Skip to main content
Top

2017 | OriginalPaper | Chapter

9. Implantable Optical Neural Interface

Authors : Sang Beom Jun, Yoonseob Lim

Published in: Smart Sensors and Systems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

For more than several decades, due to the rapid development of sophisticated electronics, the electrical neural interface has become the most popular method for recording and modulating neural activity in nerve systems. The electrical neural interface has been successfully applied to implantable neural prosthetic systems such as cochlear implant, deep brain stimulation system, artificial retina, and so on. Recently, in order to overcome the limitations of electrical methods for neural interface, novel optical technologies have been developed and applied to neuroscience research. Overall, the optical neural interfaces can be categorized into the intrinsic and the extrinsic methods depending on the modification of natural nerve system. For example, infrared neural stimulation (INS) and optogenetic neural stimulation are the typical methods for intrinsic and extrinsic neural interfaces, respectively. In addition to the optogenetic stimulation, it is also possible to monitor neural activity from specific neurons genetically modified to express activity-correlated fluorescence signals. Therefore, the optogenetic neural recording enables the detection of activity from specific types of neurons. Despite the fascinating advantages, to date, the use of the optical neural interface is limited only to the neuroscience research not for clinical purposes. In this chapter, the state-of-art technologies in optical neural interface are reviewed from the aspects of both neurobiology and engineering. In addition, the challenges to realize the clinical use of optical neural interfaces are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shepherd GM (2004) The synaptic organization of the brain, 5th edn. Oxford University Press, New YorkCrossRef Shepherd GM (2004) The synaptic organization of the brain, 5th edn. Oxford University Press, New YorkCrossRef
2.
go back to reference Pinaud R, Terleph TA, Tremere LA, Phan ML, Dagostin AA, Leão RM et al (2008) Inhibitory network interactions shape the auditory processing of natural communication signals in the songbird auditory forebrain. J Neurophysiol 100:441–455CrossRef Pinaud R, Terleph TA, Tremere LA, Phan ML, Dagostin AA, Leão RM et al (2008) Inhibitory network interactions shape the auditory processing of natural communication signals in the songbird auditory forebrain. J Neurophysiol 100:441–455CrossRef
3.
go back to reference Zhou M, Liang F, Xiong XR, Li L, Li H, Xiao Z et al (2014) Scaling down of balanced excitation and inhibition by active behavioral states in auditory cortex. Nat Neurosci 17:841–850 Zhou M, Liang F, Xiong XR, Li L, Li H, Xiao Z et al (2014) Scaling down of balanced excitation and inhibition by active behavioral states in auditory cortex. Nat Neurosci 17:841–850
4.
go back to reference Pinto L, Dan Y (2015) Cell-type-specific activity in prefrontal cortex during goal-directed behavior. Neuron 87:437–450 Pinto L, Dan Y (2015) Cell-type-specific activity in prefrontal cortex during goal-directed behavior. Neuron 87:437–450
5.
go back to reference Roche JP, Hansen MR (2015) On the horizon: cochlear implant technology. Otolaryngol Clin North Am 48:1097–1116CrossRef Roche JP, Hansen MR (2015) On the horizon: cochlear implant technology. Otolaryngol Clin North Am 48:1097–1116CrossRef
6.
go back to reference Kilgard MP, Merzenich MM (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279:1714–1718CrossRef Kilgard MP, Merzenich MM (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279:1714–1718CrossRef
7.
go back to reference Zrenner E (2002) Will retinal implants restore vision? Science 295:1022–1025 Zrenner E (2002) Will retinal implants restore vision? Science 295:1022–1025
8.
go back to reference Zhang Y, Hakes JJ, Bonfield SP, Yan J (2005) Corticofugal feedback for auditory midbrain plasticity elicited by tones and electrical stimulation of basal forebrain in mice. Eur J Neurosci 22:871–879CrossRef Zhang Y, Hakes JJ, Bonfield SP, Yan J (2005) Corticofugal feedback for auditory midbrain plasticity elicited by tones and electrical stimulation of basal forebrain in mice. Eur J Neurosci 22:871–879CrossRef
9.
