Skip to main content
Top

2017 | OriginalPaper | Chapter

5. Identification of Full-Field Dynamic Loads on Structures Using Computer Vision and Unsupervised Machine Learning

Authors : Alexander Roeder, Huiying Zhang, Lorenzo Sanchez, Yongchao Yang, Charles Farrar, David Mascareñas

Published in: Shock & Vibration, Aircraft/Aerospace, Energy Harvesting, Acoustics & Optics, Volume 9

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Real-world structures, such as civil and aerospace structures, are subjected to various dynamic loads which are spatially local and distributed. Assessment of operational performance, prediction of the dynamic responses, and prognosis of the remaining service life of the structure therefore requires accurate, high-resolution measurements, and modeling of the dynamic loads. This is extremely difficult, if not impossible, with the current state of the art. First, dynamic loads on structures usually come from a wide spectrum of sources, some of which are extremely challenging to accurately measure, such as the traffic loads on a bridge. Also, it is impractical to instrument a dense array of force measurement devices on the structure due to the high cost, the effect of mass-loading, and modification of the structure’s surface. On the other hand, digital video cameras are non-contact measurement device that are relatively low-cost, agile, and able to provide high spatial resolution, simultaneous, pixel measurements. This study develops a novel method for identification of the high-resolution, full-field loads on the structure from the video of the operational structures by leveraging advanced computer vision and unsupervised learning techniques. Impact and wind loads were applied on a cable structure to experimentally validate the method. The non-contact, remote, simultaneous sensing capability of the proposed technique should enable truly high-resolution, full-field force estimation that was previously not feasible.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ewins, D.: Modal Testing. Research Studies Press Ltd, Philadelphia (2000)MATH Ewins, D.: Modal Testing. Research Studies Press Ltd, Philadelphia (2000)MATH
2.
go back to reference Yang, Y., Dorn, C., Mancini, T., Talken, Z., Kenyon, G., Farrar, C., Mascarenas, D.: Blind identification of full-field vibration modes from video measurements with phase-based video motion magnification. Mech. Syst. Signal Process. 85, 567–590 (2017)CrossRef Yang, Y., Dorn, C., Mancini, T., Talken, Z., Kenyon, G., Farrar, C., Mascarenas, D.: Blind identification of full-field vibration modes from video measurements with phase-based video motion magnification. Mech. Syst. Signal Process. 85, 567–590 (2017)CrossRef
3.
go back to reference Warnitchai, P., Fujino, Y., Susumpow, T.: A non-linear dynamic model for cables and its application to a cable-structure system. J. Sound Vib. 187(4), 695–712 (1995)CrossRef Warnitchai, P., Fujino, Y., Susumpow, T.: A non-linear dynamic model for cables and its application to a cable-structure system. J. Sound Vib. 187(4), 695–712 (1995)CrossRef
4.
go back to reference Fleet, D.J., Jepson, A.D.: Computation of component image velocity from local phase information. Int. J. Comput. Vis. 5(1), 77–104 (1990)CrossRef Fleet, D.J., Jepson, A.D.: Computation of component image velocity from local phase information. Int. J. Comput. Vis. 5(1), 77–104 (1990)CrossRef
5.
go back to reference Wadhwa, N., Rubinstein, M., Durand, F., Wadhwa, N.: Phase-based video motion processing. ACM Trans. Graph. 32(4), 1 (2013)CrossRefMATH Wadhwa, N., Rubinstein, M., Durand, F., Wadhwa, N.: Phase-based video motion processing. ACM Trans. Graph. 32(4), 1 (2013)CrossRefMATH
6.
go back to reference Hyvarinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13(4), 411–430 (2000)CrossRef Hyvarinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13(4), 411–430 (2000)CrossRef
7.
go back to reference Antoni, J.: Blind separation of vibration components: principles and demonstrations. Mech. Syst. Signal Process. 19(6), 1166–1180 (2005)CrossRef Antoni, J.: Blind separation of vibration components: principles and demonstrations. Mech. Syst. Signal Process. 19(6), 1166–1180 (2005)CrossRef
8.
go back to reference Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. Society for Industrial and Applied Mathematics, Philadelphia (1998)CrossRef Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. Society for Industrial and Applied Mathematics, Philadelphia (1998)CrossRef
9.
go back to reference Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2009)CrossRefMATH Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2009)CrossRefMATH
10.
go back to reference Sanchez, L., Zhang, H., Roeder, A., Bowlan, J., Crochet, J., Yang, Y., et al.. Establishment of full-field, full-order dynamic model of cable vibration by video motion manipulations. 35th IMAC, Orange County (2017) Sanchez, L., Zhang, H., Roeder, A., Bowlan, J., Crochet, J., Yang, Y., et al.. Establishment of full-field, full-order dynamic model of cable vibration by video motion manipulations. 35th IMAC, Orange County (2017)
Metadata
Title
Identification of Full-Field Dynamic Loads on Structures Using Computer Vision and Unsupervised Machine Learning
Authors
Alexander Roeder
Huiying Zhang
Lorenzo Sanchez
Yongchao Yang
Charles Farrar
David Mascareñas
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-54735-0_5

Premium Partners