Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

1. Image and Signal Sensors for Computing and Machine Vision: Developments to Meet Future Needs

Authors : Ross D. Jansen-van Vuuren, Ali Shahnewaz, Ajay K. Pandey

Published in: Machine Vision and Navigation

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Image sensors used in current machine vision systems suffer from low dynamic range and poor colour constancy and are brittle and unmalleable, limiting their use in applications for which there will be considerable demand in the future. Most approaches aiming to resolve these inadequacies focus on developing improvements in the lighting, software (processing algorithms) or hardware surrounding the photosensor such as the filters. Other strategies involve changing the architecture of the image sensor and the photosensing material; both have experienced recent success. Although they are yet to break fully into the market, image sensors developed from alternative solution-processed materials such as organic semiconductors and organohalide perovskites have immense potential to address the above issues and to ‘disrupt’ machine vision technology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., & Blasco, J. (2011). Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food and Bioprocess Technology, 4(4), 487–504.CrossRef Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., & Blasco, J. (2011). Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food and Bioprocess Technology, 4(4), 487–504.CrossRef
4.
go back to reference Patel, K., Kar, A., Jha, S., & Khan, M. (2011). Machine vision system: A tool for quality inspection of food and agricultural products. Journal of Food Science Technology, 49(2), 1–19. Patel, K., Kar, A., Jha, S., & Khan, M. (2011). Machine vision system: A tool for quality inspection of food and agricultural products. Journal of Food Science Technology, 49(2), 1–19.
5.
go back to reference Kaur, H., Sawhney, B. K., & Jawandha, S. K. (2018). Evaluation of plum fruit maturity by image processing techniques. Journal of Food Science and Technology, 55(8), 3008–3015.CrossRef Kaur, H., Sawhney, B. K., & Jawandha, S. K. (2018). Evaluation of plum fruit maturity by image processing techniques. Journal of Food Science and Technology, 55(8), 3008–3015.CrossRef
6.
go back to reference Sridharan, M., & Stone, P. (2009). Color learning and illumination invariance on mobile robots: A survey. Robotics and Autonomous Systems, 57, 629–644.CrossRef Sridharan, M., & Stone, P. (2009). Color learning and illumination invariance on mobile robots: A survey. Robotics and Autonomous Systems, 57, 629–644.CrossRef
7.
go back to reference Marchant, J. A., Tillett, N. D., & Onyango, C. M. (2004). Dealing with color changes caused by natural illumination in outdoor machine vision. Cybernetics and Systems: An International Journal, 35(1), 19–33.CrossRef Marchant, J. A., Tillett, N. D., & Onyango, C. M. (2004). Dealing with color changes caused by natural illumination in outdoor machine vision. Cybernetics and Systems: An International Journal, 35(1), 19–33.CrossRef
8.
go back to reference Buluswar, S. D., & Draper, B. A. (1998). Color machine vision for autonomous vehicles. Engineering Applications of Artificial Intelligence, 11, 245–256.CrossRef Buluswar, S. D., & Draper, B. A. (1998). Color machine vision for autonomous vehicles. Engineering Applications of Artificial Intelligence, 11, 245–256.CrossRef
9.
go back to reference Maddern, W., Stewart, A. D., McManus, C., Upcroft, B., Churchill, W., & Newman, P. (2014). Illumination invariant imaging: Applications in robust vision-based localisation, mapping and classification for autonomous vehicles. In Proceedings of the Visual Place Recognition in Changing Environments Workshop, IEEE International Conference on Robotics and Automation. Maddern, W., Stewart, A. D., McManus, C., Upcroft, B., Churchill, W., & Newman, P. (2014). Illumination invariant imaging: Applications in robust vision-based localisation, mapping and classification for autonomous vehicles. In Proceedings of the Visual Place Recognition in Changing Environments Workshop, IEEE International Conference on Robotics and Automation.
10.
go back to reference Fernández, R., Montes, H., Salinas, C., Sarria, J., & Armada, M. (2013). Combination of RGB and multispectral imagery for discrimination of cabernet sauvignon grapevine elements. Sensors (Basel, Switzerland), 13(6), 7838–7859.CrossRef Fernández, R., Montes, H., Salinas, C., Sarria, J., & Armada, M. (2013). Combination of RGB and multispectral imagery for discrimination of cabernet sauvignon grapevine elements. Sensors (Basel, Switzerland), 13(6), 7838–7859.CrossRef
11.
go back to reference Bloss, R. (2013). Robots use machine vision and other smart sensors to aid innovative picking, packing and palletizing. Industrial Robot: An International Journal, 40(6), 525–529.CrossRef Bloss, R. (2013). Robots use machine vision and other smart sensors to aid innovative picking, packing and palletizing. Industrial Robot: An International Journal, 40(6), 525–529.CrossRef
12.
go back to reference Oestreich, J. M., Tolley, W. K., & Rice, D. A. (1995). The development of a color sensor system to measure mineral compositions. Minerals Engineering, 8(1/2), 31–39.CrossRef Oestreich, J. M., Tolley, W. K., & Rice, D. A. (1995). The development of a color sensor system to measure mineral compositions. Minerals Engineering, 8(1/2), 31–39.CrossRef
13.
go back to reference Schmittmann, O., & Lammers, P. S. (2017). A true-color sensor and suitable evaluation algorithm for plant recognition. Sensors, 17(8), 1823.CrossRef Schmittmann, O., & Lammers, P. S. (2017). A true-color sensor and suitable evaluation algorithm for plant recognition. Sensors, 17(8), 1823.CrossRef
14.
go back to reference Yamada, K., Nakano, T., & Yamamoto, S. (1998). A vision sensor having an expanded dynamic range for autonomous vehicles. IEEE Transactions on Vehicular Technology, 47(1), 332–341.CrossRef Yamada, K., Nakano, T., & Yamamoto, S. (1998). A vision sensor having an expanded dynamic range for autonomous vehicles. IEEE Transactions on Vehicular Technology, 47(1), 332–341.CrossRef
15.
go back to reference Xiong, N. N., Yang, S., Kangye, Y., Changhoon, L., & Chunxue, W. (2018). Color sensors and their applications based on real-time color image segmentation for cyber physical systems. EURASIP Journal on Image and Video Processing, 2018, 23.CrossRef Xiong, N. N., Yang, S., Kangye, Y., Changhoon, L., & Chunxue, W. (2018). Color sensors and their applications based on real-time color image segmentation for cyber physical systems. EURASIP Journal on Image and Video Processing, 2018, 23.CrossRef
16.
go back to reference Pathare, P. B., Opara, U. L., & Al-Said, F. A. (2013). Colour measurement and analysis in fresh and processed foods: A review. Food and Bioprocess Technology, 6(1), 36–60.CrossRef Pathare, P. B., Opara, U. L., & Al-Said, F. A. (2013). Colour measurement and analysis in fresh and processed foods: A review. Food and Bioprocess Technology, 6(1), 36–60.CrossRef
17.
go back to reference Ratnasingam, S., & Collins, S. (2008). An algorithm to determine the chromaticity under non-uniform illuminant. In ICISP 2008: Image and signal processing (pp. 244–253). Ratnasingam, S., & Collins, S. (2008). An algorithm to determine the chromaticity under non-uniform illuminant. In ICISP 2008: Image and signal processing (pp. 244–253).
18.
go back to reference Logvinenko, A. D., Funt, B., Mirzaei, H., & Tokunaga, R. (2015). Rethinking colour constancy. PLoS One, 10(9), e0135029.CrossRef Logvinenko, A. D., Funt, B., Mirzaei, H., & Tokunaga, R. (2015). Rethinking colour constancy. PLoS One, 10(9), e0135029.CrossRef
19.
go back to reference Lukac, R., Plataniotis, K. N., & Hatzinakos, D. (2005). Color image zooming on the Bayer pattern. IEEE Transactions on Circuits and Systems for Video Technology, 15(11), 1475–1492.CrossRef Lukac, R., Plataniotis, K. N., & Hatzinakos, D. (2005). Color image zooming on the Bayer pattern. IEEE Transactions on Circuits and Systems for Video Technology, 15(11), 1475–1492.CrossRef
20.
go back to reference Bayer, B. E. (1975). Color imaging array. U.S. Patent No. 3,971,065. Bayer, B. E. (1975). Color imaging array. U.S. Patent No. 3,971,065.
21.
go back to reference Nakamura, J. (2006). Basics of image sensors. In Image sensors and signal processing for digital still cameras (pp. 55–61). Boca Raton, FL: Taylor & Francis. Nakamura, J. (2006). Basics of image sensors. In Image sensors and signal processing for digital still cameras (pp. 55–61). Boca Raton, FL: Taylor & Francis.
22.
go back to reference Suzuki, T. (2010). Challenges of image-sensor development. In 2010 IEEE International Solid-State Circuits Conference—(ISSCC) (pp. 28–30). Suzuki, T. (2010). Challenges of image-sensor development. In 2010 IEEE International Solid-State Circuits Conference—(ISSCC) (pp. 28–30).