go back to reference Lim H, Anderson D (2006) Auditory cortical responses to electrical stimulation of the inferior colliculus: implications for an auditory midbrain implant. J Neurophysiol 96:975–988CrossRef Lim H, Anderson D (2006) Auditory cortical responses to electrical stimulation of the inferior colliculus: implications for an auditory midbrain implant. J Neurophysiol 96:975–988CrossRef
10.
go back to reference Thompson AC, Stoddart PR, Jansen ED (2014) Optical stimulation of neurons. Curr Mol Imaging 3:162–177CrossRef Thompson AC, Stoddart PR, Jansen ED (2014) Optical stimulation of neurons. Curr Mol Imaging 3:162–177CrossRef
11.
go back to reference Frostig RD, Lieke EE, Ts’o DY, Grinvald A (1990) Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc Natl Acad Sci 87:6082–6086CrossRef Frostig RD, Lieke EE, Ts’o DY, Grinvald A (1990) Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc Natl Acad Sci 87:6082–6086CrossRef
12.
go back to reference Malonek D, Grinvald A (1996) Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272:551CrossRef Malonek D, Grinvald A (1996) Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272:551CrossRef
13.
go back to reference Kim SA, Byun KM, Lee J, Kim J, Kim D-G, Baac H et al (2008) Optical measurement of neural activity using surface plasmon resonance. Opt Lett 33:914–916CrossRef Kim SA, Byun KM, Lee J, Kim J, Kim D-G, Baac H et al (2008) Optical measurement of neural activity using surface plasmon resonance. Opt Lett 33:914–916CrossRef
14.
go back to reference Kim SA, Kim SJ, Moon H, Jun SB (2012) In vivo optical neural recording using fiber-based surface plasmon resonance. Opt Lett 37:614–616CrossRef Kim SA, Kim SJ, Moon H, Jun SB (2012) In vivo optical neural recording using fiber-based surface plasmon resonance. Opt Lett 37:614–616CrossRef
15.
go back to reference Lazebnik M, Marks DL, Potgieter K, Gillette R, Boppart SA (2003) Functional optical coherence tomography for detecting neural activity through scattering changes. Opt Lett 28:1218–1220CrossRef Lazebnik M, Marks DL, Potgieter K, Gillette R, Boppart SA (2003) Functional optical coherence tomography for detecting neural activity through scattering changes. Opt Lett 28:1218–1220CrossRef
16.
go back to reference Stepnoski R, LaPorta A, Raccuia-Behling F, Blonder G, Slusher R, Kleinfeld D (1991) Noninvasive detection of changes in membrane potential in cultured neurons by light scattering. Proc Natl Acad Sci 88:9382–9386CrossRef Stepnoski R, LaPorta A, Raccuia-Behling F, Blonder G, Slusher R, Kleinfeld D (1991) Noninvasive detection of changes in membrane potential in cultured neurons by light scattering. Proc Natl Acad Sci 88:9382–9386CrossRef
17.
go back to reference Shevelev IA (1998) Functional imaging of the brain by infrared radiation (thermoencephaloscopy). Prog Neurobiol 56:269–305CrossRef Shevelev IA (1998) Functional imaging of the brain by infrared radiation (thermoencephaloscopy). Prog Neurobiol 56:269–305CrossRef
18.
go back to reference Wells J, Kao C, Jansen ED, Konrad P, Mahadevan-Jansen A (2005) Application of infrared light for in vivo neural stimulation. J Biomed Opt 10:064003CrossRef Wells J, Kao C, Jansen ED, Konrad P, Mahadevan-Jansen A (2005) Application of infrared light for in vivo neural stimulation. J Biomed Opt 10:064003CrossRef
19.
go back to reference Tan X, Rajguru S, Young H, Xia N, Stock SR, Xiao X et al (2015) Radiant energy required for infrared neural stimulation. Sci Rep 5:13273CrossRef Tan X, Rajguru S, Young H, Xia N, Stock SR, Xiao X et al (2015) Radiant energy required for infrared neural stimulation. Sci Rep 5:13273CrossRef
20.
