Skip to main content
Top

2010 | OriginalPaper | Chapter

13. Immobilization of Cells and Enzymes for Fermented Dairy or Meat Products

Authors : Claude P. Champagne, Byong H. Lee, Linda Saucier

Published in: Encapsulation Technologies for Active Food Ingredients and Food Processing

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Historically, we can find fermented products in almost all cultural backgrounds around the world. Notably, there are many different milk or meat-based foods and this chapter will focus on them (Kosikowski 1982; Wood 1998). Cheese, yoghurt, sour cream, kefir, or cultured butter are probably the most common fermented dairy products, but many regional varieties exist (Farnworth 2004). Fermented meats are typically found as dry sausages (Lüke 1998). Yeasts are mostly involved in the manufacture of bread and alcoholic beverages, which are basically cereal- or fruit-based products. In fermented meat and milk, the main microorganisms used are the lactic acid bacteria (LAB). Yeast and molds are rather involved in ripening. Therefore, the LAB will constitute the main focus of this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adhikari K, Mustapha A, Grün IU, Fernando L (2000) Viability of microencapsulated bifidobacteria in set yogurt during refrigerated storage. J Dairy Sci 83:1946–1951CrossRef Adhikari K, Mustapha A, Grün IU, Fernando L (2000) Viability of microencapsulated bifidobacteria in set yogurt during refrigerated storage. J Dairy Sci 83:1946–1951CrossRef
go back to reference Anjani K, Iyer C, Kailasapathy K (2004) Survival of co-encapsulated complementary probiotics and prebiotics in yoghurt. Milchwissenschaft 59:396–399 Anjani K, Iyer C, Kailasapathy K (2004) Survival of co-encapsulated complementary probiotics and prebiotics in yoghurt. Milchwissenschaft 59:396–399
go back to reference Anjani K, Kailasapathy K, Phillips M (2007) Microencapsulation of enzymes for potential application in acceleration of cheese ripening. Int Dairy J 17:79–86CrossRef Anjani K, Kailasapathy K, Phillips M (2007) Microencapsulation of enzymes for potential application in acceleration of cheese ripening. Int Dairy J 17:79–86CrossRef
go back to reference Anonymous (2003) Les enzymes déclenchent de nouveaux processus biologiques. Feeding Times 8:1–37 Anonymous (2003) Les enzymes déclenchent de nouveaux processus biologiques. Feeding Times 8:1–37
go back to reference Anprung P, Chengaengsatityaporn S, Thunpithayakui C (1989) Immobilized rennin for cheese making. Asian Food J 4:107–110 Anprung P, Chengaengsatityaporn S, Thunpithayakui C (1989) Immobilized rennin for cheese making. Asian Food J 4:107–110
go back to reference Araya M, Morelli L, Reid G, Sanders ME, Stanton C, Pineiro M, Ben Embarek P (2002) Guidelines for the evaluation of probiotics in food. Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food, London (ON, Canada) Araya M, Morelli L, Reid G, Sanders ME, Stanton C, Pineiro M, Ben Embarek P (2002) Guidelines for the evaluation of probiotics in food. Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food, London (ON, Canada)
go back to reference Azarnia S, Robert N, Lee B (2006) Biotechnological methods to accelerate cheddar cheese ripening. Crit Rev Biotechnol 26:121–143CrossRef Azarnia S, Robert N, Lee B (2006) Biotechnological methods to accelerate cheddar cheese ripening. Crit Rev Biotechnol 26:121–143CrossRef
go back to reference Benchabane S, Vandenberg GW, Subirade M (2004) Optimization of the production of phytase microcapsules by spray drying. Aquac Assoc Canada 9:84–87 Benchabane S, Vandenberg GW, Subirade M (2004) Optimization of the production of phytase microcapsules by spray drying. Aquac Assoc Canada 9:84–87
go back to reference Blom H, Hagen BF, Pedersen BO, Holck AL, Axelsson L, Naes H (1996) Accelerated production of dry fermented sausage. Meat Sci 43:S229–S242CrossRef Blom H, Hagen BF, Pedersen BO, Holck AL, Axelsson L, Naes H (1996) Accelerated production of dry fermented sausage. Meat Sci 43:S229–S242CrossRef
go back to reference Boots JW, Floris R (2006) Lactoperoxidase: From catalytic mechanism to practical applications. Int Dairy J 16:1272–1276CrossRef Boots JW, Floris R (2006) Lactoperoxidase: From catalytic mechanism to practical applications. Int Dairy J 16:1272–1276CrossRef
