Skip to main content
Top
Published in: Flow, Turbulence and Combustion 3/2019

24-05-2019

Impact of the Acoustic Forcing Level on the Transfer Matrix of a Turbulent Swirling Combustor with and Without Flame

Authors: R. Gaudron, M. Gatti, C. Mirat, T. Schuller

Published in: Flow, Turbulence and Combustion | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Thermoacoustic instabilities are a major issue for industrial and domestic burners. One possible framework to study these instabilities is to represent the system by a network of Dimensionless Acoustic Transfer Matrices (DATM) that link pressure and velocity fluctuations upstream and downstream each element of the network. In this article, the DATM coefficients of a turbulent swirling combustor are determined for a thermoacoustically stable configuration using harmonic acoustic forcing. Since the dynamics of the whole system is controlled by nonlinearities, the impact of the forcing level needs to be considered. The four DATM coefficients are thus measured for reactive operating conditions (premixed flame) and cold flow conditions for increasing acoustic excitation levels. The velocity level is controlled by a hot wire located inside the injector, in a region with a laminar top-hat velocity profile. The upstream and downstream specific acoustic impedances are also measured. Results for the acoustic response under cold flow conditions are first presented. In this case, the DATM coefficients are found to be independent of the forcing level except for the modulus of the coefficients linking the downstream velocity fluctuations to the upstream pressure and velocity fluctuations. This behavior is linked to the nonlinear response of the injector but is not entirely captured by the acoustic network model developed in this work. For reactive operating conditions, measurements indicate that all DATM coefficients depend on the forcing level to a certain extent. The Flame Describing Function, linking heat release rate fluctuations to velocity fluctuations, is used to reconstruct the transfer matrix through an acoustic network model. This network model accurately predicts the trend of the measured coefficients but the impact of the forcing level is not reproduced. Saturation for reactive operating conditions is shown to be not only related to the nonlinear flame response but also to the nonlinear injector dynamics. Finally, a data-driven reconstruction of the FDF using the acoustic network model along with the hot wire and microphone measurements is performed. This data-driven acoustic reconstruction is subsequently compared with the FDF determined with an optical technique.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
3.
4.
go back to reference Nicoud, F., Benoit, L., Sensiau, C., Poinsot, T.: AIAA J. 45(2), 426 (2007)CrossRef Nicoud, F., Benoit, L., Sensiau, C., Poinsot, T.: AIAA J. 45(2), 426 (2007)CrossRef
5.
go back to reference Camporeale, S.M., Fortunato, B., Campa, G.: J. Eng. Gas Turbines Power 133(1), 011506 (2011)CrossRef Camporeale, S.M., Fortunato, B., Campa, G.: J. Eng. Gas Turbines Power 133(1), 011506 (2011)CrossRef
8.