go back to reference Wells J, Konrad P, Kao C, Jansen ED, Mahadevan-Jansen A (2007) Pulsed laser versus electrical energy for peripheral nerve stimulation. J Neurosci Methods 163:326–337CrossRef Wells J, Konrad P, Kao C, Jansen ED, Mahadevan-Jansen A (2007) Pulsed laser versus electrical energy for peripheral nerve stimulation. J Neurosci Methods 163:326–337CrossRef
21.
go back to reference Izzo AD, Walsh JT Jr, Ralph H, Webb J, Bendett M, Wells J et al (2008) Laser stimulation of auditory neurons: effect of shorter pulse duration and penetration depth. Biophys J 94:3159–3166CrossRef Izzo AD, Walsh JT Jr, Ralph H, Webb J, Bendett M, Wells J et al (2008) Laser stimulation of auditory neurons: effect of shorter pulse duration and penetration depth. Biophys J 94:3159–3166CrossRef
22.
go back to reference Huang H, Delikanli S, Zeng H, Ferkey DM, Pralle A (2010) Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat Nanotechnol 5:602–606CrossRef Huang H, Delikanli S, Zeng H, Ferkey DM, Pralle A (2010) Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat Nanotechnol 5:602–606CrossRef
23.
go back to reference Richter CP, Matic AI, Wells JD, Jansen ED, Walsh JT Jr (2011) Neural stimulation with optical radiation. Laser Photonics Rev 5:68–80CrossRef Richter CP, Matic AI, Wells JD, Jansen ED, Walsh JT Jr (2011) Neural stimulation with optical radiation. Laser Photonics Rev 5:68–80CrossRef
24.
go back to reference Shapiro MG, Homma K, Villarreal S, Richter CP, Bezanilla F (2012) Infrared light excites cells by changing their electrical capacitance. Nat Commun 3:736CrossRef Shapiro MG, Homma K, Villarreal S, Richter CP, Bezanilla F (2012) Infrared light excites cells by changing their electrical capacitance. Nat Commun 3:736CrossRef
25.
go back to reference Wells J, Kao C, Konrad P, Milner T, Kim J, Mahadevan-Jansen A et al (2007) Biophysical mechanisms of transient optical stimulation of peripheral nerve. Biophys J 93:2567–2580CrossRef Wells J, Kao C, Konrad P, Milner T, Kim J, Mahadevan-Jansen A et al (2007) Biophysical mechanisms of transient optical stimulation of peripheral nerve. Biophys J 93:2567–2580CrossRef
26.
go back to reference Duke AR, Jenkins MW, Lu H, McManus JM, Chiel HJ, Jansen ED (2013) Transient and selective suppression of neural activity with infrared light. Sci Rep 3:2600CrossRef Duke AR, Jenkins MW, Lu H, McManus JM, Chiel HJ, Jansen ED (2013) Transient and selective suppression of neural activity with infrared light. Sci Rep 3:2600CrossRef
27.
go back to reference Katz EJ, Ilev IK, Krauthamer V, Kim do H, Weinreich D (2010) Excitation of primary afferent neurons by near-infrared light in vitro. Neuroreport 21:662–666CrossRef Katz EJ, Ilev IK, Krauthamer V, Kim do H, Weinreich D (2010) Excitation of primary afferent neurons by near-infrared light in vitro. Neuroreport 21:662–666CrossRef
28.
go back to reference Jaque D, Martinez Maestro L, del Rosal B, Haro-Gonzalez P, Benayas A, Plaza JL et al (2014) Nanoparticles for photothermal therapies. Nanoscale 6:9494–9530CrossRef Jaque D, Martinez Maestro L, del Rosal B, Haro-Gonzalez P, Benayas A, Plaza JL et al (2014) Nanoparticles for photothermal therapies. Nanoscale 6:9494–9530CrossRef
29.
go back to reference Carvalho-de-Souza JL, Treger JS, Dang B, Kent SB, Pepperberg DR, Bezanilla F (2015) Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron 86:207–217CrossRef Carvalho-de-Souza JL, Treger JS, Dang B, Kent SB, Pepperberg DR, Bezanilla F (2015) Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron 86:207–217CrossRef
30.