go back to reference Bower CK, Daeschel MA (1999) Resistance responses of microorganisms in food environments. Int J Food Microbiol 50:33–44CrossRef Bower CK, Daeschel MA (1999) Resistance responses of microorganisms in food environments. Int J Food Microbiol 50:33–44CrossRef
go back to reference Bower CK, Daeschel MA, McGuire J (1998) Protein antimicrobial barriers to bacterial adhesion. J Dairy Sci 81(10):2771–2778CrossRef Bower CK, Daeschel MA, McGuire J (1998) Protein antimicrobial barriers to bacterial adhesion. J Dairy Sci 81(10):2771–2778CrossRef
go back to reference Champagne CP (2006) Starter cultures biotechnology: The production of concentrated lactic cultures in alginate beads and their applications in the nutraceutical and food industries. Chem Ind Chem Eng Quarterly 12(1):11–17CrossRef Champagne CP (2006) Starter cultures biotechnology: The production of concentrated lactic cultures in alginate beads and their applications in the nutraceutical and food industries. Chem Ind Chem Eng Quarterly 12(1):11–17CrossRef
go back to reference Champagne CP, Morin N, Couture R, Gagnon C, Jelen P, Lacroix C (1992) The potential of immobilized cell technology to produce freeze-dried, phage-protected cultures of Lactococcus lactis. Food Res Int 25(6):419–427CrossRef Champagne CP, Morin N, Couture R, Gagnon C, Jelen P, Lacroix C (1992) The potential of immobilized cell technology to produce freeze-dried, phage-protected cultures of Lactococcus lactis. Food Res Int 25(6):419–427CrossRef
go back to reference Champagne CP, Girard F, Rodrigue N (1993) Production of concentrated suspensions of thermophilic lactic acid bacteria in calcium alginate beads. Int Dairy J 3(3):257–275CrossRef Champagne CP, Girard F, Rodrigue N (1993) Production of concentrated suspensions of thermophilic lactic acid bacteria in calcium alginate beads. Int Dairy J 3(3):257–275CrossRef
go back to reference Champagne CP, Roy D, Gardner N (2005) Challenges in the addition of probiotic cultures to foods. Crit Rev Food Sci Nutr 45(1):61–84CrossRef Champagne CP, Roy D, Gardner N (2005) Challenges in the addition of probiotic cultures to foods. Crit Rev Food Sci Nutr 45(1):61–84CrossRef
go back to reference Cheetham PSJ (1988) Recent developments in enzyme technology as applied to foods and food processing. In: King RD, Cheetham PSJ (eds) Food biotechnology. Elsevier Applied Science, London, pp 117–171 Cheetham PSJ (1988) Recent developments in enzyme technology as applied to foods and food processing. In: King RD, Cheetham PSJ (eds) Food biotechnology. Elsevier Applied Science, London, pp 117–171
go back to reference Cheryl M, Van Wyk PJ, Olson NF, Richardson T (1975) Continuous coagulation of milk using immobilized enzymes in a fluidized-bed reactor. Biotechnol Bioeng 17:585–598CrossRef Cheryl M, Van Wyk PJ, Olson NF, Richardson T (1975) Continuous coagulation of milk using immobilized enzymes in a fluidized-bed reactor. Biotechnol Bioeng 17:585–598CrossRef
go back to reference De Valdez GF, De Giori GS, De Ruiz Holgado AP, Oliver G (1985) Effect of the rehydration medium on the recovery of freeze-dried lactic acid bacteria. Appl Environ Microbiol 50:1339–1341 De Valdez GF, De Giori GS, De Ruiz Holgado AP, Oliver G (1985) Effect of the rehydration medium on the recovery of freeze-dried lactic acid bacteria. Appl Environ Microbiol 50:1339–1341
go back to reference Doleyres Y, Lacroix C (2005) Technologies with free and immobilized cells for probiotic bifidobacteria production and protection. Int Dairy J 15:973–988CrossRef Doleyres Y, Lacroix C (2005) Technologies with free and immobilized cells for probiotic bifidobacteria production and protection. Int Dairy J 15:973–988CrossRef
go back to reference Eie T, Larsen H, Sørheim O, Pettersen MK, Hansen AÅ, Wold JP, Naterstad K, Mielnik M (2007) New technologies for extending shelf life. Ital J Food Sci 19:127–152 Eie T, Larsen H, Sørheim O, Pettersen MK, Hansen AÅ, Wold JP, Naterstad K, Mielnik M (2007) New technologies for extending shelf life. Ital J Food Sci 19:127–152
go back to reference Farnworth ER (2004) The beneficial health effects of fermented foods – Potential probiotics around the world. J Nutraceuticals Funct Med Foods 4:93–117 Farnworth ER (2004) The beneficial health effects of fermented foods – Potential probiotics around the world. J Nutraceuticals Funct Med Foods 4:93–117