go back to reference Noiray, N., Durox, D., Schuller, T., Candel, S.: J. Fluid Mech. 615, 139 (2008)CrossRef Noiray, N., Durox, D., Schuller, T., Candel, S.: J. Fluid Mech. 615, 139 (2008)CrossRef
9.
go back to reference Palies, P., Durox, D., Schuller, T., Candel, S.: Combust. Flame 158 (10), 1980 (2011)CrossRef Palies, P., Durox, D., Schuller, T., Candel, S.: Combust. Flame 158 (10), 1980 (2011)CrossRef
10.
go back to reference Ćosić, B., Moeck, J.P., Paschereit, C.O.: Combust. Sci. Technol. 186, 713 (2014)CrossRef Ćosić, B., Moeck, J.P., Paschereit, C.O.: Combust. Sci. Technol. 186, 713 (2014)CrossRef
11.
go back to reference Laera, D., Schuller, T., Prieur, K., Durox, D., Camporeale, S.M.: Combust. Flame 184, 136 (2017)CrossRef Laera, D., Schuller, T., Prieur, K., Durox, D., Camporeale, S.M.: Combust. Flame 184, 136 (2017)CrossRef
12.
go back to reference Silva, C.F., Nicoud, F., Schuller, T., Durox, D., Candel, S.: Combust. Flame 160(9), 1743 (2013)CrossRef Silva, C.F., Nicoud, F., Schuller, T., Durox, D., Candel, S.: Combust. Flame 160(9), 1743 (2013)CrossRef
13.
14.
go back to reference Preetham, S.H., Hemchandra, S., Lieuwen, T.: J. Propul. Power 24(6), 1390 (2008)CrossRef Preetham, S.H., Hemchandra, S., Lieuwen, T.: J. Propul. Power 24(6), 1390 (2008)CrossRef
15.
go back to reference Krediet, H.J., Beck, C.H., Krebs, W., Schimek, S., Paschereit, C.O.: Combust. Sci. Technol. 184(7-8), 888 (2012)CrossRef Krediet, H.J., Beck, C.H., Krebs, W., Schimek, S., Paschereit, C.O.: Combust. Sci. Technol. 184(7-8), 888 (2012)CrossRef
16.
19.
20.
21.
go back to reference Ghirardo, G., Ćosić, B., Juniper, M.P., Moeck, J.P.: Nonlinear Dyn. 82(1-2), 9 (2015)CrossRef Ghirardo, G., Ćosić, B., Juniper, M.P., Moeck, J.P.: Nonlinear Dyn. 82(1-2), 9 (2015)CrossRef
22.
go back to reference Ćosić, B., Terhaar, S., Moeck, J.P., Paschereit, C.O.: Combust. Flame 162(4), 1046 (2015)CrossRef Ćosić, B., Terhaar, S., Moeck, J.P., Paschereit, C.O.: Combust. Flame 162(4), 1046 (2015)CrossRef
23.
go back to reference Giuliani, F., Lang, A., Johannes Gradl, K., Siebenhofer, P., Fritzer, J.: J. Eng. Gas Turbines Power 134, 021602 (2012)CrossRef Giuliani, F., Lang, A., Johannes Gradl, K., Siebenhofer, P., Fritzer, J.: J. Eng. Gas Turbines Power 134, 021602 (2012)CrossRef
24.
go back to reference Hurle, I.R., Price, R.B., Sugden, T.M., Thomas, A.: Proc. R. Soc. A 303, 409 (1968)CrossRef Hurle, I.R., Price, R.B., Sugden, T.M., Thomas, A.: Proc. R. Soc. A 303, 409 (1968)CrossRef
25.
go back to reference Paschereit, C.O., Polifke, W.:. In: Proceedings of the ASME Turbo Expo 1998, pp 1–10 (1998) Paschereit, C.O., Polifke, W.:. In: Proceedings of the ASME Turbo Expo 1998, pp 1–10 (1998)
26.
go back to reference Paschereit, C.O., Schuermans, B., Polifke, W., Mattson, O.: J. Eng. Gas Turbines Power 124, 239 (2002)CrossRef Paschereit, C.O., Schuermans, B., Polifke, W., Mattson, O.: J. Eng. Gas Turbines Power 124, 239 (2002)CrossRef
27.
go back to reference Fischer, A., Hirsch, C., Sattelmayer, T.: J. Sound Vib. 298(1-2), 73 (2006)CrossRef Fischer, A., Hirsch, C., Sattelmayer, T.: J. Sound Vib. 298(1-2), 73 (2006)CrossRef
28.
go back to reference Alemela, P., Fanca, D., Ettner, F., Hirsch, C., Sattelmayer, S.:. In: Proceedings of the ASME Turbo Expo 2008, pp 1–9 (2008) Alemela, P., Fanca, D., Ettner, F., Hirsch, C., Sattelmayer, S.:. In: Proceedings of the ASME Turbo Expo 2008, pp 1–9 (2008)