24.
go back to reference Lahav, A., Fenigstein, A., & Strum, A. (2014). Backside illuminated (BSI) complementary metal-oxide-semiconductor (CMOS) image sensors. In High performance silicon imaging fundamentals and applications of CMOS and CCD sensors (pp. 98–123).CrossRef Lahav, A., Fenigstein, A., & Strum, A. (2014). Backside illuminated (BSI) complementary metal-oxide-semiconductor (CMOS) image sensors. In High performance silicon imaging fundamentals and applications of CMOS and CCD sensors (pp. 98–123).CrossRef
25.
go back to reference Nomoto, T., Oike, Y., & Wakabayashi, H. (2016). Accelerating the sensing world through imaging evolution. In 2016 Symposium on VLSI Circuits Digest of Technical Papers (pp. 1–4). Nomoto, T., Oike, Y., & Wakabayashi, H. (2016). Accelerating the sensing world through imaging evolution. In 2016 Symposium on VLSI Circuits Digest of Technical Papers (pp. 1–4).
26.
go back to reference Fossum, E. R. (1997). CMOS image sensors: Electronic camera-on-a-chip. In IEEE Proceedings of International Electron Devices Meeting. Fossum, E. R. (1997). CMOS image sensors: Electronic camera-on-a-chip. In IEEE Proceedings of International Electron Devices Meeting.
27.
go back to reference Fossum, E. R., & Hondongwa, D. B. (2014). A review of the pinned photodiode for CCD and CMOS image sensors. IEEE Journal of the Electron Devices Society, 2(3), 33–43.CrossRef Fossum, E. R., & Hondongwa, D. B. (2014). A review of the pinned photodiode for CCD and CMOS image sensors. IEEE Journal of the Electron Devices Society, 2(3), 33–43.CrossRef
28.
go back to reference Bigas, M., Cabruja, E., Forest, J., & Salvi, J. (2006). Review of CMOS image sensors. Microelectronics Journal, 37(5), 433–451.CrossRef Bigas, M., Cabruja, E., Forest, J., & Salvi, J. (2006). Review of CMOS image sensors. Microelectronics Journal, 37(5), 433–451.CrossRef
29.
go back to reference Lesser, M. (2014). Charge coupled device (CCD) image sensors. In High performance silicon imaging: Fundamentals and applications of CMOS and CCD sensors (pp. 78–97).CrossRef Lesser, M. (2014). Charge coupled device (CCD) image sensors. In High performance silicon imaging: Fundamentals and applications of CMOS and CCD sensors (pp. 78–97).CrossRef
30.
go back to reference Hamilton, G., Brown, N., Oseroff, V., Huey, B., Segraves, R., Sudar, D., Kumler, J., Albertson, D., & Pinkel, D. (2006). A large field CCD system for quantitative imaging of microarrays. Nucleic Acids Research, 34(8), e58, 1–e58,14.CrossRef Hamilton, G., Brown, N., Oseroff, V., Huey, B., Segraves, R., Sudar, D., Kumler, J., Albertson, D., & Pinkel, D. (2006). A large field CCD system for quantitative imaging of microarrays. Nucleic Acids Research, 34(8), e58, 1–e58,14.CrossRef
31.
go back to reference Catrysse, P., & Wandell, B. A. (2003). Integrated color pixels in 0.18-μm complementary metal oxide semiconductor technology. Journal of the Optical Society of America A, 20(12), 2293–2306.CrossRef Catrysse, P., & Wandell, B. A. (2003). Integrated color pixels in 0.18-μm complementary metal oxide semiconductor technology. Journal of the Optical Society of America A, 20(12), 2293–2306.CrossRef
32.
go back to reference Knipp, D., Herzog, P. G., & Stiebig, H. (2002). Stacked amorphous silicon color sensors. IEEE Transactions on Electron Devices, 49(1), 170–176.CrossRef Knipp, D., Herzog, P. G., & Stiebig, H. (2002). Stacked amorphous silicon color sensors. IEEE Transactions on Electron Devices, 49(1), 170–176.CrossRef
33.
go back to reference Hubel, P. M. (2005). Foveon technology and the changing landscape of digital cameras. In 13th IS&T Color Imaging Conf., Scottsdale, AZ, USA (pp. 314–317). Hubel, P. M. (2005). Foveon technology and the changing landscape of digital cameras. In 13th IS&T Color Imaging Conf., Scottsdale, AZ, USA (pp. 314–317).
34.
go back to reference Lyon, R., & Hubel, P. M. (2002). Eyeing the camera: Into the next century. In IS&T/TSID 10th Color Imaging Conference Proceedings Scottsdale, AZ (p. 349). Lyon, R., & Hubel, P. M. (2002). Eyeing the camera: Into the next century. In IS&T/TSID 10th Color Imaging Conference Proceedings Scottsdale, AZ (p. 349).
35.
go back to reference Blockstein, L., & Yadid-Pecht, O. (2010). Crosstalk quantification, analysis, and trends in CMOS image sensors. Applied Optics, 49(24), 4483–4488.CrossRef Blockstein, L., & Yadid-Pecht, O. (2010). Crosstalk quantification, analysis, and trends in CMOS image sensors. Applied Optics, 49(24), 4483–4488.CrossRef
36.
go back to reference Anzagira, L., & Fossum, E. R. (2015). Color filter array patterns for small-pixel image sensors with substantial cross talk. Journal of the Optical Society of America A, 32(1), 28–34.CrossRef Anzagira, L., & Fossum, E. R. (2015). Color filter array patterns for small-pixel image sensors with substantial cross talk. Journal of the Optical Society of America A, 32(1), 28–34.CrossRef
37.
go back to reference Langfelder, G., Longoni, A., & Zaraga, F. (2009). Further developments on a novel color sensitive CMOS detector. In Proceedings Volume 7356, Optical Sensors 2009; 73562A. Langfelder, G., Longoni, A., & Zaraga, F. (2009). Further developments on a novel color sensitive CMOS detector. In Proceedings Volume 7356, Optical Sensors 2009; 73562A.
38.
go back to reference Longoni, A., Zaraga, F., Langfelder, G., & Bombelli, L. (2008). The transverse field detector (TFD): A novel color-sensitive CMOS device. IEEE Electron Device Letters, 29(12), 1306–1308.CrossRef Longoni, A., Zaraga, F., Langfelder, G., & Bombelli, L. (2008). The transverse field detector (TFD): A novel color-sensitive CMOS device. IEEE Electron Device Letters, 29(12), 1306–1308.CrossRef
39.
go back to reference Jansen-van Vuuren, R. D., Armin, A., Pandey, A. K., Burn, P. L., & Meredith, P. M. (2016). Organic photodiodes: The future of full color detection and image sensing. Advanced Materials, 28, 4766–4802.CrossRef Jansen-van Vuuren, R. D., Armin, A., Pandey, A. K., Burn, P. L., & Meredith, P. M. (2016). Organic photodiodes: The future of full color detection and image sensing. Advanced Materials, 28, 4766–4802.CrossRef
40.
go back to reference Moloney, A. M., Wall, L., Mathewson, A., Healy, G., & Jackson, J. C. (2006). Novel black silicon PIN photodiodes. In Proceedings Volume 6119, Semiconductor Photodetectors III; 61190B. Moloney, A. M., Wall, L., Mathewson, A., Healy, G., & Jackson, J. C. (2006). Novel black silicon PIN photodiodes. In Proceedings Volume 6119, Semiconductor Photodetectors III; 61190B.
41.
go back to reference Tut, T., & Dan, Y. (2014). Silicon photodetectors integrated with vertical silicon nitride waveguides as image sensor pixels: Fabrication and characterization. Journal of Vacuum Science & Technology B, 32, 031201.CrossRef Tut, T., & Dan, Y. (2014). Silicon photodetectors integrated with vertical silicon nitride waveguides as image sensor pixels: Fabrication and characterization. Journal of Vacuum Science & Technology B, 32, 031201.CrossRef
42.
go back to reference Theil, J. A., Snyder, R., Hula, D., Lindahl, K., Haddad, H., & Roland, J. (2002). a-Si:H photodiode technology for advanced CMOS active pixel sensor imagers. Journal of Non-Crystalline Solids, 299–302, 1234–1239.CrossRef Theil, J. A., Snyder, R., Hula, D., Lindahl, K., Haddad, H., & Roland, J. (2002). a-Si:H photodiode technology for advanced CMOS active pixel sensor imagers. Journal of Non-Crystalline Solids, 299–302, 1234–1239.CrossRef
43.
go back to reference Konstantatos, G., & Sargent, E. H. (2010). Nanostructured materials for photon detection. Nature Nanotechnology, 5, 391–400.CrossRef Konstantatos, G., & Sargent, E. H. (2010). Nanostructured materials for photon detection. Nature Nanotechnology, 5, 391–400.CrossRef
44.