go back to reference Fox PF (1993) Exogenous enzymes in dairy technology – a review. J Food Biochem 17:173–199CrossRef Fox PF (1993) Exogenous enzymes in dairy technology – a review. J Food Biochem 17:173–199CrossRef
go back to reference Gaudreau H, Champagne CP, Jelen P (2005) The use of crude cellular extracts of Lactobacillus delbrueckii ssp. bulgaricus 11842 to stimulate growth of a probiotic Lactobacillus rhamnosus culture in milk. Enzyme Microb Technol 36(1):83–90CrossRef Gaudreau H, Champagne CP, Jelen P (2005) The use of crude cellular extracts of Lactobacillus delbrueckii ssp. bulgaricus 11842 to stimulate growth of a probiotic Lactobacillus rhamnosus culture in milk. Enzyme Microb Technol 36(1):83–90CrossRef
go back to reference Genari AN, Passos FV, Passos FML (2003) Configuration of a bioreactor for milk lactose hydrolysis. J Dairy Sci 86(9):2783–2789CrossRef Genari AN, Passos FV, Passos FML (2003) Configuration of a bioreactor for milk lactose hydrolysis. J Dairy Sci 86(9):2783–2789CrossRef
go back to reference Gobbetti M, Corsetti A, Smacchi E, Zocchetti A, De Angelis M (1998) Production of Crescenza cheese by incorporation of Bifidobacteria. J Dairy Sci 81:37–47CrossRef Gobbetti M, Corsetti A, Smacchi E, Zocchetti A, De Angelis M (1998) Production of Crescenza cheese by incorporation of Bifidobacteria. J Dairy Sci 81:37–47CrossRef
go back to reference Goldberg BS, Chen RY (1989) Continuous cheese-making process utilizing an immobilized rennet enzyme reactor. US Patent 4(801):463 Goldberg BS, Chen RY (1989) Continuous cheese-making process utilizing an immobilized rennet enzyme reactor. US Patent 4(801):463
go back to reference Goulet J, Wozniak J (2002) Probiotic stability: A multifaceted reality. Innov Food Technol, February, 14–16 Goulet J, Wozniak J (2002) Probiotic stability: A multifaceted reality. Innov Food Technol, February, 14–16
go back to reference Haefner S, Knietsch A, Scholten E, Braun J, Lohscheidt M, Zelder O (2005) Biotechnological production and applications of phytases. Appl Microbiol Biotechnol 68:588–597CrossRef Haefner S, Knietsch A, Scholten E, Braun J, Lohscheidt M, Zelder O (2005) Biotechnological production and applications of phytases. Appl Microbiol Biotechnol 68:588–597CrossRef
go back to reference Hammes WP, Hertel C (1998) New developments to meat starter cultures. Meat Sci 49:S125–S138CrossRef Hammes WP, Hertel C (1998) New developments to meat starter cultures. Meat Sci 49:S125–S138CrossRef
go back to reference Hemantha-Kumar HR, Monteiro PV, Bhat GS, Ramachandra-Rao HG (2001) Effects of enzymatic modification of milk proteins on flavour and textural qualities of set yoghurt. J Sci Food Agric 81(1):42–45CrossRef Hemantha-Kumar HR, Monteiro PV, Bhat GS, Ramachandra-Rao HG (2001) Effects of enzymatic modification of milk proteins on flavour and textural qualities of set yoghurt. J Sci Food Agric 81(1):42–45CrossRef
go back to reference Honda Y, Kako M, Abiko K, Sogo Y (1993) Hydrolysis of lactose in milk. In: Tanaka A, Tosa T, Kobayashi T (eds) Industrial application of immobilized biocatalysis. Marcel Dekker, New York, pp 209–234 Honda Y, Kako M, Abiko K, Sogo Y (1993) Hydrolysis of lactose in milk. In: Tanaka A, Tosa T, Kobayashi T (eds) Industrial application of immobilized biocatalysis. Marcel Dekker, New York, pp 209–234
go back to reference Hung MN, Xia Z, Lee BH (2001) Molecular and biochemcial analysis of two beta-galactosidases from Bifidobacterium infantis HL96. Appl Environ Microbiol 67:4256–4263CrossRef Hung MN, Xia Z, Lee BH (2001) Molecular and biochemcial analysis of two beta-galactosidases from Bifidobacterium infantis HL96. Appl Environ Microbiol 67:4256–4263CrossRef
go back to reference Illanes A, Wilson L, Tomasello G (2000) Temperature optimization for reactor operation with chitin-immobilized lactase under modulated inactivation. Enzyme Microb Technol 27(3–5):270–278CrossRef Illanes A, Wilson L, Tomasello G (2000) Temperature optimization for reactor operation with chitin-immobilized lactase under modulated inactivation. Enzyme Microb Technol 27(3–5):270–278CrossRef
go back to reference Kailasapathy K (2006) Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt. LWT-Food Sci Technol 39(10):1221–1227CrossRef Kailasapathy K (2006) Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt. LWT-Food Sci Technol 39(10):1221–1227CrossRef
