Skip to main content
Top

2017 | OriginalPaper | Chapter

Identity-Based Encryption from the Diffie-Hellman Assumption

Authors : Nico Döttling, Sanjam Garg

Published in: Advances in Cryptology – CRYPTO 2017

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We provide the first constructions of identity-based encryption and hierarchical identity-based encryption based on the hardness of the (Computational) Diffie-Hellman Problem (without use of groups with pairings) or Factoring. Our construction achieves the standard notion of identity-based encryption as considered by Boneh and Franklin [CRYPTO 2001]. We bypass known impossibility results using garbled circuits that make a non-black-box use of the underlying cryptographic primitives.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The notion of chameleon hashing is closely related to the notion of chameleon commitment scheme [15] and we refer the reader to [34] for more discussion on this.
 
2
The success of decryption is conditioned on certain requirements placed on \((\mathsf {x},r)\). This restricted decryption capability is reminiscent of the concepts of witness encryption [22] and extractable witness encryption [4, 14].
 
3
In Sect. 5, we explain our constructions of chameleon encryption based on the (Computational) Diffie-Hellman Assumption, or the Factoring Assumption.
 
4
We use \(\epsilon \) to denote the empty string.
 
5
We note that our key generation mechanism can be seen as an instantiation of the Naor and Yung [40] tree-based construction of signature schemes from universal one-way hash functions and one-time signatures. This connection becomes even more apparent in the follow up paper [21].
 
6
For this part of the intuition, we assume familiarity with garbled circuits.
 
7
We use this notion only when the sampling can be done by a PPT algorithm and the sampling algorithm is implicit.
 
8
Typical definitions of garbled circuits do not require the length of each input label to be \(\lambda \) bits long. This additional requirement is crucial in our constructions as we chain garbled circuits. Note that input labels in any garbled circuit construction can always be shrunk to \(\lambda \) bits using a pseudorandom function.
 
9
In abuse of notation we assume that \(\mathsf {Sim}\) knows the (non-private) circuit C. When C has (private) hardwired inputs, we assume that the labels corresponding to these are included in the garbled circuit \(\tilde{C}\).
 
10
\(\mathsf {ct}\) is assumed to contain \((\mathsf {h},i,b)\).
 
11
Typically, Chameleon Hash functions are defined to also have the collision resilience property. This property is implied by the semantic security requirement below. However, we do not need this property directly. Therefore, we do not explicitly define it here.
 
12
We will later provide instantiations of \(\mathbb {G}\) which are of prime order and composite order. The use of \(\mathsf {Sample}(\mathbb {G})\) procedure is done to unify these two instantiations.
 
13
We also implicitly include the public and secret parameters for the group \(\mathbb {G}\) in \(\mathsf {k}\) and \(\mathsf {t}\) respectively.
 
14
We assume that the \(\mathsf {HardCore}(g^{ab})\) is a hardcore bit of \(g^{ab}\) given \(g^a\) and \(g^b\). If a deterministic hard-core bit for the specific function is not known then we can always use the Goldreich-Levin [30] construction. We skip the details of that with the goal of keeping exposition simple.
 
15
A prime number \(P > 2\) is called safe prime if \((P-1)/2\) is also prime.
 
16
The algorithm \(\mathsf {G}\) takes as input the security parameter \(1^\lambda \) and generates encryption key and decryption key pair \(\mathsf {ek}\) and \(\mathsf {dk}\) respectively, where the encryption key \(\mathsf {ek}\) is assumed to be \(\lambda \) bits long. The encryption algorithm \(\mathsf {E}(\mathsf {ek},\mathsf {m})\) takes as input an encryption key \(\mathsf {ek}\) and a message \(\mathsf {m}\) and outputs a ciphertext \(\mathsf {ct}\). Finally, the decryption algorithm \(\mathsf {D}(\mathsf {dk},\mathsf {ct})\) takes as input the secret key and the ciphertext and outputs the encrypted message \(\mathsf {m}\).
 