go back to reference Konstantatos, G., & Sargent, E. H. (2009). Solution-processed quantum dot photodetectors. Proceedings of the IEEE, 97(10), 1666–1683.CrossRef Konstantatos, G., & Sargent, E. H. (2009). Solution-processed quantum dot photodetectors. Proceedings of the IEEE, 97(10), 1666–1683.CrossRef
45.
go back to reference Goetzberger, A., & Hebling, C. (2000). Photovoltaic materials, past, present, future. Solar Energy Materials and Solar Cells, 62(1–2), 1–19.CrossRef Goetzberger, A., & Hebling, C. (2000). Photovoltaic materials, past, present, future. Solar Energy Materials and Solar Cells, 62(1–2), 1–19.CrossRef
46.
go back to reference Lule, T., Benthien, S., Keller, H., Mutze, F., Rieve, P., Seibel, K., Sommer, M., & Bohm, M. (2000). Sensitivity of CMOS based imagers and scaling perspectives. IEEE Transactions on Electron Devices, 47(11), 2110–2122.CrossRef Lule, T., Benthien, S., Keller, H., Mutze, F., Rieve, P., Seibel, K., Sommer, M., & Bohm, M. (2000). Sensitivity of CMOS based imagers and scaling perspectives. IEEE Transactions on Electron Devices, 47(11), 2110–2122.CrossRef
47.
go back to reference Liu, L., Yang, C., Patanè, A., Yu, Z., Yan, F., Wang, K., Lu, H., Liab, J., & Zhao, L. (2017). High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN. Nanoscale, 9, 8142–8148.CrossRef Liu, L., Yang, C., Patanè, A., Yu, Z., Yan, F., Wang, K., Lu, H., Liab, J., & Zhao, L. (2017). High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN. Nanoscale, 9, 8142–8148.CrossRef
48.
go back to reference Haddadi, A., Dehzangi, A., Adhikary, S., Chevallier, R., & Razeghi, M. (2017). Background–limited long wavelength infrared InAs/InAs1- xSbx type-II superlattice-based photodetectors operating at 110 K. Applied Physics Letters Materials, 5, 035502. Haddadi, A., Dehzangi, A., Adhikary, S., Chevallier, R., & Razeghi, M. (2017). Background–limited long wavelength infrared InAs/InAs1- xSbx type-II superlattice-based photodetectors operating at 110 K. Applied Physics Letters Materials, 5, 035502.
49.
go back to reference Gong, X., Tong, M., Xia, Y., Cai, W., Moon, J. S., Cao, Y., Yu, G., Shieh, C.-L., Nilsson, B., & Heeger, A. J. (2009). High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science, 325(5948), 1665–1667.CrossRef Gong, X., Tong, M., Xia, Y., Cai, W., Moon, J. S., Cao, Y., Yu, G., Shieh, C.-L., Nilsson, B., & Heeger, A. J. (2009). High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science, 325(5948), 1665–1667.CrossRef
50.
go back to reference Armin, A., Jansen-van Vuuren, R. D., Kopidakis, N., Burn, P. L., & Meredith, P. (2015). Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nature Communications, 6, 6343.CrossRef Armin, A., Jansen-van Vuuren, R. D., Kopidakis, N., Burn, P. L., & Meredith, P. (2015). Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nature Communications, 6, 6343.CrossRef
51.
go back to reference Lin, Q., Armin, A., Lyons, D. M., Burn, P. L., & Meredith, P. (2015). Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging. Advanced Materials, 27(12), 2060–2064.CrossRef Lin, Q., Armin, A., Lyons, D. M., Burn, P. L., & Meredith, P. (2015). Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging. Advanced Materials, 27(12), 2060–2064.CrossRef
52.
go back to reference Pelayo de García de Arquer, F., Armin, A., Meredith, P., & Sargent, E. H. (2017). Solution-processed semiconductors for next-generation photodetectors. Nature Reviews Materials, 2(16100), 1–16. Pelayo de García de Arquer, F., Armin, A., Meredith, P., & Sargent, E. H. (2017). Solution-processed semiconductors for next-generation photodetectors. Nature Reviews Materials, 2(16100), 1–16.
53.
go back to reference Xie, C., & Yan, F. (2017). Flexible photodetectors based on novel functional materials. Small, 13(43), 1701822(1 of 36).CrossRef Xie, C., & Yan, F. (2017). Flexible photodetectors based on novel functional materials. Small, 13(43), 1701822(1 of 36).CrossRef
54.
go back to reference Ng, T. N., Wong, W. S., Lujan, R. A., & Street, R. A. (2009). Characterization of charge collection in photodiodes under mechanical strain: Comparison between organic bulk heterojunction and amorphous silicon. Advanced Materials, 21(18), 1855–1859.CrossRef Ng, T. N., Wong, W. S., Lujan, R. A., & Street, R. A. (2009). Characterization of charge collection in photodiodes under mechanical strain: Comparison between organic bulk heterojunction and amorphous silicon. Advanced Materials, 21(18), 1855–1859.CrossRef
55.
go back to reference Vasavi, V., Shaik, A. F., & Sunkara, P. C. K. (2018). Moving object classification under illumination changes using binary descriptors. In M. Rivas-Lopez, O. Sergiyenko, W. Flores-Fuentes, & J. C. Rodríguez-Quiñonez (Eds.), Optoelectronics in machine vision-based theories and applications (pp. 188–189). Hershey, PA: IGI Global. Vasavi, V., Shaik, A. F., & Sunkara, P. C. K. (2018). Moving object classification under illumination changes using binary descriptors. In M. Rivas-Lopez, O. Sergiyenko, W. Flores-Fuentes, & J. C. Rodríguez-Quiñonez (Eds.), Optoelectronics in machine vision-based theories and applications (pp. 188–189). Hershey, PA: IGI Global.
56.
go back to reference Ji, W., Zhao, D., Cheng, F., Xu, B., Zhang, Y., & Wang, J. (2012). Automatic recognition vision system guided for apple harvesting robot. Computers and Electrical Engineering, 38(5), 1186–1195.CrossRef Ji, W., Zhao, D., Cheng, F., Xu, B., Zhang, Y., & Wang, J. (2012). Automatic recognition vision system guided for apple harvesting robot. Computers and Electrical Engineering, 38(5), 1186–1195.CrossRef
57.
go back to reference Son, J., Kim, S., & Sohn, K. (2015). A multi-vision sensor-based fast localization system with image matching for challenging outdoor environments. Expert Systems with Applications, 42(22), 8830–8839.CrossRef Son, J., Kim, S., & Sohn, K. (2015). A multi-vision sensor-based fast localization system with image matching for challenging outdoor environments. Expert Systems with Applications, 42(22), 8830–8839.CrossRef
58.
go back to reference Antognazza, M. R., Musitelli, D., Perissinotto, S., & Lanzani, S. (2010). Spectrally selected photodiodes for colorimetric application. Organic Electronics, 11(3), 357–362.CrossRef Antognazza, M. R., Musitelli, D., Perissinotto, S., & Lanzani, S. (2010). Spectrally selected photodiodes for colorimetric application. Organic Electronics, 11(3), 357–362.CrossRef
59.
go back to reference Xiong, J., Liu, Z., Lin, R., Bu, R., He, Z., Yang, Z., & Liang, C. (2018). Green grape detection and picking-point calculation in a night-time natural environment using a charge-coupled device (CCD) vision sensor with artificial illumination. Sensors, 18(969), 1–17. Xiong, J., Liu, Z., Lin, R., Bu, R., He, Z., Yang, Z., & Liang, C. (2018). Green grape detection and picking-point calculation in a night-time natural environment using a charge-coupled device (CCD) vision sensor with artificial illumination. Sensors, 18(969), 1–17.
60.
go back to reference Ratnasingam, S., & McGinnity, T. M. (2012). Chromaticity space for illuminant invariant recognition. IEEE Transactions on Image Processing, 21(8), 3612–3623.MathSciNetMATHCrossRef Ratnasingam, S., & McGinnity, T. M. (2012). Chromaticity space for illuminant invariant recognition. IEEE Transactions on Image Processing, 21(8), 3612–3623.MathSciNetMATHCrossRef
61.
go back to reference Xue, J., Zhu, Z., Xu, X., Wang, S., Xu, L., Zou, Y., Song, J., Zeng, H., & Chen, Q. (2018). Narrowband perovskite photodetector-based image array for potential application in artificial vision. Nano Letters, 18(12), 7628–7634.CrossRef Xue, J., Zhu, Z., Xu, X., Wang, S., Xu, L., Zou, Y., Song, J., Zeng, H., & Chen, Q. (2018). Narrowband perovskite photodetector-based image array for potential application in artificial vision. Nano Letters, 18(12), 7628–7634.CrossRef
62.
go back to reference Flores-Fuentes, W., Miranda-Vega, J. E., Rivas-López, M., Sergiyenko, O., Rodríguez-Quiñonez, J. C., & Lindner, L. (2018). Comparison between different types of sensors used in the real operational environment based on optical scanning system. Sensors, 18(1684), 1–15. Flores-Fuentes, W., Miranda-Vega, J. E., Rivas-López, M., Sergiyenko, O., Rodríguez-Quiñonez, J. C., & Lindner, L. (2018). Comparison between different types of sensors used in the real operational environment based on optical scanning system. Sensors, 18(1684), 1–15.