go back to reference Eom K, Kim J, Choi JM, Kang T, Chang JW, Byun KM et al (2014) Enhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorods. Small 10:3853–3857CrossRef Eom K, Kim J, Choi JM, Kang T, Chang JW, Byun KM et al (2014) Enhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorods. Small 10:3853–3857CrossRef
31.
go back to reference Yong J, Needham K, Brown WG, Nayagam BA, McArthur SL, Yu A et al (2014) Gold-nanorod-assisted near-infrared stimulation of primary auditory neurons. Adv Healthc Mater 3:1862–1868CrossRef Yong J, Needham K, Brown WG, Nayagam BA, McArthur SL, Yu A et al (2014) Gold-nanorod-assisted near-infrared stimulation of primary auditory neurons. Adv Healthc Mater 3:1862–1868CrossRef
32.
go back to reference Yoo S, Hong S, Choi Y, Park JH, Nam Y (2014) Photothermal inhibition of neural activity with near-infrared-sensitive nanotransducers. ACS Nano 8:8040–8049CrossRef Yoo S, Hong S, Choi Y, Park JH, Nam Y (2014) Photothermal inhibition of neural activity with near-infrared-sensitive nanotransducers. ACS Nano 8:8040–8049CrossRef
33.
go back to reference Barnard JE, Welch FV (1936) Fluorescence microscopy with high powers. J R Microsc Soc 56:361–364CrossRef Barnard JE, Welch FV (1936) Fluorescence microscopy with high powers. J R Microsc Soc 56:361–364CrossRef
34.
go back to reference Abramowitz M (1993) Fluorescence microscopy. Olympus America, New York Abramowitz M (1993) Fluorescence microscopy. Olympus America, New York
35.
go back to reference Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, aequorea. J Cell Comp Physiol 59:223–239CrossRef Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, aequorea. J Cell Comp Physiol 59:223–239CrossRef
36.
go back to reference Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940CrossRef Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940CrossRef
37.
go back to reference Kerr JND, Denk W (2008) Imaging in vivo: watching the brain in action. Nat Rev Neurosci 9:195–205CrossRef Kerr JND, Denk W (2008) Imaging in vivo: watching the brain in action. Nat Rev Neurosci 9:195–205CrossRef
38.
go back to reference Rothschild G, Nelken I, Mizrahi A (2010) Functional organization and population dynamics in the mouse primary auditory cortex. Nat Neurosci 13:353–360CrossRef Rothschild G, Nelken I, Mizrahi A (2010) Functional organization and population dynamics in the mouse primary auditory cortex. Nat Neurosci 13:353–360CrossRef
39.
go back to reference Roberts TF, Tschida KA, Klein ME, Mooney R (2010) Rapid spine stabilization and synaptic enhancement at the onset of behavioural learning. Nature 463:948–952CrossRef Roberts TF, Tschida KA, Klein ME, Mooney R (2010) Rapid spine stabilization and synaptic enhancement at the onset of behavioural learning. Nature 463:948–952CrossRef
40.
go back to reference Clancy KB, Koralek AC, Costa RM, Feldman DE, Carmena JM (2014) Volitional modulation of optically recorded calcium signals during neuroprosthetic learning. Nat Neurosci 17:807–809CrossRef Clancy KB, Koralek AC, Costa RM, Feldman DE, Carmena JM (2014) Volitional modulation of optically recorded calcium signals during neuroprosthetic learning. Nat Neurosci 17:807–809CrossRef
41.
go back to reference Helmchen F, Fee MS, Tank DW, Denk W (2001) A miniature head-mounted two-photon microscope. Neuron 31:903–912CrossRef Helmchen F, Fee MS, Tank DW, Denk W (2001) A miniature head-mounted two-photon microscope. Neuron 31:903–912CrossRef
42.
go back to reference Flusberg BA, Jung JC, Cocker ED, Anderson EP, Schnitzer MJ (2005) In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope. Opt Lett 30:2272–2274CrossRef Flusberg BA, Jung JC, Cocker ED, Anderson EP, Schnitzer MJ (2005) In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope. Opt Lett 30:2272–2274CrossRef
43.