go back to reference Kailasapathy K, Lam SH (2005) Application of encapsulated enzymes to accelerate cheese ripening. Int Dairy J 15:929–939CrossRef Kailasapathy K, Lam SH (2005) Application of encapsulated enzymes to accelerate cheese ripening. Int Dairy J 15:929–939CrossRef
go back to reference Kailasapathy K, Masondole L (2005) Survival of free and microencapsulated Lactobacillus acidophilus and Bifidobacterium and their effect on texture of feta cheese. Aust J Dairy Technol 60:252–258 Kailasapathy K, Masondole L (2005) Survival of free and microencapsulated Lactobacillus acidophilus and Bifidobacterium and their effect on texture of feta cheese. Aust J Dairy Technol 60:252–258
go back to reference Kailasapathy K, Sultana K (2003) Survival and beta-D-galactosidase activity of encapsulated and free Lactobacillus acidophilus and Bifidobacterium lactis in ice cream. Aust J Dairy Technol 58:223–227 Kailasapathy K, Sultana K (2003) Survival and beta-D-galactosidase activity of encapsulated and free Lactobacillus acidophilus and Bifidobacterium lactis in ice cream. Aust J Dairy Technol 58:223–227
go back to reference Kailasapathy K, Anjani K, Seneweera S (2006) Recent trends in accelerated cheese ripening using microencapsulated enzymes. Aust J Dairy Technol 61(2):78–80 Kailasapathy K, Anjani K, Seneweera S (2006) Recent trends in accelerated cheese ripening using microencapsulated enzymes. Aust J Dairy Technol 61(2):78–80
go back to reference Kearney L, Upton M, McLoughlin A (1990) Meat fermentations with immobilized lactic acid bacteria. Appl Microbiol Biotechnol 33:648–651CrossRef Kearney L, Upton M, McLoughlin A (1990) Meat fermentations with immobilized lactic acid bacteria. Appl Microbiol Biotechnol 33:648–651CrossRef
go back to reference Kerry JP, O’Grady MN, Hogan SA (2006) Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review. Meat Sci 74:113–130CrossRef Kerry JP, O’Grady MN, Hogan SA (2006) Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review. Meat Sci 74:113–130CrossRef
go back to reference Kheadr EE, Vuillemard JC, El Deeb SA (2000) Accelerated Cheddar cheese ripening with encapsulated proteinases. Int J Food Sci Technol 35:483–495CrossRef Kheadr EE, Vuillemard JC, El Deeb SA (2000) Accelerated Cheddar cheese ripening with encapsulated proteinases. Int J Food Sci Technol 35:483–495CrossRef
go back to reference Kheadr EE, Vuillemard JC, El Deeb SA (2002) Acceleration of Cheddar cheese lipolysis by using liposome-entrapped lipases. J Food Sci 67(2):485–492CrossRef Kheadr EE, Vuillemard JC, El Deeb SA (2002) Acceleration of Cheddar cheese lipolysis by using liposome-entrapped lipases. J Food Sci 67(2):485–492CrossRef
go back to reference Kheadr EE, Vuillemard JC, El-Deeb SA (2003) Impact of liposome-encapsulated enzyme cocktails on Cheddar cheese ripening. Food Res Int 36:241–252CrossRef Kheadr EE, Vuillemard JC, El-Deeb SA (2003) Impact of liposome-encapsulated enzyme cocktails on Cheddar cheese ripening. Food Res Int 36:241–252CrossRef
go back to reference Kosikowski FV (1982) Cheese and fermented milk foods, 3rd edn. Brooktondale, New York, p 711 Kosikowski FV (1982) Cheese and fermented milk foods, 3rd edn. Brooktondale, New York, p 711
go back to reference Krasaekoopt W, Bhandari B, Deeth H (2003) Evaluation of encapsulation techniques of probiotics for yoghurt. Int Dairy J 13:3–13CrossRef Krasaekoopt W, Bhandari B, Deeth H (2003) Evaluation of encapsulation techniques of probiotics for yoghurt. Int Dairy J 13:3–13CrossRef
go back to reference Lamboley L, Lacroix C, Champagne CP, Vuillemard JC (1997) Continuous mixed strain mesophilic lactic starter production in supplemented whey permeate medium using immobilized cell technology. Biotechnol Bioeng 56:502–516CrossRef Lamboley L, Lacroix C, Champagne CP, Vuillemard JC (1997) Continuous mixed strain mesophilic lactic starter production in supplemented whey permeate medium using immobilized cell technology. Biotechnol Bioeng 56:502–516CrossRef