63.
go back to reference Guo, W., Rage, U. K., & Ninomiya, S. (2013). Illumination invariant segmentation of vegetation for time series wheat images based on decision tree model. Computers and Electronics in Agriculture, 96, 58–66.CrossRef Guo, W., Rage, U. K., & Ninomiya, S. (2013). Illumination invariant segmentation of vegetation for time series wheat images based on decision tree model. Computers and Electronics in Agriculture, 96, 58–66.CrossRef
64.
go back to reference Estribeau, M., & Magnan, P. (2005). CMOS pixels crosstalk mapping and its influence on measurements accuracy for space applications. In Proceedings of SPIE, Volume 5978, Sensors, Systems, and Next-Generation Satellites IX; 597813. Estribeau, M., & Magnan, P. (2005). CMOS pixels crosstalk mapping and its influence on measurements accuracy for space applications. In Proceedings of SPIE, Volume 5978, Sensors, Systems, and Next-Generation Satellites IX; 597813.
65.
go back to reference Natali, D., & Caironi, M. (2016). Organic photodetectors. In Photodetectors, materials, devices and applications (p. 233). Natali, D., & Caironi, M. (2016). Organic photodetectors. In Photodetectors, materials, devices and applications (p. 233).
66.
go back to reference Kudo, K., & Moriizumi, T. (1981). Spectrum-controllable color sensors using organic dyes. Applied Physics Letters, 39, 609–611.CrossRef Kudo, K., & Moriizumi, T. (1981). Spectrum-controllable color sensors using organic dyes. Applied Physics Letters, 39, 609–611.CrossRef
67.
go back to reference Yu, G., Pakbaz, K., & Heeger, A. J. (1994). Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity. Applied Physics Letters, 64, 3422–3424.CrossRef Yu, G., Pakbaz, K., & Heeger, A. J. (1994). Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity. Applied Physics Letters, 64, 3422–3424.CrossRef
68.
go back to reference Biele, M., Benavides, C. M., Hürdler, J., Tedde, S. F., Brabec, C. J., & Schmidt, O. (2019). Spray-coated organic photodetectors and image sensors with silicon-like performance. Advanced Materials Technologies, 4(1), 1800158:1–6.CrossRef Biele, M., Benavides, C. M., Hürdler, J., Tedde, S. F., Brabec, C. J., & Schmidt, O. (2019). Spray-coated organic photodetectors and image sensors with silicon-like performance. Advanced Materials Technologies, 4(1), 1800158:1–6.CrossRef
69.
go back to reference Yang, D., & Ma, D. (2019). Development of organic semiconductor photodetectors: From mechanism to applications. Advanced Optical Materials, 7(1), 1800522:1–23.MathSciNetCrossRef Yang, D., & Ma, D. (2019). Development of organic semiconductor photodetectors: From mechanism to applications. Advanced Optical Materials, 7(1), 1800522:1–23.MathSciNetCrossRef
70.
go back to reference Cai, S. (2019). Materials and designs for wearable photodetectors. Advanced Materials, Early View, 31(18), 1808138.CrossRef Cai, S. (2019). Materials and designs for wearable photodetectors. Advanced Materials, Early View, 31(18), 1808138.CrossRef
71.
go back to reference Natali, D., & Sampietro, M. (2003). Detectors based on organic materials: Status and perspectives. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 512(1–2), 419–426.CrossRef Natali, D., & Sampietro, M. (2003). Detectors based on organic materials: Status and perspectives. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 512(1–2), 419–426.CrossRef
72.
go back to reference Arkhipov, V. I., & Bässler, H. (2003). Exciton dissociation and charge photogeneration in pristine and doped conjugated polymers. Physica Status Solidi A, 201(6), 1152–1187.CrossRef Arkhipov, V. I., & Bässler, H. (2003). Exciton dissociation and charge photogeneration in pristine and doped conjugated polymers. Physica Status Solidi A, 201(6), 1152–1187.CrossRef
73.
go back to reference Gregg, B. A. (2003). Excitonic solar cells. Journal of Physical Chemistry B, 107(20), 4688–4698.CrossRef Gregg, B. A. (2003). Excitonic solar cells. Journal of Physical Chemistry B, 107(20), 4688–4698.CrossRef
74.
go back to reference Thompson, B. C., & Fréchet, J. M. J. (2007). Polymer–fullerene composite solar cells. Angewandte Chemie International Edition, 47(1), 58–77.CrossRef Thompson, B. C., & Fréchet, J. M. J. (2007). Polymer–fullerene composite solar cells. Angewandte Chemie International Edition, 47(1), 58–77.CrossRef
75.
go back to reference Rauch, T., Henseler, D., Schilinsky, P., Waldauf, C., Hauch, J., Brabec, C. J. (2004). Performance of bulk-heterojunction organic photodetectors. In 4th IEEE Conference on Nanotechnology. Rauch, T., Henseler, D., Schilinsky, P., Waldauf, C., Hauch, J., Brabec, C. J. (2004). Performance of bulk-heterojunction organic photodetectors. In 4th IEEE Conference on Nanotechnology.
76.
go back to reference Yu, G., Wang, J., McElvain, J., & Heeger, A. J. (1999). Large-area, full-color image sensors made with semiconducting polymers. Advanced Materials, 10(17), 1431–1434.CrossRef Yu, G., Wang, J., McElvain, J., & Heeger, A. J. (1999). Large-area, full-color image sensors made with semiconducting polymers. Advanced Materials, 10(17), 1431–1434.CrossRef
77.
go back to reference Seo, H., Aihara, S., Watabe, T., Ohtake, H., Sakai, T., Kubota, M., Egami, N., Hiramatsu, T., Matsuda, T., & Furuta, M. (2011). A 128×96 pixel stack-type color image sensor: Stack of individual blue-, green-, and red-sensitive organic photoconductive films integrated with a ZnO thin film transistor readout circuit. Japanese Journal of Applied Physics, 50, 024103.CrossRef Seo, H., Aihara, S., Watabe, T., Ohtake, H., Sakai, T., Kubota, M., Egami, N., Hiramatsu, T., Matsuda, T., & Furuta, M. (2011). A 128×96 pixel stack-type color image sensor: Stack of individual blue-, green-, and red-sensitive organic photoconductive films integrated with a ZnO thin film transistor readout circuit. Japanese Journal of Applied Physics, 50, 024103.CrossRef
78.
go back to reference Deckman, I., Lechêne, P. B., Pierre, A., & Arias, A. C. (2018). All-printed full-color pixel organic photodiode array with a single active layer. Organic Electronics, 56, 139–145.CrossRef Deckman, I., Lechêne, P. B., Pierre, A., & Arias, A. C. (2018). All-printed full-color pixel organic photodiode array with a single active layer. Organic Electronics, 56, 139–145.CrossRef
79.
go back to reference Jansen-van Vuuren, R. D., Pivrikas, A., Pandey, A. K., & Burn, P. L. (2013). Colour selective organic photodetectors utilizing ketocyanine-cored dendrimers. Journal of Materials Chemistry C, 1, 3532–3543.CrossRef Jansen-van Vuuren, R. D., Pivrikas, A., Pandey, A. K., & Burn, P. L. (2013). Colour selective organic photodetectors utilizing ketocyanine-cored dendrimers. Journal of Materials Chemistry C, 1, 3532–3543.CrossRef
80.
go back to reference Jansen-van Vuuren, R. D., Johnstone, K. D., Ratnasingam, S., Barcena, H., Deakin, P. C., Pandey, A. K., Burn, P. L., Collins, S., & Samuel, I. D. W. (2010). Determining the absorption tolerance of single chromophore photodiodes for machine vision. Applied Physics Letters, 96, 253303.CrossRef Jansen-van Vuuren, R. D., Johnstone, K. D., Ratnasingam, S., Barcena, H., Deakin, P. C., Pandey, A. K., Burn, P. L., Collins, S., & Samuel, I. D. W. (2010). Determining the absorption tolerance of single chromophore photodiodes for machine vision. Applied Physics Letters, 96, 253303.CrossRef
81.
