Skip to main content
Top

2020 | OriginalPaper | Chapter

13. If Truncated Wave Functions of Excited State Energy Saddle Points Are Computed as Energy Minima, Where Is the Saddle Point?

Author : N. C. Bacalis

Published in: Theoretical Chemistry for Advanced Nanomaterials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Theoretical computations tend to compute electronic properties of increasingly larger systems. To understand the properties, we should rather need small truncated but concise and comprehensible wave functions. For electronic processes, in particular charge transfer, which occur in excited states, we need both the energy and the wave function in order to draw and predict correct conclusions. But the excited states are saddle points in the Hilbert space, and, as shown here, the standard methods for excited states, based on the Hylleraas-Undheim and MacDonald (HUM) theorem, compute indeed the correct energy but may give misleadingly incorrect truncated wave functions, because they search for an energy minimum, not a saddle point (many functions can have the correct energy). Then, where is the saddle point? We shall see the use of a functional F n of the wave function that has a local minimum at the excited state saddle point, without using orthogonality to approximants of lower-lying states, provided these approximants are reasonable, even if they are crude. Therefore F n finds a correct, albeit small and concise, thus comprehensible truncated wave function, approximant of the desired excited state saddle point, allowing correct predictions for the electronic process. This could also lead to computational developments of more appropriate (to excited state) truncated basis sets. It is further shown that, via a correct approximant of the 1st excited state, we can improve the ground state. Finally it is shown that, in iterative computations, in cases of “root flipping” (which would deflect the computation), we can use F n to identify the flipped root. For all the above, demonstrations are given for excited states of He and Li. The grand apophthegm is that HUM finds an energy minimum which, only if the expansion is increased, can approach the excited state saddle point, whereas F n has local minimum at the saddle point, so it finds it independently of the size of the expansion.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The computation is performed in 15 digit “double precision,” but the coexistence in the secular matrix of very large numbers with small ones reduces the accuracy to ∼ 6 digits
 