17
The IBE scheme defined in Sect. 3 does not fix the length of identities that it can be used with. However, in this section we fix the length of identities at setup time and use appropriately changed definitions. Looking ahead, the HIBE construction in Sect. 7 works for identities of arbitrary length.
 
18
Random coins used by these circuits are hardwired in them. For simplicity, we do not mention them explicitly.
 
19
\(\mathsf {F}(s,\varepsilon )\) is set to output s.
 
20
The trapdoor for the global hash function is not needed in the construction or the proof and is therefore dropped.
 
21
HIBE is often defined to have separate \(\mathsf {KeyGen}\) and \(\mathsf {Delegate}\) algorithms. For simplicity, we describe our scheme with just one \(\mathsf {KeyGen}\) algorithm that enables both the tasks of decryption and delegation. Secret-keys without delegation capabilities can be obtained by dropping the third entry (the PRG seed) from \(\mathsf {sk}_{\mathsf {id}}\).
 
22
For \(i < n\), \(z_\mathsf {v}\) will become the \(x_\mathsf {v}\) in next iteration.
 
23
The experiment can provide \(\mathsf {F}(s,\mathsf {id}^*)\) even though it does not appear in any of the \(\mathcal {A}\)’s secret key queries. The reason is that \(\mathsf {F}(s,\mathsf {id}^*)\) allows the capabilities of delegation but not decryption for ciphertexts to identity \(\mathsf {id}^*\).
 
24
Observe that these are specifically the cases in which one or two of the values \(s_1,s_2\) and \(s_3\) given as input to \(\mathsf {NodeGen}\) and \(\mathsf {NodeGen}'\) depend on the \(\{c_i\}\) values.
 
25
Note that since the adversary never makes a \(\mathsf {KeyGen}\) query for an identity \(\mathsf {id}\) that is a prefix of \(\mathsf {id}^*\). Therefore, we have that \(\mathsf {dk}_{\mathsf {v}}\) for \(\mathsf {v}\in V^*\cup \{\mathsf {id}^*\}\) will not be provided to \(\mathcal {A}\).
 