go back to reference Han, M. G., Park, K.-B., Bulliard, X., Lee, G. H., Yun, S., Leem, D.-S., Heo, C.-J., Yagi, T., Sakurai, R., Ro, T., Lim, S.-J., Sul, S., Na, K., Ahn, J., Jin, Y. W., & Lee, S. (2016). Narrow-band organic photodiodes for high-resolution imaging. Applied Materials and Interfaces, 8(39), 26143–26151.CrossRef Han, M. G., Park, K.-B., Bulliard, X., Lee, G. H., Yun, S., Leem, D.-S., Heo, C.-J., Yagi, T., Sakurai, R., Ro, T., Lim, S.-J., Sul, S., Na, K., Ahn, J., Jin, Y. W., & Lee, S. (2016). Narrow-band organic photodiodes for high-resolution imaging. Applied Materials and Interfaces, 8(39), 26143–26151.CrossRef
82.
go back to reference Ratnasingam, S., & Collins, S. (2010). Study of the photodetector characteristics of a camera for color constancy in natural scenes. Journal of the Optical Society of America A, 27(2), 286–294.CrossRef Ratnasingam, S., & Collins, S. (2010). Study of the photodetector characteristics of a camera for color constancy in natural scenes. Journal of the Optical Society of America A, 27(2), 286–294.CrossRef
83.
go back to reference Yoon, S., Koh, C. W., Woo, H. Y., & Chung, D. S. (2018). Systematic optical design of constituting layers to realize high-performance red-selective thin-film organic photodiodes. Advanced Optical Materials, 6(4), 1701085.CrossRef Yoon, S., Koh, C. W., Woo, H. Y., & Chung, D. S. (2018). Systematic optical design of constituting layers to realize high-performance red-selective thin-film organic photodiodes. Advanced Optical Materials, 6(4), 1701085.CrossRef
84.
go back to reference Yazmaciyan, A., Meredith, P., & Armin, A. (2019). Cavity enhanced organic photodiodes with charge collection narrowing. Advanced Optical Materials, Early View, 7(8), 1801543.CrossRef Yazmaciyan, A., Meredith, P., & Armin, A. (2019). Cavity enhanced organic photodiodes with charge collection narrowing. Advanced Optical Materials, Early View, 7(8), 1801543.CrossRef
85.
go back to reference Kielar, M., Dhez, O., Pecastaings, G., Curutchet, A., & Hirsh, L. (2016). Long-term stable organic photodetectors with ultra low dark currents for high detectivity applications. Scientific Reports, 6(39201), 1–11. Kielar, M., Dhez, O., Pecastaings, G., Curutchet, A., & Hirsh, L. (2016). Long-term stable organic photodetectors with ultra low dark currents for high detectivity applications. Scientific Reports, 6(39201), 1–11.
86.
go back to reference Nie, R., Deng, X., Feng, L., Hu, G., Wang, Y., Yu, G., & Xu, J. (2017). Highly sensitive and broadband organic photodetectors with fast speed gain and large linear dynamic range at low forward bias. Small, 13(24), 1603260.CrossRef Nie, R., Deng, X., Feng, L., Hu, G., Wang, Y., Yu, G., & Xu, J. (2017). Highly sensitive and broadband organic photodetectors with fast speed gain and large linear dynamic range at low forward bias. Small, 13(24), 1603260.CrossRef
87.
go back to reference Hu, L., Han, J., Qiao, W., Zhou, X., Wang, C., Ma, D., Li, Y., & Wang, Z. H. (2018). Side-chain engineering in naphthalenediimide-based n-type polymers for high-performance all-polymer photodetectors. Polymer Chemistry, 9(3), 327–334.CrossRef Hu, L., Han, J., Qiao, W., Zhou, X., Wang, C., Ma, D., Li, Y., & Wang, Z. H. (2018). Side-chain engineering in naphthalenediimide-based n-type polymers for high-performance all-polymer photodetectors. Polymer Chemistry, 9(3), 327–334.CrossRef
93.
go back to reference Jansen-van Vuuren, R. D., Deakin, P. C., Olsen, S., & Burn, P. L. (2014). Tuning the optoelectronic properties of cyanine and ketocyanine dyes by incorporation of 9,9-di-n-propylfluorenylindolenine. Dyes and Pigments, 101, 1–8.CrossRef Jansen-van Vuuren, R. D., Deakin, P. C., Olsen, S., & Burn, P. L. (2014). Tuning the optoelectronic properties of cyanine and ketocyanine dyes by incorporation of 9,9-di-n-propylfluorenylindolenine. Dyes and Pigments, 101, 1–8.CrossRef
94.
go back to reference Jahnel, M., Tomshcke, M., Fehse, K., Vogel, U., An, J. D., Park, H., & Im, C. (2015). Integration of near infrared and visible organic photodiodes on a complementary metal–oxide–semiconductor compatible backplane. Thin Solid Films, 592(Part A), 94–98.CrossRef Jahnel, M., Tomshcke, M., Fehse, K., Vogel, U., An, J. D., Park, H., & Im, C. (2015). Integration of near infrared and visible organic photodiodes on a complementary metal–oxide–semiconductor compatible backplane. Thin Solid Films, 592(Part A), 94–98.CrossRef
95.
go back to reference Zalar, P., Matsuhisa, N., Suzuki, T., Enomoto, S., Koizumi, M., Yokota, T., Sekino, M., & Someya, T. (2018). A monolithically processed rectifying pixel for high-resolution organic imagers. Advanced Electronic Materials, 4(6), 1700601.CrossRef Zalar, P., Matsuhisa, N., Suzuki, T., Enomoto, S., Koizumi, M., Yokota, T., Sekino, M., & Someya, T. (2018). A monolithically processed rectifying pixel for high-resolution organic imagers. Advanced Electronic Materials, 4(6), 1700601.CrossRef
96.
go back to reference Swathi, K., & Narayan, K. S. (2016). Image pixel device using integrated organic electronic components. Applied Physics Letters, 109, 193302.CrossRef Swathi, K., & Narayan, K. S. (2016). Image pixel device using integrated organic electronic components. Applied Physics Letters, 109, 193302.CrossRef
97.
go back to reference Baierl, D., Pancheri, L., Schmidt, M., Stoppa, D., Betta, G.-F. D., Scarpa, G., & Lugli, P. (2012). A hybrid CMOS-imager with a solution-processable polymer as photoactive layer. Nature Communications, 3, 1175.CrossRef Baierl, D., Pancheri, L., Schmidt, M., Stoppa, D., Betta, G.-F. D., Scarpa, G., & Lugli, P. (2012). A hybrid CMOS-imager with a solution-processable polymer as photoactive layer. Nature Communications, 3, 1175.CrossRef
98.
go back to reference Gasparini, N., Gregori, A., Salvador, M., Biele, M., Wadsworth, A., Tedde, S., Baran, D., McCulloch, I., & Brabec, C. J. (2018). Visible and near-infrared imaging with nonfullerene-based photodetectors. Advanced Materials Technologies, 3(7), 1800104.CrossRef Gasparini, N., Gregori, A., Salvador, M., Biele, M., Wadsworth, A., Tedde, S., Baran, D., McCulloch, I., & Brabec, C. J. (2018). Visible and near-infrared imaging with nonfullerene-based photodetectors. Advanced Materials Technologies, 3(7), 1800104.CrossRef
99.
go back to reference Lim, S.-J., Leem, D.-S., Park, K.-B., Kim, K.-S., Sul, S., Na, K., Lee, G. H., Heo, C.-J., Lee, K.-H., Bulliard, X., Satoh, R.-I., Yagi, T., Ro, T., Im, D., Jung, J., Lee, M., Lee, T.-Y., Han, M. G., Jin, W. Y., & Lee, S. (2015). Organic-on-silicon complementary metal–oxide–semiconductor colour image sensors. Scientific Reports, 5, 7708.CrossRef Lim, S.-J., Leem, D.-S., Park, K.-B., Kim, K.-S., Sul, S., Na, K., Lee, G. H., Heo, C.-J., Lee, K.-H., Bulliard, X., Satoh, R.-I., Yagi, T., Ro, T., Im, D., Jung, J., Lee, M., Lee, T.-Y., Han, M. G., Jin, W. Y., & Lee, S. (2015). Organic-on-silicon complementary metal–oxide–semiconductor colour image sensors. Scientific Reports, 5, 7708.CrossRef
100.
go back to reference Lee, K.-H., Leem, D.-S., Castrucci, J. S., Park, K.-B., Bulliard, X., Kim, K.-S., Jin, Y. W., Lee, S., Bender, T. P., & Park, S. Y. (2013). Green-sensitive organic photodetectors with high sensitivity and spectral selectivity using subphthalocyanine derivatives. ACS Applied Materials and Interfaces, 5(24), 13089–13095.CrossRef Lee, K.-H., Leem, D.-S., Castrucci, J. S., Park, K.-B., Bulliard, X., Kim, K.-S., Jin, Y. W., Lee, S., Bender, T. P., & Park, S. Y. (2013). Green-sensitive organic photodetectors with high sensitivity and spectral selectivity using subphthalocyanine derivatives. ACS Applied Materials and Interfaces, 5(24), 13089–13095.CrossRef
101.
go back to reference Leem, D.-S., Lim, S.-J., Bulliard, X., Lee, G. H., Lee, K.-H., Yun, S., Yagi, T., Satoh, R.-I., Park, K.-B., Choi, Y. S., Jin, Y. W., Lee, S. (2016). Recent developments in green light sensitive organic photodetectors for hybrid CMOS image sensor applications (conference presentation). In SPIE Proceedings, 9944, Organic Sensors and Bioelectronics IX; 99440B. Leem, D.-S., Lim, S.-J., Bulliard, X., Lee, G. H., Lee, K.-H., Yun, S., Yagi, T., Satoh, R.-I., Park, K.-B., Choi, Y. S., Jin, Y. W., Lee, S. (2016). Recent developments in green light sensitive organic photodetectors for hybrid CMOS image sensor applications (conference presentation). In SPIE Proceedings, 9944, Organic Sensors and Bioelectronics IX; 99440B.