Literature
1.
go back to reference E.A. Hylleraas, B. Undheim, Z. Phys. 65, 759 (1930); J.K.L. McDonald, Phys. Rev. 43, 830 (1933) E.A. Hylleraas, B. Undheim, Z. Phys. 65, 759 (1930); J.K.L. McDonald, Phys. Rev. 43, 830 (1933)
4.
5.
go back to reference M. Reed, B. Simon, Methods of Modern Mathematical Physics. Analysis of Operators, vol IV (Academic, New York, 1978) M. Reed, B. Simon, Methods of Modern Mathematical Physics. Analysis of Operators, vol IV (Academic, New York, 1978)
6.
8.
go back to reference H. Jensen, Electron correlation in molecules using direct second order MCSCF, in Relativistic and Electron Correlation Effects in Molecules and Solids (Plenum, New York, 1994), pp. 179–206CrossRef H. Jensen, Electron correlation in molecules using direct second order MCSCF, in Relativistic and Electron Correlation Effects in Molecules and Solids (Plenum, New York, 1994), pp. 179–206CrossRef
9.
13.
14.
go back to reference H. Koch, O. Christiansen, P. Jørgensen, T. Helgaker, A.S. de Meras, J. Chem. Phys. 106, 1808 (1997)CrossRef H. Koch, O. Christiansen, P. Jørgensen, T. Helgaker, A.S. de Meras, J. Chem. Phys. 106, 1808 (1997)CrossRef
17.
19.
go back to reference J.J. Eriksen, S. Sauer, K.V. Mikkelsen, H.J.A. Jensen, J. Kongsted, J. Comput. Chem. 33, 2012 (2013)CrossRef J.J. Eriksen, S. Sauer, K.V. Mikkelsen, H.J.A. Jensen, J. Kongsted, J. Comput. Chem. 33, 2012 (2013)CrossRef
23.
29.
go back to reference H.J. Monkhorst, Int. J. Quantum Chem. Symp. 11, 421 (1977) H.J. Monkhorst, Int. J. Quantum Chem. Symp. 11, 421 (1977)
32.
go back to reference H. Koch, H.J.A. Jensen, P. Jørgensen, T. Helgaker, J. Chem. Phys. 93, 3345 (1990)CrossRef H. Koch, H.J.A. Jensen, P. Jørgensen, T. Helgaker, J. Chem. Phys. 93, 3345 (1990)CrossRef
34.
35.
39.
go back to reference J.D. Watts, An introduction to equation-of-motion and linear-response coupled-cluster methods for electronically excited states of molecules, in Radiation Induced Molecular Phenomena in Nucleic Acids, ed. by M. K. Shukla, J. Leszczynski (Springer, Dordrecht, 2008), pp. 65–92 J.D. Watts, An introduction to equation-of-motion and linear-response coupled-cluster methods for electronically excited states of molecules, in Radiation Induced Molecular Phenomena in Nucleic Acids, ed. by M. K. Shukla, J. Leszczynski (Springer, Dordrecht, 2008), pp. 65–92
46.
49.
go back to reference B.O. Roos, Ab initio methods, in Quantum Chemistry, Part 2, Advances in Chemical Physics, ed. by K. P. Lawley, vol. 69 (Wiley, Hoboken, 1987), pp. 399–442 B.O. Roos, Ab initio methods, in Quantum Chemistry, Part 2, Advances in Chemical Physics, ed. by K. P. Lawley, vol. 69 (Wiley, Hoboken, 1987), pp. 399–442
50.
51.
53.
go back to reference M. Wormit, D.R. Rehn, P.H.P. Harbach, J. Wenzel, C.M. Krauter, E. Epifanovsky, A. Dreuw, Mol. Phys. 112, 774–784 (2014)CrossRef M. Wormit, D.R. Rehn, P.H.P. Harbach, J. Wenzel, C.M. Krauter, E. Epifanovsky, A. Dreuw, Mol. Phys. 112, 774–784 (2014)CrossRef
55.
go back to reference P.-O. Löwdin, Adv. Chem. Phys. 2, 207 (1959) P.-O. Löwdin, Adv. Chem. Phys. 2, 207 (1959)
56.
58.
go back to reference H.-J. Werner, Adv. Chem. Phys. 69, 1 (1987) H.-J. Werner, Adv. Chem. Phys. 69, 1 (1987)
59.
go back to reference H.-J. Werner, W. Meyer, J. Chem. Phys. 73, 342 (1980) H.-J. Werner, W. Meyer, J. Chem. Phys. 73, 342 (1980)
60.
go back to reference M. Frisch, I. Ragazos, M. Robb, H. Schlegel, Chem. Phys. Lett. 189, 524 (1992)CrossRef M. Frisch, I. Ragazos, M. Robb, H. Schlegel, Chem. Phys. Lett. 189, 524 (1992)CrossRef
61.
go back to reference K. Ruedenberg, L.M. Cheung, S.T. Elbert, Int. J. Quantum Chem. 16, 1069 (1979)CrossRef K. Ruedenberg, L.M. Cheung, S.T. Elbert, Int. J. Quantum Chem. 16, 1069 (1979)CrossRef
64.
go back to reference D. Yeager, D. Lynch, J. Nichols, P. Jørgensen, J. Olsen, J. Phys. Chem. 86, 2140 (1982)CrossRef D. Yeager, D. Lynch, J. Nichols, P. Jørgensen, J. Olsen, J. Phys. Chem. 86, 2140 (1982)CrossRef
65.
67.
68.
go back to reference S. Matsumoto, M. Toyama, Y. Yasuda, T. Uchide, R. Ueno, Chem. Phys. Lett. 157, 142 (1989)CrossRef S. Matsumoto, M. Toyama, Y. Yasuda, T. Uchide, R. Ueno, Chem. Phys. Lett. 157, 142 (1989)CrossRef
69.
go back to reference M.R. Hoffmann, C.D. Sherrill, M.L. Leininger, H.F. Schaefer III, Chem. Phys. Lett. 355, 183 (2002)CrossRef M.R. Hoffmann, C.D. Sherrill, M.L. Leininger, H.F. Schaefer III, Chem. Phys. Lett. 355, 183 (2002)CrossRef
72.
75.
79.
go back to reference Z. Xiong, N.C. Bacalis, Commun. Math. Comput. Chem. 53, 283 (2005); Z. Xiong, M. Velgakis, N.C. Bacalis, Int. J. Quantum Chem. 104, 418 (2005); Chin Phys. 15, 992 (2006) Z. Xiong, N.C. Bacalis, Commun. Math. Comput. Chem. 53, 283 (2005); Z. Xiong, M. Velgakis, N.C. Bacalis, Int. J. Quantum Chem. 104, 418 (2005); Chin Phys. 15, 992 (2006)
81.
go back to reference N.C. Bacalis, J. Comput. Methods Sci. Eng. 16, 253 (2016) N.C. Bacalis, J. Comput. Methods Sci. Eng. 16, 253 (2016)
82.
go back to reference H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Plenum, New York, 1977), pp. 146–162CrossRef H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Plenum, New York, 1977), pp. 146–162CrossRef
85.
go back to reference W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in FORTRAN 77: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1992), p. 374 W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in FORTRAN 77: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1992), p. 374
86.
go back to reference C. Froese Fischer, T. Brage, P. Jönsson, Computational Atomic Structure: An MCHF Approach (Institute of Physics Publishing, Bristol, 1997), pp. 92–96 C. Froese Fischer, T. Brage, P. Jönsson, Computational Atomic Structure: An MCHF Approach (Institute of Physics Publishing, Bristol, 1997), pp. 92–96
88.
go back to reference Z. Xiong, Z.-X. Wang, N.C. Bacalis, Acta Phys. Sin. 63, 053104 (2014) Z. Xiong, Z.-X. Wang, N.C. Bacalis, Acta Phys. Sin. 63, 053104 (2014)
89.
go back to reference A. Sarsa, E. Buendía, F.J. Gálvez, J. Phys. BQ At. Mol. Phys. 49, 145003 (2016)CrossRef A. Sarsa, E. Buendía, F.J. Gálvez, J. Phys. BQ At. Mol. Phys. 49, 145003 (2016)CrossRef
90.
go back to reference Z. Xiong, J. Zang, H.J. Liu, D. Karaoulanis, Q. Zhou, N.C. Bacalis, J. Comput. Methods Sci. Eng. 17(3), 347–361 (2017) Z. Xiong, J. Zang, H.J. Liu, D. Karaoulanis, Q. Zhou, N.C. Bacalis, J. Comput. Methods Sci. Eng. 17(3), 347–361 (2017)
Metadata
Title
If Truncated Wave Functions of Excited State Energy Saddle Points Are Computed as Energy Minima, Where Is the Saddle Point?
Author
N. C. Bacalis
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-0006-0_13

Premium Partner