31.
go back to reference Munjal, M.L.: Acoustics of ducts and mufflers. Wiley, New York (1987) Munjal, M.L.: Acoustics of ducts and mufflers. Wiley, New York (1987)
32.
go back to reference Schuermans, B., Polifke, W., Paschereit, C.O., van der Linden, J.H.:. In: Proceedings of the ASME Turbo Expo 2000 (2000) Schuermans, B., Polifke, W., Paschereit, C.O., van der Linden, J.H.:. In: Proceedings of the ASME Turbo Expo 2000 (2000)
33.
go back to reference Polifke, W., Poncet, A., Paschereit, C., Döbbeling, K.: J. Sound Vib. 245, 483 (2001)CrossRef Polifke, W., Poncet, A., Paschereit, C., Döbbeling, K.: J. Sound Vib. 245, 483 (2001)CrossRef
34.
go back to reference Gentemann, A., Polifke, W.:. In: Proceedings of the ASME Turbo Expo, p 2007 (2007) Gentemann, A., Polifke, W.:. In: Proceedings of the ASME Turbo Expo, p 2007 (2007)
35.
36.
go back to reference Tay Wo Chong, L., Komarek, T., Kaess, R., Föller, S., Polifke, W.:. In: Proceedings of the ASME Turbo Expo 2010 (2010) Tay Wo Chong, L., Komarek, T., Kaess, R., Föller, S., Polifke, W.:. In: Proceedings of the ASME Turbo Expo 2010 (2010)
37.
go back to reference Tay-Wo-Chong, L., Bomberg, S., Ulhaq, A., Polifke, W.: J. Eng. Gas Turbines Power 134(2), 021502 (2012)CrossRef Tay-Wo-Chong, L., Bomberg, S., Ulhaq, A., Polifke, W.: J. Eng. Gas Turbines Power 134(2), 021502 (2012)CrossRef
38.
go back to reference Lieuwen, T.C: Unsteady combustor physics. Cambridge University Press, Cambridge (2005)MATH Lieuwen, T.C: Unsteady combustor physics. Cambridge University Press, Cambridge (2005)MATH
39.
go back to reference Durox, D., Schuller, T., Noiray, N., Candel, S.: Proc. Combust. Inst. 32, 1391 (2009)CrossRef Durox, D., Schuller, T., Noiray, N., Candel, S.: Proc. Combust. Inst. 32, 1391 (2009)CrossRef
40.
go back to reference Chung, J.Y., Blaser, D.A., Acoust, J.: Soc. Am. 68, 907 (1980) Chung, J.Y., Blaser, D.A., Acoust, J.: Soc. Am. 68, 907 (1980)
41.
go back to reference Scarpato, A., Tran, N., Ducruix, S., Schuller, T.: J. Sound Vib. 331, 276 (2012)CrossRef Scarpato, A., Tran, N., Ducruix, S., Schuller, T.: J. Sound Vib. 331, 276 (2012)CrossRef
42.
go back to reference Guedra, M., Penelet, G., Lotton, P., Dalmont, J., Acoust, J.: Soc. Am. 130(7), 145 (2011) Guedra, M., Penelet, G., Lotton, P., Dalmont, J., Acoust, J.: Soc. Am. 130(7), 145 (2011)
43.
go back to reference Poinsot, T., Veynante, D.: Theoretical and numerical combustion (2005) Poinsot, T., Veynante, D.: Theoretical and numerical combustion (2005)
44.
go back to reference Gaudron, R., Gatti, M., Mirat, C., Schuller, T.: J. Eng. Gas Turbines Power. 141(5), 051016 (2019)CrossRef Gaudron, R., Gatti, M., Mirat, C., Schuller, T.: J. Eng. Gas Turbines Power. 141(5), 051016 (2019)CrossRef
46.
go back to reference Howe, M.S.: Acoustics of fluid-structure interactions. Cambridge University Press, Cambridge (1998)MATHCrossRef Howe, M.S.: Acoustics of fluid-structure interactions. Cambridge University Press, Cambridge (1998)MATHCrossRef
48.