105.
go back to reference Pandey, A. K., Aljada, M., Pivrikas, A., Velusamy, M., Burn, P. L., Meredith, P., & Namdas, E. B. (2014). Dynamics of charge generation and transport in polymer-fullerene blends elucidated using a PhotoFET architecture. ACS Photonics, 1(2), 114–120.CrossRef Pandey, A. K., Aljada, M., Pivrikas, A., Velusamy, M., Burn, P. L., Meredith, P., & Namdas, E. B. (2014). Dynamics of charge generation and transport in polymer-fullerene blends elucidated using a PhotoFET architecture. ACS Photonics, 1(2), 114–120.CrossRef
106.
go back to reference Ullah, M., Yambem, S. D., Moore, E. G., Namdas, E. B., & Pandey, A. K. (2015). Singlet fission and triplet exciton dynamics in rubrene/fullerene heterojunctions: Implications for electroluminescence. Advanced Electronic Materials, 1(12), 1500229.CrossRef Ullah, M., Yambem, S. D., Moore, E. G., Namdas, E. B., & Pandey, A. K. (2015). Singlet fission and triplet exciton dynamics in rubrene/fullerene heterojunctions: Implications for electroluminescence. Advanced Electronic Materials, 1(12), 1500229.CrossRef
107.
go back to reference Pandey, A. K. (2015). Highly efficient spin-conversion effect leading to energy up-converted electroluminescence in singlet fission photovoltaics. Scientific Reports, 5, 7787.CrossRef Pandey, A. K. (2015). Highly efficient spin-conversion effect leading to energy up-converted electroluminescence in singlet fission photovoltaics. Scientific Reports, 5, 7787.CrossRef
108.
go back to reference Lee, W., Kobayashi, S., Nagase, M., Jimbo, Y., Saito, I., Inoue, Y., & Yambe, T. (2018). Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping. Science, 4(10), eaau2426. Lee, W., Kobayashi, S., Nagase, M., Jimbo, Y., Saito, I., Inoue, Y., & Yambe, T. (2018). Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping. Science, 4(10), eaau2426.
109.
go back to reference Rogers, J., Malliaras, G., & Someya, T. (2018). Biomedical devices go wild. Science Advances, 4(9), eaav1889.CrossRef Rogers, J., Malliaras, G., & Someya, T. (2018). Biomedical devices go wild. Science Advances, 4(9), eaav1889.CrossRef
110.
go back to reference Bock, R. D. (2018). Low-cost 3D security camera. In Proceedings Volume 10643, Autonomous Systems: Sensors, Vehicles, Security, and the Internet of Everything; 106430E. Bock, R. D. (2018). Low-cost 3D security camera. In Proceedings Volume 10643, Autonomous Systems: Sensors, Vehicles, Security, and the Internet of Everything; 106430E.
111.
go back to reference Semeniutaa, O., Dransfeld, S., Martinsena, K., & Falkmanc, P. (2018). Towards increased intelligence and automatic improvement in industrial vision systems. In 11th CIRP Conference on Intelligent Computation in Manufacturing Engineering—CIRP ICME’17 (pp. 256–261). Semeniutaa, O., Dransfeld, S., Martinsena, K., & Falkmanc, P. (2018). Towards increased intelligence and automatic improvement in industrial vision systems. In 11th CIRP Conference on Intelligent Computation in Manufacturing Engineering—CIRP ICME’17 (pp. 256–261).
112.
go back to reference Smith, L. N., Zhang, W., Hansen, M. F., Hales, I. J., & Smith, M. L. (2018). Innovative 3D and 2D machine vision methods for analysis of plants and crops in the field. Computers in Industry, 97, 122–131.CrossRef Smith, L. N., Zhang, W., Hansen, M. F., Hales, I. J., & Smith, M. L. (2018). Innovative 3D and 2D machine vision methods for analysis of plants and crops in the field. Computers in Industry, 97, 122–131.CrossRef
113.
go back to reference Haouchine, N., Kuang, W., Cotin, S., & Yip, M. (2018). Vision-based force feedback estimation for robot-assisted surgery using instrument-constrained biomechanical three-dimensional maps. IEEE Robotics and Automation Letters, 3(3), 2160–2165.CrossRef Haouchine, N., Kuang, W., Cotin, S., & Yip, M. (2018). Vision-based force feedback estimation for robot-assisted surgery using instrument-constrained biomechanical three-dimensional maps. IEEE Robotics and Automation Letters, 3(3), 2160–2165.CrossRef
114.
go back to reference Hilliges, O., Weiss, H. M., Izadi, S., Kim, D., & Rother, C. C. E. (2018). Using photometric stereo for 3D environment modeling. US Patent Application US9857470B2. Hilliges, O., Weiss, H. M., Izadi, S., Kim, D., & Rother, C. C. E. (2018). Using photometric stereo for 3D environment modeling. US Patent Application US9857470B2.
115.
go back to reference Murray, D., & Little, J. J. (2000). Using real-time stereo vision for mobile robot navigation. Autonomous Robots, 8(161), 161–171.CrossRef Murray, D., & Little, J. J. (2000). Using real-time stereo vision for mobile robot navigation. Autonomous Robots, 8(161), 161–171.CrossRef
116.
go back to reference Eames, C., Frost, J. M., Barnes, P. R. F., O’Regan, B. C., Walsh, A., & Islam, M. S. (2015). Ionic transport in hybrid lead iodide perovskite solar cells. Nature Communications, 6, 7497.CrossRef Eames, C., Frost, J. M., Barnes, P. R. F., O’Regan, B. C., Walsh, A., & Islam, M. S. (2015). Ionic transport in hybrid lead iodide perovskite solar cells. Nature Communications, 6, 7497.CrossRef
117.
go back to reference Saparov, B., & Mitzi, D. B. (2016). Organic–inorganic perovskites: Structural versatility for functional materials design. Chemical Reviews, 116(7), 4558–4596.CrossRef Saparov, B., & Mitzi, D. B. (2016). Organic–inorganic perovskites: Structural versatility for functional materials design. Chemical Reviews, 116(7), 4558–4596.CrossRef
118.
go back to reference Saidaminov, M. I., Haque, M. A., Savoie, M., Abdelhady, A. L., Cho, N., Dursun, I., Buttner, U., Alarousu, E., Wu, T., & Bakr, O. M. (2016). Perovskite photodetectors operating in both narrowband and broadband regimes. Advanced Materials, 28(37), 8144–8149.CrossRef Saidaminov, M. I., Haque, M. A., Savoie, M., Abdelhady, A. L., Cho, N., Dursun, I., Buttner, U., Alarousu, E., Wu, T., & Bakr, O. M. (2016). Perovskite photodetectors operating in both narrowband and broadband regimes. Advanced Materials, 28(37), 8144–8149.CrossRef
119.
go back to reference Xiao, Z. (2016). Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells. Materials Science and Engineering: R: Reports, 101, 1–38.CrossRef Xiao, Z. (2016). Thin-film semiconductor perspective of organometal trihalide perovskite materials for high-efficiency solar cells. Materials Science and Engineering: R: Reports, 101, 1–38.CrossRef
120.
go back to reference Strainks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J. P., Leijtens, T., Herz, L. M., Petrozza, A., & Snaith, H. J. (2013). Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 342(6156), 341–344.CrossRef Strainks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J. P., Leijtens, T., Herz, L. M., Petrozza, A., & Snaith, H. J. (2013). Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 342(6156), 341–344.CrossRef
121.
go back to reference Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G., & Cahen, D. (2016). Hybrid organic—Inorganic perovskites: Low-cost semiconductors with intriguing charge-transport properties. Nature Reviews Materials, 1, 15007.CrossRef Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G., & Cahen, D. (2016). Hybrid organic—Inorganic perovskites: Low-cost semiconductors with intriguing charge-transport properties. Nature Reviews Materials, 1, 15007.CrossRef
122.
go back to reference Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499, 316–319.CrossRef Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499, 316–319.CrossRef
123.
go back to reference Ahmadi, M., Wu, T., & Hu, B. (2017). A review on organic–inorganic halide perovskite photodetectors: Device engineering and fundamental physics. Advanced Materials, 29(41), 1605242.CrossRef Ahmadi, M., Wu, T., & Hu, B. (2017). A review on organic–inorganic halide perovskite photodetectors: Device engineering and fundamental physics. Advanced Materials, 29(41), 1605242.CrossRef
124.
go back to reference Zhou, J., & Huang, J. (2017). Photodetectors based on organic–inorganic hybrid lead halide perovskites. Advanced Materials, 5(1), 1700256. Zhou, J., & Huang, J. (2017). Photodetectors based on organic–inorganic hybrid lead halide perovskites. Advanced Materials, 5(1), 1700256.