go back to reference Lamboley L, Lacroix C, Sodini I, Lemay MJ, Champagne CP (2001) Influence of inoculum composition and low KCl supplementation on the biological and rheological stability of an immobilized cell system for mixed mesophilic lactic starter production. Biotechnol Prog 17:1071–1078CrossRef Lamboley L, Lacroix C, Sodini I, Lemay MJ, Champagne CP (2001) Influence of inoculum composition and low KCl supplementation on the biological and rheological stability of an immobilized cell system for mixed mesophilic lactic starter production. Biotechnol Prog 17:1071–1078CrossRef
go back to reference Lamboley L, St Gelais D, Champagne CP, Lamoureux M (2003) Growth and morphology of thermophilic dairy starters in alginate beads. J Gen Appl Microbiol 49:205–214CrossRef Lamboley L, St Gelais D, Champagne CP, Lamoureux M (2003) Growth and morphology of thermophilic dairy starters in alginate beads. J Gen Appl Microbiol 49:205–214CrossRef
go back to reference Lantto R, Puolanne E, Kruus K, Buchert J, Autio K (2007) Tyrosinase-aided protein cross-linking: Effects on gel formation of chicken breast myofibrils and texture an water-holding of chicken breast meat homogenate gels. J Agric Food Chem 55:1248–1255CrossRef Lantto R, Puolanne E, Kruus K, Buchert J, Autio K (2007) Tyrosinase-aided protein cross-linking: Effects on gel formation of chicken breast myofibrils and texture an water-holding of chicken breast meat homogenate gels. J Agric Food Chem 55:1248–1255CrossRef
go back to reference Laroia S, Martin JH (1991) Effect of pH on survival of Bifidobacterium bifidum and Lactobacillus acidophilus in frozen fermented dairy desserts. Cult Dairy Prod J 26(4):13–24 Laroia S, Martin JH (1991) Effect of pH on survival of Bifidobacterium bifidum and Lactobacillus acidophilus in frozen fermented dairy desserts. Cult Dairy Prod J 26(4):13–24
go back to reference Law BA (1999) Technology of cheesemaking. Sheffield Academic Press – CRC Press, Sheffield, p 177 Law BA (1999) Technology of cheesemaking. Sheffield Academic Press – CRC Press, Sheffield, p 177
go back to reference Lee BH (1996) Fundamentals of food biotechnology. VCH Publishers, New York Lee BH (1996) Fundamentals of food biotechnology. VCH Publishers, New York
go back to reference Lemay MJ, Champagne CP, Gariépy C, Saucier L (2002a) A comparison of the effect of meat formulation on the heat resistance of free or encapsulated cultures of Lactobacillus sakei. J Food Sci 67:3428–3434CrossRef Lemay MJ, Champagne CP, Gariépy C, Saucier L (2002a) A comparison of the effect of meat formulation on the heat resistance of free or encapsulated cultures of Lactobacillus sakei. J Food Sci 67:3428–3434CrossRef
go back to reference Lemay MJ, Choquette J, Delaquis PJ, Gariépy C, Rodrigue N, Saucier L (2002b) Antimicrobial effect of natural preservatives in a cooked and acidified chicken meat model. Int J Food Microbiol 78:217–226CrossRef Lemay MJ, Choquette J, Delaquis PJ, Gariépy C, Rodrigue N, Saucier L (2002b) Antimicrobial effect of natural preservatives in a cooked and acidified chicken meat model. Int J Food Microbiol 78:217–226CrossRef
go back to reference Lüke FK (1998) Fermented sausages. In: Wood BJB (ed) Microbiology of fermented foods, 2nd edn. Blackie Academic & Professional, London, pp 441–483 Lüke FK (1998) Fermented sausages. In: Wood BJB (ed) Microbiology of fermented foods, 2nd edn. Blackie Academic & Professional, London, pp 441–483
go back to reference Macedo MG, Champagne CP, Vuillemard JC, Lacroix C (1999) Establishment of bacteriophages in an immobilized cells system used for continuous inoculation of lactococci. Int Dairy J 9:437–445CrossRef Macedo MG, Champagne CP, Vuillemard JC, Lacroix C (1999) Establishment of bacteriophages in an immobilized cells system used for continuous inoculation of lactococci. Int Dairy J 9:437–445CrossRef
go back to reference Magee EL Jr, Olson NF (1981) Microencapsulation of cheese ripening systems: Production of diacetyl and acetoin in cheese by encapsulated bacterial cell-free extract. J Dairy Sci 64:616–621CrossRef Magee EL Jr, Olson NF (1981) Microencapsulation of cheese ripening systems: Production of diacetyl and acetoin in cheese by encapsulated bacterial cell-free extract. J Dairy Sci 64:616–621CrossRef
go back to reference Mandal S, Puniya AK, Singh K (2006) Effect of alginate concentration on survival of microencapsulated Lactobacillus casei NCDC-298. Int Dairy J 16:1190–1195CrossRef Mandal S, Puniya AK, Singh K (2006) Effect of alginate concentration on survival of micro­encapsulated Lactobacillus casei NCDC-298. Int Dairy J 16:1190–1195CrossRef