go back to reference Sawinski J, Denk W (2007) Miniature random-access fiber scanner for in vivo multiphoton imaging. J Appl Phys 102:034701CrossRef Sawinski J, Denk W (2007) Miniature random-access fiber scanner for in vivo multiphoton imaging. J Appl Phys 102:034701CrossRef
44.
go back to reference Engelbrecht CJ, Johnston RS, Seibel EJ, Helmchen F (2008) Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo. Opt Express 16:5556–5564CrossRef Engelbrecht CJ, Johnston RS, Seibel EJ, Helmchen F (2008) Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo. Opt Express 16:5556–5564CrossRef
45.
go back to reference Sawinski J, Wallace DJ, Greenberg DS, Grossmann S, Denk W, Kerr JND (2009) Visually evoked activity in cortical cells imaged in freely moving animals. Proc Natl Acad Sci U S A 106:19557–19562CrossRef Sawinski J, Wallace DJ, Greenberg DS, Grossmann S, Denk W, Kerr JND (2009) Visually evoked activity in cortical cells imaged in freely moving animals. Proc Natl Acad Sci U S A 106:19557–19562CrossRef
46.
go back to reference Piyawattanametha W, Cocker ED, Burns LD, Barretto RPJ, Jung JC, Ra H et al (2009) In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror. Opt Lett 34:2309–2311CrossRef Piyawattanametha W, Cocker ED, Burns LD, Barretto RPJ, Jung JC, Ra H et al (2009) In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror. Opt Lett 34:2309–2311CrossRef
47.
48.
go back to reference Levene MJ, Dombeck DA, Kasischke KA, Molloy RP, Webb WW (2004) In vivo multiphoton microscopy of deep brain tissue. J Neurophysiol 91:1908–1912CrossRef Levene MJ, Dombeck DA, Kasischke KA, Molloy RP, Webb WW (2004) In vivo multiphoton microscopy of deep brain tissue. J Neurophysiol 91:1908–1912CrossRef
49.
go back to reference Jung JC, Mehta AD, Aksay E, Stepnoski R, Schnitzer MJ (2004) In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. J Neurophysiol 92:3121–3133CrossRef Jung JC, Mehta AD, Aksay E, Stepnoski R, Schnitzer MJ (2004) In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. J Neurophysiol 92:3121–3133CrossRef
50.
go back to reference Llewellyn ME, Barretto RPJ, Delp SL, Schnitzer MJ (2008) Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans. Nature 454:784–788 Llewellyn ME, Barretto RPJ, Delp SL, Schnitzer MJ (2008) Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans. Nature 454:784–788
51.
go back to reference Bocarsly ME, Jiang W-c, Wang C, Dudman JT, Ji N, Aponte Y (2015) Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain. Biomed Opt Express 6:4546–4556CrossRef Bocarsly ME, Jiang W-c, Wang C, Dudman JT, Ji N, Aponte Y (2015) Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain. Biomed Opt Express 6:4546–4556CrossRef
52.
go back to reference Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73:862–885CrossRef Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73:862–885CrossRef
53.
go back to reference Cao G, Platisa J, Pieribone VA, Raccuglia D, Kunst M, Nitabach MN (2013) Genetically targeted optical electrophysiology in intact neural circuits. Cell 154:904–913CrossRef Cao G, Platisa J, Pieribone VA, Raccuglia D, Kunst M, Nitabach MN (2013) Genetically targeted optical electrophysiology in intact neural circuits. Cell 154:904–913CrossRef
54.
go back to reference Mutoh H, Perron A, Akemann W, Iwamoto Y, Knopfel T (2010) Optogenetic monitoring of membrane potentials. Exp Physiol 96:13–18CrossRef Mutoh H, Perron A, Akemann W, Iwamoto Y, Knopfel T (2010) Optogenetic monitoring of membrane potentials. Exp Physiol 96:13–18CrossRef
55.