125.
go back to reference Wang, H., & Kim, D. H. (2017). Perovskite-based photodetectors: Materials and devices. Chemistry Society Reviews, 46, 5204–5236.CrossRef Wang, H., & Kim, D. H. (2017). Perovskite-based photodetectors: Materials and devices. Chemistry Society Reviews, 46, 5204–5236.CrossRef
126.
go back to reference Wang, X., Li, M., Zhang, B., Wang, H., Zhao, Y., & Wang, B. (2018). Recent progress in organometal halide perovskite photodetectors. Organic Electronics, 52, 172–183.CrossRef Wang, X., Li, M., Zhang, B., Wang, H., Zhao, Y., & Wang, B. (2018). Recent progress in organometal halide perovskite photodetectors. Organic Electronics, 52, 172–183.CrossRef
127.
go back to reference Tian, W., Zhou, H., & Li, L. (2017). Hybrid organic–inorganic perovskite photodetectors. Small, 13(41), 1702107.CrossRef Tian, W., Zhou, H., & Li, L. (2017). Hybrid organic–inorganic perovskite photodetectors. Small, 13(41), 1702107.CrossRef
128.
go back to reference Dou, L., Yang, Y. M., You, J., Hong, Z., Chang, W.-H., Li, G., & Yang, Y. (2014). Solution-processed hybrid perovskite photodetectors with high detectivity. Nature Communications, 5, 5404.CrossRef Dou, L., Yang, Y. M., You, J., Hong, Z., Chang, W.-H., Li, G., & Yang, Y. (2014). Solution-processed hybrid perovskite photodetectors with high detectivity. Nature Communications, 5, 5404.CrossRef
129.
go back to reference Sutherland, B. R., Johnston, A. K., Ip, A. H., Xu, J., Adinolfi, V., Kanjanaboos, P., & Sargent, E. H. (2015). Sensitive, fast, and stable perovskite photodetectors exploiting interface engineering. ACS Photonics, 2(8), 1117–1123.CrossRef Sutherland, B. R., Johnston, A. K., Ip, A. H., Xu, J., Adinolfi, V., Kanjanaboos, P., & Sargent, E. H. (2015). Sensitive, fast, and stable perovskite photodetectors exploiting interface engineering. ACS Photonics, 2(8), 1117–1123.CrossRef
130.
go back to reference Lin, Q., Armin, A., Burn, P. L., & Meredith, P. (2015). Filterless narrowband visible photodetectors. Nature Photonics, 9, 687–694.CrossRef Lin, Q., Armin, A., Burn, P. L., & Meredith, P. (2015). Filterless narrowband visible photodetectors. Nature Photonics, 9, 687–694.CrossRef
131.
go back to reference Hu, W., Huang, W., Yang, S., Wang, X., Jiang, Z., Zhu, X., Zhou, H., Liu, H., Zhang, Q., Zhuang, X., Yang, J., Kim, D. H., & Pan, A. (2017). High-performance flexible photodetectors based on high- quality perovskite thin films by a vapor–solution method. Advanced Materials, 29(43), 1703256.CrossRef Hu, W., Huang, W., Yang, S., Wang, X., Jiang, Z., Zhu, X., Zhou, H., Liu, H., Zhang, Q., Zhuang, X., Yang, J., Kim, D. H., & Pan, A. (2017). High-performance flexible photodetectors based on high- quality perovskite thin films by a vapor–solution method. Advanced Materials, 29(43), 1703256.CrossRef
132.
go back to reference Lee, W., Lee, J., Yun, H., Kim, J., Park, J., Choi, C., Kim, D. C., Seo, H., Lee, H., Yu, J. W., Lee, W. B., & Kim, D.-H. (2017). Perovskite thin films: High-resolution spin-on-patterning of perovskite thin films for a multiplexed image sensor array. Advanced Materials, 29(40), 1702902.CrossRef Lee, W., Lee, J., Yun, H., Kim, J., Park, J., Choi, C., Kim, D. C., Seo, H., Lee, H., Yu, J. W., Lee, W. B., & Kim, D.-H. (2017). Perovskite thin films: High-resolution spin-on-patterning of perovskite thin films for a multiplexed image sensor array. Advanced Materials, 29(40), 1702902.CrossRef
133.
go back to reference Wu, W., Wang, X., Han, X., Yang, Z., Gao, G., Zhang, Y., Hu, J., Tan, Y., Pan, A., & Pan, C. (2018). Flexible photodetector arrays based on patterned CH3NH3PbI3−xClx perovskite film for real-time photosensing and imaging. Advanced Materials, 31(3), 1805913.CrossRef Wu, W., Wang, X., Han, X., Yang, Z., Gao, G., Zhang, Y., Hu, J., Tan, Y., Pan, A., & Pan, C. (2018). Flexible photodetector arrays based on patterned CH3NH3PbI3−xClx perovskite film for real-time photosensing and imaging. Advanced Materials, 31(3), 1805913.CrossRef
134.
go back to reference Lyashenko, D., Perez, A., & Zakhidov, A. (2016). High-resolution patterning of organohalide lead perovskite pixels for photodetectors using orthogonal photolithography. Physica Status Solid A, 214(1), 1600302.CrossRef Lyashenko, D., Perez, A., & Zakhidov, A. (2016). High-resolution patterning of organohalide lead perovskite pixels for photodetectors using orthogonal photolithography. Physica Status Solid A, 214(1), 1600302.CrossRef
135.
go back to reference Gu, L., Tavakoli, M. M., Zhang, D., Zhang, Q., Waleed, A., Xiao, Y., Tsui, K.-H., Lin, Y., Liao, L., Wang, J., & Fan, Z. (2016). 3D arrays of 1024-pixel image sensors based on lead halide perovskite nanowires. Advanced Materials, 28(44), 9713–9721.CrossRef Gu, L., Tavakoli, M. M., Zhang, D., Zhang, Q., Waleed, A., Xiao, Y., Tsui, K.-H., Lin, Y., Liao, L., Wang, J., & Fan, Z. (2016). 3D arrays of 1024-pixel image sensors based on lead halide perovskite nanowires. Advanced Materials, 28(44), 9713–9721.CrossRef
136.
go back to reference Kim, M. S., Lee, G. J., Kim, H. M., & Song, Y. M. (2017). Parametric optimization of lateral NIPIN phototransistors for flexible image sensors. Sensors, 17(8), 1774:1–13. Kim, M. S., Lee, G. J., Kim, H. M., & Song, Y. M. (2017). Parametric optimization of lateral NIPIN phototransistors for flexible image sensors. Sensors, 17(8), 1774:1–13.
137.
go back to reference Tomioka, K., Miyake, K., Misawa, K., Toyoda, K., Ishizaki, T., & Kimura, M. (2018). Photosensing circuit using thin-film transistors for retinal prosthesis. Japanese Journal of Applied Physics, 57, 1002B1.CrossRef Tomioka, K., Miyake, K., Misawa, K., Toyoda, K., Ishizaki, T., & Kimura, M. (2018). Photosensing circuit using thin-film transistors for retinal prosthesis. Japanese Journal of Applied Physics, 57, 1002B1.CrossRef
138.
go back to reference Kimura, M., Miura, Y., Ogura, T., Ohno, S., Hachida, T., Nishizaki, Y., & Shima, T. (2010). Device characterization of p/i/n thin-film phototransistor for photosensor applications. IEEE Electron Device Letters, 31(9), 984–986.CrossRef Kimura, M., Miura, Y., Ogura, T., Ohno, S., Hachida, T., Nishizaki, Y., & Shima, T. (2010). Device characterization of p/i/n thin-film phototransistor for photosensor applications. IEEE Electron Device Letters, 31(9), 984–986.CrossRef
139.
go back to reference Tsumura, A., Koezuka, H., & Ando, T. (1986). Macromolecular electronic device: Field-effect transistor with a polythiophene thin film. Applied Physics Letters, 49, 1210.CrossRef Tsumura, A., Koezuka, H., & Ando, T. (1986). Macromolecular electronic device: Field-effect transistor with a polythiophene thin film. Applied Physics Letters, 49, 1210.CrossRef
140.