go back to reference McMaster LD, Kokott SA, Slatter P (2005) Micro-encapsulation of Bifidobacterium lactis for incorporation into soft foods. World J Microbiol Biotechnol 21:723–728CrossRef McMaster LD, Kokott SA, Slatter P (2005) Micro-encapsulation of Bifidobacterium lactis for incorporation into soft foods. World J Microbiol Biotechnol 21:723–728CrossRef
go back to reference Modler HW, Villa-Garcia L (1993) The growth of Bifidobacterium longum in a whey-based medium and viability of this organism in frozen yogurt with low and high levels of developed acidity. Cult Dairy Prod J 28(1):4–8 Modler HW, Villa-Garcia L (1993) The growth of Bifidobacterium longum in a whey-based medium and viability of this organism in frozen yogurt with low and high levels of developed acidity. Cult Dairy Prod J 28(1):4–8
go back to reference Morin N, Bernier-Cardou M, Champagne CP (1992) Production of Lactococcus lactis biomass by immobilized cell technology. J Ind Microbiol 9:131–135CrossRef Morin N, Bernier-Cardou M, Champagne CP (1992) Production of Lactococcus lactis biomass by immobilized cell technology. J Ind Microbiol 9:131–135CrossRef
go back to reference Murthy K (2007) Bacteriophage treatment – a natural “on-farm” approach to improving food safety. Symposium on advances in antimicrobial interventions for quality control of meat and poultry products, Canadian Meat Council, Toronto, Canada, September 13–14 Murthy K (2007) Bacteriophage treatment – a natural “on-farm” approach to improving food safety. Symposium on advances in antimicrobial interventions for quality control of meat and poultry products, Canadian Meat Council, Toronto, Canada, September 13–14
go back to reference Muthukumarasamy P, Holley RA (2006) Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri. Int J Food Microbiol 111(2):164–169CrossRef Muthukumarasamy P, Holley RA (2006) Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri. Int J Food Microbiol 111(2):164–169CrossRef
go back to reference Muthukumarasamy P, Holley RA (2007) Survival of Escherichia coli O157:H7 in dry fermented sausages containing micro-encapsulated probiotic lactic acid bacteria. Food Microbiol 24(1):82–88CrossRef Muthukumarasamy P, Holley RA (2007) Survival of Escherichia coli O157:H7 in dry fermented sausages containing micro-encapsulated probiotic lactic acid bacteria. Food Microbiol 24(1):82–88CrossRef
go back to reference Muthukumarasamy P, Allan-Wojtas P, Holley RA (2006) Stability of Lactobacilus reuteri in different types of microcapsules. J Food Sci 71:M20–M24CrossRef Muthukumarasamy P, Allan-Wojtas P, Holley RA (2006) Stability of Lactobacilus reuteri in different types of microcapsules. J Food Sci 71:M20–M24CrossRef
go back to reference Naes H, Holck AL, Axelsson L, Andersen HJ, Blom H (1994) Accelerated ripening of dry fermented sausage by addition of a Lactobacillus proteinase. Int J Food Sci Technol 29:651–659 Naes H, Holck AL, Axelsson L, Andersen HJ, Blom H (1994) Accelerated ripening of dry fermented sausage by addition of a Lactobacillus proteinase. Int J Food Sci Technol 29:651–659
go back to reference Norton S, Vuillemard S (1994) Food bioconversions and metabolite production using immobilized cell technology. Crit Rev Biotechnol 14(2):193–224CrossRef Norton S, Vuillemard S (1994) Food bioconversions and metabolite production using immobilized cell technology. Crit Rev Biotechnol 14(2):193–224CrossRef
go back to reference O’Reilly CE, O’Connor PM, Murphy PM, Kelly AL, Beresford TP (2002) Effects of high-pressure treatment on viability and autolysis of starter bacteria and proteolysis in Cheddar cheese. Int Dairy J 12:915–922CrossRef O’Reilly CE, O’Connor PM, Murphy PM, Kelly AL, Beresford TP (2002) Effects of high-pressure treatment on viability and autolysis of starter bacteria and proteolysis in Cheddar cheese. Int Dairy J 12:915–922CrossRef
go back to reference Panesar R, Panesar PS, Singh RS, Kennedy JF, Bera MB (2006) Production of lactase-hydrolyzing milk using ethanol permeabilized yeast cells. Food Chem 101:786–790CrossRef Panesar R, Panesar PS, Singh RS, Kennedy JF, Bera MB (2006) Production of lactase-hydrolyzing milk using ethanol permeabilized yeast cells. Food Chem 101:786–790CrossRef