Literature
2.
go back to reference Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7_6 CrossRef Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010). doi:10.​1007/​978-3-642-14623-7_​6 CrossRef
3.
go back to reference Agrawal, S., Boyen, X.: Identity-based encryption from lattices in the standard model. Manuscript (2009) Agrawal, S., Boyen, X.: Identity-based encryption from lattices in the standard model. Manuscript (2009)
5.
go back to reference Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796. ACM Press, Raleigh, 16–18 October 2012 Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796. ACM Press, Raleigh, 16–18 October 2012
6.
go back to reference Bellare, M., Rogaway, P., Random oracles are practical: a paradigm for designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press, Fairfax, 3–5 November 1993 Bellare, M., Rogaway, P., Random oracles are practical: a paradigm for designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press, Fairfax, 3–5 November 1993
8.
go back to reference Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3_14 CrossRef Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). doi:10.​1007/​978-3-540-24676-3_​14 CrossRef
10.
go back to reference Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005). doi:10.1007/11426639_26 CrossRef Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005). doi:10.​1007/​11426639_​26 CrossRef
12.
go back to reference Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption without pairings. In: 48th FOCS, pp. 647–657. IEEE Computer Society Press, Providence, 20–23 October 2007 Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption without pairings. In: 48th FOCS, pp. 647–657. IEEE Computer Society Press, Providence, 20–23 October 2007
13.
go back to reference Boneh, D., Papakonstantinou, P.A., Rackoff, C., Vahlis, Y., Waters, B.: On the impossibility of basing identity based encryption on trapdoor permutations. In: 49th FOCS, pp. 283–292. IEEE Computer Society Press, Philadelphia, 25–28 October 2008 Boneh, D., Papakonstantinou, P.A., Rackoff, C., Vahlis, Y., Waters, B.: On the impossibility of basing identity based encryption on trapdoor permutations. In: 49th FOCS, pp. 283–292. IEEE Computer Society Press, Philadelphia, 25–28 October 2008
15.
16.
17.
18.
go back to reference Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic receiver oblivious transfer and its applications. In: CRYPTO (2017, to appear) Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic receiver oblivious transfer and its applications. In: CRYPTO (2017, to appear)
19.
go back to reference Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001). doi:10.1007/3-540-45325-3_32 CrossRef Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001). doi:10.​1007/​3-540-45325-3_​32 CrossRef
21.
go back to reference Döttling, N., Garg, S.: From selective IBE to full IBE and selective HIBE. Manuscript (2017) Döttling, N., Garg, S.: From selective IBE to full IBE and selective HIBE. Manuscript (2017)
22.
go back to reference Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 467–476. ACM Press, Palo Alto, 1–4 June 2013 Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 467–476. ACM Press, Palo Alto, 1–4 June 2013
23.
go back to reference Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled RAM. In: Guruswami, V. (ed.) 56th FOCS, pp. 210–229. IEEE Computer Society Press, Berkeley, 17–20 October 2015 Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled RAM. In: Guruswami, V. (ed.) 56th FOCS, pp. 210–229. IEEE Computer Society Press, Berkeley, 17–20 October 2015
24.
go back to reference Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-way functions. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC, pp. 449–458. ACM Press, Portland, 14–17 June 2015 Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-way functions. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC, pp. 449–458. ACM Press, Portland, 14–17 June 2015
25.
26.
go back to reference Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 405–422. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5_23 CrossRef Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 405–422. Springer, Heidelberg (2014). doi:10.​1007/​978-3-642-55220-5_​23 CrossRef
27.
go back to reference Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press, Victoria, 17–20 May 2008 Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press, Victoria, 17–20 May 2008
29.
go back to reference Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (extended abstract). In: 25th FOCS, pp. 464–479. IEEE Computer Society Press, Singer Island, 24–26 October 1984 Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (extended abstract). In: 25th FOCS, pp. 464–479. IEEE Computer Society Press, Singer Island, 24–26 October 1984
30.
go back to reference Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: 21st ACM STOC, pp. 25–32. ACM Press, Seattle, 15–17 May 1989 Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: 21st ACM STOC, pp. 25–32. ACM Press, Seattle, 15–17 May 1989
35.
go back to reference Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11799-2_27 CrossRef Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010). doi:10.​1007/​978-3-642-11799-2_​27 CrossRef
36.
39.
40.
go back to reference Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: 21st ACM STOC, pp. 33–43. ACM Press, Seattle, 15–17 May 1989 Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: 21st ACM STOC, pp. 33–43. ACM Press, Seattle, 15–17 May 1989
41.
go back to reference Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7_11 CrossRef Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). doi:10.​1007/​978-3-642-14623-7_​11 CrossRef
43.
go back to reference Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signature and public-key cryptosystems. Commun. Assoc. Comput. Mach. 21(2), 120–126 (1978)MathSciNetMATH Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signature and public-key cryptosystems. Commun. Assoc. Comput. Mach. 21(2), 120–126 (1978)MathSciNetMATH
44.
45.
go back to reference Shi, E., Waters, B.: Delegating capabilities in predicate encryption systems. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 560–578. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70583-3_46 CrossRef Shi, E., Waters, B.: Delegating capabilities in predicate encryption systems. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 560–578. Springer, Heidelberg (2008). doi:10.​1007/​978-3-540-70583-3_​46 CrossRef
46.
go back to reference Shmuely, Z.: Composite Diffie-hellman public-key generating systems are hard to break. Technical report no. 356, Computer Science Department, Technion, Israel (1985) Shmuely, Z.: Composite Diffie-hellman public-key generating systems are hard to break. Technical report no. 356, Computer Science Department, Technion, Israel (1985)
47.
48.
go back to reference Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005). doi:10.1007/11426639_7 CrossRef Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005). doi:10.​1007/​11426639_​7 CrossRef
49.
go back to reference Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd FOCS, pp. 160–164. IEEE Computer Society Press, Chicago, 3–5 November 1982 Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd FOCS, pp. 160–164. IEEE Computer Society Press, Chicago, 3–5 November 1982
Metadata
Title
Identity-Based Encryption from the Diffie-Hellman Assumption
Authors
Nico Döttling
Sanjam Garg
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-63688-7_18

Premium Partner