go back to reference Horowitz, G., Fichou, D., Peng, X., Xu, Z., & Garnier, F. (1989). A field-effect transistor based on conjugated alpha-sexithienyl. Solid State Communications, 72(4), 381–384.CrossRef Horowitz, G., Fichou, D., Peng, X., Xu, Z., & Garnier, F. (1989). A field-effect transistor based on conjugated alpha-sexithienyl. Solid State Communications, 72(4), 381–384.CrossRef
141.
go back to reference Horowitz, G. (2004). Organic thin film transistors: From theory to real devices. Journal of Materials Research, 19(7), 1946–1962.CrossRef Horowitz, G. (2004). Organic thin film transistors: From theory to real devices. Journal of Materials Research, 19(7), 1946–1962.CrossRef
142.
go back to reference Narayan, K. S., & Kumar, N. (2001). Light responsive polymer field-effect transistor. Applied Physics Letters, 79, 1891.CrossRef Narayan, K. S., & Kumar, N. (2001). Light responsive polymer field-effect transistor. Applied Physics Letters, 79, 1891.CrossRef
143.
go back to reference Meijer, E. J., Leeuw, D. M. D., Setayesh, S., Van Veenendaal, E., Huisman, B.-H., Blom, P. W. M., Hummelen, J. C., Scherf, U., & Klapwijk, T. M. (2003). Solution-processed ambipolar organic field-effect transistors and inverters. Nature Materials, 2, 678–682.CrossRef Meijer, E. J., Leeuw, D. M. D., Setayesh, S., Van Veenendaal, E., Huisman, B.-H., Blom, P. W. M., Hummelen, J. C., Scherf, U., & Klapwijk, T. M. (2003). Solution-processed ambipolar organic field-effect transistors and inverters. Nature Materials, 2, 678–682.CrossRef
144.
go back to reference Ooi, Z.-E., Danielson, E., Liang, K., Lombardo, C., & Dodabalapur, A. (2014). Evaluating charge carrier mobility balance in organic bulk heterojunctions using lateral device structures. Journal of Physical Chemistry C, 18(32), 18299–18306.CrossRef Ooi, Z.-E., Danielson, E., Liang, K., Lombardo, C., & Dodabalapur, A. (2014). Evaluating charge carrier mobility balance in organic bulk heterojunctions using lateral device structures. Journal of Physical Chemistry C, 18(32), 18299–18306.CrossRef
145.
go back to reference Unni, K. N. N., Dabos-Seignon, S., Pandey, A. K., & Nunzi, J.-M. (2008). Influence of the polymer dielectric characteristics on the performance of pentacene organic field-effect transistors. Solid-State Electronics, 52(2), 179–181.CrossRef Unni, K. N. N., Dabos-Seignon, S., Pandey, A. K., & Nunzi, J.-M. (2008). Influence of the polymer dielectric characteristics on the performance of pentacene organic field-effect transistors. Solid-State Electronics, 52(2), 179–181.CrossRef
146.
go back to reference Pierre, A., Gaikwad, A., & Arias, A. C. (2017). Charge-integrating organic heterojunction phototransistors for wide-dynamic-range image sensors. Nature Photonics, 11, 193–199.CrossRef Pierre, A., Gaikwad, A., & Arias, A. C. (2017). Charge-integrating organic heterojunction phototransistors for wide-dynamic-range image sensors. Nature Photonics, 11, 193–199.CrossRef
147.
go back to reference Hwang, I., Kim, J., Lee, M., Lee, M.-W., Kim, H.-J., Kwon, H.-I., Hwang, D. K., Kim, M., Yoon, H., Kim, Y.-H., & Park, S. K. (2017). Wide-spectral/dynamic-range skin-compatible phototransistors enabled by floated heterojunction structures with surface functionalized SWCNTs and amorphous oxide semiconductors. Nanoscale, 9, 16711–16721.CrossRef Hwang, I., Kim, J., Lee, M., Lee, M.-W., Kim, H.-J., Kwon, H.-I., Hwang, D. K., Kim, M., Yoon, H., Kim, Y.-H., & Park, S. K. (2017). Wide-spectral/dynamic-range skin-compatible phototransistors enabled by floated heterojunction structures with surface functionalized SWCNTs and amorphous oxide semiconductors. Nanoscale, 9, 16711–16721.CrossRef
148.
go back to reference Li, F., Ma, C., Wang, H., Hu, W., Yu, W., Sheikh, A. D., & Wu, T. (2015). Ambipolar solution-processed hybrid perovskite phototransistors. Nature Communications, 6, 8238.CrossRef Li, F., Ma, C., Wang, H., Hu, W., Yu, W., Sheikh, A. D., & Wu, T. (2015). Ambipolar solution-processed hybrid perovskite phototransistors. Nature Communications, 6, 8238.CrossRef
149.
go back to reference Cao, M., Zhang, Y., Yu, Y., & Yao, J. (2018). Improved perovskite phototransistor prepared using multi-step annealing method. In Proceedings Volume 10529, Organic Photonic Materials and Devices XX; 105290I. Cao, M., Zhang, Y., Yu, Y., & Yao, J. (2018). Improved perovskite phototransistor prepared using multi-step annealing method. In Proceedings Volume 10529, Organic Photonic Materials and Devices XX; 105290I.
150.
go back to reference Baeg, K.-J., Binda, M., Natali, D., Caironi, M., & Noh, Y.-Y. (2013). Organic light detectors: Photodiodes and phototransistors. Advanced Materials, 25(31), 4267–4295.CrossRef Baeg, K.-J., Binda, M., Natali, D., Caironi, M., & Noh, Y.-Y. (2013). Organic light detectors: Photodiodes and phototransistors. Advanced Materials, 25(31), 4267–4295.CrossRef
151.
go back to reference Qian, C., Qian, C., Sun, J., Kong, L.-A., Gou, G., Zhu, M., Yuan, Y., Huang, H., Gao, Y., & Yang, J. (2017). Organic phototransistors: High-performance organic heterojunction phototransistors based on highly ordered copper phthalocyanine/para-sexiphenyl thin films. Advanced Functional Materials, 27(6), 1604933.CrossRef Qian, C., Qian, C., Sun, J., Kong, L.-A., Gou, G., Zhu, M., Yuan, Y., Huang, H., Gao, Y., & Yang, J. (2017). Organic phototransistors: High-performance organic heterojunction phototransistors based on highly ordered copper phthalocyanine/para-sexiphenyl thin films. Advanced Functional Materials, 27(6), 1604933.CrossRef
152.
go back to reference Milvich, J., Zaki, T., Aghamohammadi, M., Rödel, R., Kraft, U., Klauk, H., & Burghartz, J. N. (2015). Flexible low-voltage organic phototransistors based on air-stable dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT). Organic Electronics, 20, 63–68.CrossRef Milvich, J., Zaki, T., Aghamohammadi, M., Rödel, R., Kraft, U., Klauk, H., & Burghartz, J. N. (2015). Flexible low-voltage organic phototransistors based on air-stable dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT). Organic Electronics, 20, 63–68.CrossRef
153.
go back to reference Hayter, C. S., Rasmussen, E., & Rooksby, J. H. (2018). Beyond formal university technology transfer: Innovative pathways for knowledge exchange. The Journal of Technology Transfer, 1–8. Hayter, C. S., Rasmussen, E., & Rooksby, J. H. (2018). Beyond formal university technology transfer: Innovative pathways for knowledge exchange. The Journal of Technology Transfer, 1–8.
154.
go back to reference Jessop, P. G., & Reyes, L. M. (2018). GreenCentre Canada: An experimental model for green chemistry commercialization. Physical Sciences Reviews, 3(6), 20170189.CrossRef Jessop, P. G., & Reyes, L. M. (2018). GreenCentre Canada: An experimental model for green chemistry commercialization. Physical Sciences Reviews, 3(6), 20170189.CrossRef
156.
go back to reference Brydges, D., Deppner, F., Kuenzli, H., Heuberger, K., & Hersch, R. D. (1998). Application of a 3-CCD color camera for colorimetric and densitometric measurements. In Proceedings Volume 3300, Color Imaging: Device-Independent Color, Color Hardcopy, and Graphic Arts III. Brydges, D., Deppner, F., Kuenzli, H., Heuberger, K., & Hersch, R. D. (1998). Application of a 3-CCD color camera for colorimetric and densitometric measurements. In Proceedings Volume 3300, Color Imaging: Device-Independent Color, Color Hardcopy, and Graphic Arts III.
157.
go back to reference Chitnis, D., & Collins, S. (2014). A SPAD-based photon detecting system for optical communications. Journal of Lightwave Technology, 32(10), 2028–2034.CrossRef Chitnis, D., & Collins, S. (2014). A SPAD-based photon detecting system for optical communications. Journal of Lightwave Technology, 32(10), 2028–2034.CrossRef
Metadata
Title
Image and Signal Sensors for Computing and Machine Vision: Developments to Meet Future Needs
Authors
Ross D. Jansen-van Vuuren
Ali Shahnewaz
Ajay K. Pandey
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-22587-2_1