go back to reference Pessela BCC, Mateo C, Fuentes M, Vian A, Garcia JL, Carrascosa AV, Guisan JM, Fernandez-Lafuente R (2003) The immobilization of a thermophilic beta-galactosidase on Sepabeads supports decreases product inhibition. Complete hydrolysis of lactose in dairy products. Enzyme Microb Technol 33(2–3):199–205CrossRef Pessela BCC, Mateo C, Fuentes M, Vian A, Garcia JL, Carrascosa AV, Guisan JM, Fernandez-Lafuente R (2003) The immobilization of a thermophilic beta-galactosidase on Sepabeads supports decreases product inhibition. Complete hydrolysis of lactose in dairy products. Enzyme Microb Technol 33(2–3):199–205CrossRef
go back to reference Prevost H, Divies C (1985) Continuous yoghurt production with Lactobacillus bulgaricus and Streptococcus thermophillus entrapped in Ca-alginate. Biotechnol Lett 7:247–252CrossRef Prevost H, Divies C (1985) Continuous yoghurt production with Lactobacillus bulgaricus and Streptococcus thermophillus entrapped in Ca-alginate. Biotechnol Lett 7:247–252CrossRef
go back to reference Prevost H, Divies C (1987) Fresh fermented cheese production with continuous pre-fermented milk by a mixed culture of mesophioic lactic streptococci entrapped in Ca-alginate. Biotechnol Lett 9:789–794CrossRef Prevost H, Divies C (1987) Fresh fermented cheese production with continuous pre-fermented milk by a mixed culture of mesophioic lactic streptococci entrapped in Ca-alginate. Biotechnol Lett 9:789–794CrossRef
go back to reference Prevost H, Divies C (1988a) Continuous pre-fermentation of milk by entrapped yoghurt bacteria. I. Development of the process. Milchwissenschaft 43:621–625 Prevost H, Divies C (1988a) Continuous pre-fermentation of milk by entrapped yoghurt bacteria. I. Development of the process. Milchwissenschaft 43:621–625
go back to reference Prevost H, Divies C (1988b) Continuous pre-fermentation of milk by entrapped yoghurt bacteria. II. Data for optimization of the process. Milchwissenschaft 43:716–719 Prevost H, Divies C (1988b) Continuous pre-fermentation of milk by entrapped yoghurt bacteria. II. Data for optimization of the process. Milchwissenschaft 43:716–719
go back to reference Reid AA, Vuillemard JC, Britten M, Arcand Y, Farnworth E, Champagne CP (2005) Microentrapment of probiotic bacteria in a Ca2+-induced whey protein gel and effects on their viability in a dynamic gastro-intestinal model. J Microencapsul 22:603–619CrossRef Reid AA, Vuillemard JC, Britten M, Arcand Y, Farnworth E, Champagne CP (2005) Microentrapment of probiotic bacteria in a Ca2+-induced whey protein gel and effects on their viability in a dynamic gastro-intestinal model. J Microencapsul 22:603–619CrossRef
go back to reference Roy I, Gupta MN (2003) Lactose hydrolysis by LactozymTM immobilized on cellulose beads in batch and fluidized bed modes. Process Biochem 39(3):325–332CrossRef Roy I, Gupta MN (2003) Lactose hydrolysis by LactozymTM immobilized on cellulose beads in batch and fluidized bed modes. Process Biochem 39(3):325–332CrossRef
go back to reference Saucier L, Champagne CP (2005) Cell immobilization technology and meat processing. In: Nedovic V, Willaert R (eds) Applications of cell immobilisation biotechnology, series “Focus on Biotechnology”, vol 8B. Springer–Kluwer, Dordrecht, pp 337–350CrossRef Saucier L, Champagne CP (2005) Cell immobilization technology and meat processing. In: Nedovic V, Willaert R (eds) Applications of cell immobilisation biotechnology, series “Focus on Biotechnology”, vol 8B. Springer–Kluwer, Dordrecht, pp 337–350CrossRef
go back to reference Shah NP, Ravula RR (2000) Microencapsulation of probiotic bacteria and their survival in frozen fermented dairy desserts. Aust J Dairy Technol 55:139–144 Shah NP, Ravula RR (2000) Microencapsulation of probiotic bacteria and their survival in frozen fermented dairy desserts. Aust J Dairy Technol 55:139–144
go back to reference Shah NP, Warnakulsuriya EV, Lankaputhra WEV (1997) Improving viability of Lactobacillus acidophilus and Bifidobacterium spp. in yogurt. Int Dairy J 7:349–356CrossRef Shah NP, Warnakulsuriya EV, Lankaputhra WEV (1997) Improving viability of Lactobacillus acidophilus and Bifidobacterium spp. in yogurt. Int Dairy J 7:349–356CrossRef