go back to reference Scarpato, A.: Linear and nonlinear analysis of the acoustic response of perforated plates traversed by a bias flow. Ph.D. thesis, Ecole Centrale Paris (2014) Scarpato, A.: Linear and nonlinear analysis of the acoustic response of perforated plates traversed by a bias flow. Ph.D. thesis, Ecole Centrale Paris (2014)
49.
50.
go back to reference Gaudron, R.: Acoustic response of premixed flames submitted to harmonic sound waves. Ph.D. thesis, Université Paris-Saclay (2018) Gaudron, R.: Acoustic response of premixed flames submitted to harmonic sound waves. Ph.D. thesis, Université Paris-Saclay (2018)
51.
52.
go back to reference Schuller, T., Tran, N., Noiray, N., Durox, D., Ducruix, S., Candel, S.:. In: Proceedings of the ASME Turbo Expo 2009, pp GT2009–59390 (2009) Schuller, T., Tran, N., Noiray, N., Durox, D., Ducruix, S., Candel, S.:. In: Proceedings of the ASME Turbo Expo 2009, pp GT2009–59390 (2009)
53.
go back to reference Kruger, U., Hüren, J., Hoffmann, S., Krebs, W., Flohr, P., Bohn, D.: J. Eng. Gas Turbines Power 123(3), 557 (2001)CrossRef Kruger, U., Hüren, J., Hoffmann, S., Krebs, W., Flohr, P., Bohn, D.: J. Eng. Gas Turbines Power 123(3), 557 (2001)CrossRef
54.
go back to reference Su, J., Garmory, A., Carrotte, J.:. In: Proceedings of the ASME Turbo Expo 2015 (2015) Su, J., Garmory, A., Carrotte, J.:. In: Proceedings of the ASME Turbo Expo 2015 (2015)
55.
go back to reference Hirschberg, A.: Introduction to aero-acoustics of internal flow. Tech. rep (2001) Hirschberg, A.: Introduction to aero-acoustics of internal flow. Tech. rep (2001)
56.
go back to reference Gentemann, A., Fischer, A., Evesque, S., Polifke, W.:. In: 9th AIAA/CEAS aeroacoustics conference and exhibit, May 12-14, 2003, Hilton Head, South Carolina, pp 1–11 (2003) Gentemann, A., Fischer, A., Evesque, S., Polifke, W.:. In: 9th AIAA/CEAS aeroacoustics conference and exhibit, May 12-14, 2003, Hilton Head, South Carolina, pp 1–11 (2003)
57.
go back to reference Polifke, W., Fischer, A., Sattelmayer, T.: J. Eng. Gas Turbines Power 125, 20 (2003)CrossRef Polifke, W., Fischer, A., Sattelmayer, T.: J. Eng. Gas Turbines Power 125, 20 (2003)CrossRef
58.
go back to reference Ni, F., Miguel-Brebion, M., Nicoud, F., Poinsot, T.: AIAA J. 55(4), 1205 (2017)CrossRef Ni, F., Miguel-Brebion, M., Nicoud, F., Poinsot, T.: AIAA J. 55(4), 1205 (2017)CrossRef
59.
go back to reference Palies, P., Durox, D., Schuller, T., Candel, S.: Combust. Flame 157, 1698 (2010)CrossRef Palies, P., Durox, D., Schuller, T., Candel, S.: Combust. Flame 157, 1698 (2010)CrossRef
60.
go back to reference Gatti, M., Gaudron, R., Mirat, C., Schuller, T.:. In: Proceedings of the ASME Turbo Expo 2017, pp 1–11 (2017) Gatti, M., Gaudron, R., Mirat, C., Schuller, T.:. In: Proceedings of the ASME Turbo Expo 2017, pp 1–11 (2017)
Metadata
Title
Impact of the Acoustic Forcing Level on the Transfer Matrix of a Turbulent Swirling Combustor with and Without Flame
Authors
R. Gaudron
M. Gatti
C. Mirat
T. Schuller
Publication date
24-05-2019
Publisher
Springer Netherlands
Published in
Flow, Turbulence and Combustion / Issue 3/2019
Print ISSN: 1386-6184
Electronic ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-019-00033-z

Other articles of this Issue 3/2019

Flow, Turbulence and Combustion 3/2019 Go to the issue

Premium Partners