe WA, Tsai K, Liu N, Gu D, Li W, Hill KA, Sommer SS (2007) Evidence for mutation showers. Proc Natl Acad Sci USA 104(20):8403–8408CrossRef
56.
go back to reference Weinreich DM, Watson RA, Chao L (2005) Perspective: sign epistasis and genetic constraint on evolutionary trajectories. Evolution 59(6):1165–1174 Weinreich DM, Watson RA, Chao L (2005) Perspective: sign epistasis and genetic constraint on evolutionary trajectories. Evolution 59(6):1165–1174
57.
go back to reference Wheatcroft R, Cox BS, Haynes RH (1975) Repair of UV-induced DNA damage and survival in yeast. I. Dimer excision. Mutat Res 30(2):209–218CrossRef Wheatcroft R, Cox BS, Haynes RH (1975) Repair of UV-induced DNA damage and survival in yeast. I. Dimer excision. Mutat Res 30(2):209–218CrossRef
58.
go back to reference Wright S (1932) The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Proceedings of the sixth international congress on genetics, Ithaca, New York, 1932 Wright S (1932) The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Proceedings of the sixth international congress on genetics, Ithaca, New York, 1932
59.
go back to reference Yang Y, Sterling J, Storici F, Resnick MA, Gordenin DA (2008) Hypermutability of damaged single-strand DNA formed at double-strand breaks and uncapped telomeres in yeast Saccharomyces cerevisiae. PLoS Genet 4(11):e1000264CrossRef Yang Y, Sterling J, Storici F, Resnick MA, Gordenin DA (2008) Hypermutability of damaged single-strand DNA formed at double-strand breaks and uncapped telomeres in yeast Saccharomyces cerevisiae. PLoS Genet 4(11):e1000264CrossRef
60.
go back to reference Yang Y, Gordenin DA, Resnick MA (2010) A single-strand specific lesion drives MMS-induced hyper-mutability at a double-strand break in yeast. DNA Repair (Amst) 9(8):914–921CrossRef Yang Y, Gordenin DA, Resnick MA (2010) A single-strand specific lesion drives MMS-induced hyper-mutability at a double-strand break in yeast. DNA Repair (Amst) 9(8):914–921CrossRef
61.
go back to reference Zanders S, Ma X, Roychoudhury A, Hernandez RD, Demogines A, Barker B, Gu Z, Bustamante CD, Alani E (2010) Detection of heterozygous mutations in the genome of mismatch repair defective diploid yeast using a Bayesian approach. Genetics 186:493–503CrossRef Zanders S, Ma X, Roychoudhury A, Hernandez RD, Demogines A, Barker B, Gu Z, Bustamante CD, Alani E (2010) Detection of heterozygous mutations in the genome of mismatch repair defective diploid yeast using a Bayesian approach. Genetics 186:493–503CrossRef
62.
go back to reference Zhao J, Bacolla A, Wang G, Vasquez KM (2010) Non-B DNA structure-induced genetic instability and evolution. Cell Mol Life Sci 67(1):43–62CrossRef Zhao J, Bacolla A, Wang G, Vasquez KM (2010) Non-B DNA structure-induced genetic instability and evolution. Cell Mol Life Sci 67(1):43–62CrossRef
Metadata
Title
Hypermutability Associated with Double-Strand Break Repair
Author
Dmitry A. Gordenin
Copyright Year
2012
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-1939-2_1