go back to reference Shahidi F, Pegg PB (1991) Encapsulation of the pre-formed cooked cured-meat pigment. J Food Sci 56:2500–1504 Shahidi F, Pegg PB (1991) Encapsulation of the pre-formed cooked cured-meat pigment. J Food Sci 56:2500–1504
go back to reference Sheu TY, Marshall RT (1993) Microentrapment of lactobacilli in calcium alginate gels. J Food Sci 54:557–561CrossRef Sheu TY, Marshall RT (1993) Microentrapment of lactobacilli in calcium alginate gels. J Food Sci 54:557–561CrossRef
go back to reference Sheu TY, Marshall RT, Heymann H (1993) Improving survival of culture bacteria in frozen desserts by microentrapment. J Dairy Sci 76:1902–1907CrossRef Sheu TY, Marshall RT, Heymann H (1993) Improving survival of culture bacteria in frozen desserts by microentrapment. J Dairy Sci 76:1902–1907CrossRef
go back to reference Siso MIG, Freire MA, Ramil E, Belmonte ER (1994) Covalent immobilization of beta-galactosidase on corn grits. Process Biochem 29:7–12CrossRef Siso MIG, Freire MA, Ramil E, Belmonte ER (1994) Covalent immobilization of beta-galactosidase on corn grits. Process Biochem 29:7–12CrossRef
go back to reference Steenson LR, Klaenhammer TR, Swaisgood HE (1987) Calcium alginate-immobilized cultures of lactic streptococci are protected from bacteriophages. J Dairy Sci 70:1121–1127CrossRef Steenson LR, Klaenhammer TR, Swaisgood HE (1987) Calcium alginate-immobilized cultures of lactic streptococci are protected from bacteriophages. J Dairy Sci 70:1121–1127CrossRef
go back to reference Talwalkar A, Kailasapathy K (2003) Effect of microencapsulation on oxygen toxicity in probiotic bacteria. Aust J Dairy Technol 58:36–39 Talwalkar A, Kailasapathy K (2003) Effect of microencapsulation on oxygen toxicity in probiotic bacteria. Aust J Dairy Technol 58:36–39
go back to reference Talwalkar A, Kailasapathy K (2004) A review of oxygen toxicity in probiotic yogurts: Influence on the survival of probiotic bacteria and protective techniques. Compr Rev Food Sci Food Saf 3:117–124CrossRef Talwalkar A, Kailasapathy K (2004) A review of oxygen toxicity in probiotic yogurts: Influence on the survival of probiotic bacteria and protective techniques. Compr Rev Food Sci Food Saf 3:117–124CrossRef
go back to reference Toren JF (2007) Composition and method for tenderizing meat. US Patent 7250184 Toren JF (2007) Composition and method for tenderizing meat. US Patent 7250184
go back to reference Tseng T-F, Tsai C-M, Yang J-H, Chen M-T (2006) Porcine blood plasma tansglutaminase combined with thrombin and fibrinogen as a binder in restructured meat. Asian-Australas J Anim Sci 19:1054–1058 Tseng T-F, Tsai C-M, Yang J-H, Chen M-T (2006) Porcine blood plasma tansglutaminase combined with thrombin and fibrinogen as a binder in restructured meat. Asian-Australas J Anim Sci 19:1054–1058
go back to reference Työppönen S, Petäjä E, Mattila-Sandholm T (2003) Bioprotectives and probiotics for dry sausages. Int J Food Microbiol 83:233–244CrossRef Työppönen S, Petäjä E, Mattila-Sandholm T (2003) Bioprotectives and probiotics for dry sausages. Int J Food Microbiol 83:233–244CrossRef
go back to reference Venugopal V (1994) Production of fish protein hydrolyzates by microorganisms. In: Martin AM (ed) Fisheries processing: Biotechnological applications. Chapman & Hall, London, pp 223–243 Venugopal V (1994) Production of fish protein hydrolyzates by microorganisms. In: Martin AM (ed) Fisheries processing: Biotechnological applications. Chapman & Hall, London, pp 223–243
go back to reference Wood BJB (1998) Microbiology of fermented foods, 2nd edn. Blackie Academic and Professional, London Wood BJB (1998) Microbiology of fermented foods, 2nd edn. Blackie Academic and Professional, London
go back to reference You-Jin J, Vasanthan T, Temelli F, Song G-K (2003) The suitability of barley and corn starches in their native and chemically modified forms for volatile meat flavour encapsulation. Food Res Int 36:349–355CrossRef You-Jin J, Vasanthan T, Temelli F, Song G-K (2003) The suitability of barley and corn starches in their native and chemically modified forms for volatile meat flavour encapsulation. Food Res Int 36:349–355CrossRef
Metadata
Title
Immobilization of Cells and Enzymes for Fermented Dairy or Meat Products
Authors
Claude P. Champagne
Byong H. Lee
Linda Saucier
Copyright Year
2010
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-1008-0_13

Premium Partners