go back to reference Gonzalez D, Espino J, Bejarano I, Lopez JJ, Rodriguez AB, Pariente JA (2010) Caspase-3 and -9 are activated in human myeloid HL-60 cells by calcium signal. Mol Cell Biochem 333:151–157CrossRef Gonzalez D, Espino J, Bejarano I, Lopez JJ, Rodriguez AB, Pariente JA (2010) Caspase-3 and -9 are activated in human myeloid HL-60 cells by calcium signal. Mol Cell Biochem 333:151–157CrossRef
56.
go back to reference Zhang H, Liu J, Sun S, Pchitskaya E, Popugaeva E, Bezprozvanny I (2015) Calcium signaling, excitability, and synaptic plasticity defects in a mouse model of Alzheimer’s disease. J Alzheimers Dis 45:561–580 Zhang H, Liu J, Sun S, Pchitskaya E, Popugaeva E, Bezprozvanny I (2015) Calcium signaling, excitability, and synaptic plasticity defects in a mouse model of Alzheimer’s disease. J Alzheimers Dis 45:561–580
57.
go back to reference Lyons MR, West AE (2011) Mechanisms of specificity in neuronal activity-regulated gene transcription. Prog Neurobiol 94:259–295CrossRef Lyons MR, West AE (2011) Mechanisms of specificity in neuronal activity-regulated gene transcription. Prog Neurobiol 94:259–295CrossRef
58.
go back to reference Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21CrossRef Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21CrossRef
59.
go back to reference Wachowiak M, Knopfel T (2009) Frontiers in neuroscience optical imaging of brain activity in vivo using genetically encoded probes. In: Frostig RD (ed) In vivo optical imaging of brain function. CRC Press and Taylor & Francis Group, LLC, Boca Raton, FL Wachowiak M, Knopfel T (2009) Frontiers in neuroscience optical imaging of brain activity in vivo using genetically encoded probes. In: Frostig RD (ed) In vivo optical imaging of brain function. CRC Press and Taylor & Francis Group, LLC, Boca Raton, FL
60.
go back to reference Paredes RM, Etzler JC, Watts LT, Zheng W, Lechleiter JD (2008) Chemical calcium indicators. Methods 46:143–151CrossRef Paredes RM, Etzler JC, Watts LT, Zheng W, Lechleiter JD (2008) Chemical calcium indicators. Methods 46:143–151CrossRef
61.
go back to reference Pozzan T, Arslan P, Tsien RY, Rink TJ (1982) Anti-immunoglobulin, cytoplasmic free calcium, and capping in B lymphocytes. J Cell Biol 94:335–340CrossRef Pozzan T, Arslan P, Tsien RY, Rink TJ (1982) Anti-immunoglobulin, cytoplasmic free calcium, and capping in B lymphocytes. J Cell Biol 94:335–340CrossRef
62.
go back to reference Tsien RY, Pozzan T, Rink TJ (1982) Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol 94:325–334CrossRef Tsien RY, Pozzan T, Rink TJ (1982) Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol 94:325–334CrossRef
63.
go back to reference Neher E (1995) The use of fura-2 for estimating Ca buffers and Ca fluxes. Neuropharmacology 34:1423–1442CrossRef Neher E (1995) The use of fura-2 for estimating Ca buffers and Ca fluxes. Neuropharmacology 34:1423–1442CrossRef
64.
go back to reference Dittgen T, Nimmerjahn A, Komai S, Licznerski P, Waters J, Margrie TW et al (2004) Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc Natl Acad Sci U S A 101:18206–18211CrossRef Dittgen T, Nimmerjahn A, Komai S, Licznerski P, Waters J, Margrie TW et al (2004) Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc Natl Acad Sci U S A 101:18206–18211CrossRef
65.
go back to reference Monahan PE, Samulski RJ (2000) Adeno-associated virus vectors for gene therapy: more pros than cons? Mol Med Today 6:433–440CrossRef Monahan PE, Samulski RJ (2000) Adeno-associated virus vectors for gene therapy: more pros than cons? Mol Med Today 6:433–440CrossRef
66.
go back to reference Wirth D, Gama-Norton L, Riemer P, Sandhu U, Schucht R, Hauser H (2007) Road to precision: recombinase-based targeting technologies for genome engineering. Curr Opin Biotechnol 18:411–419CrossRef Wirth D, Gama-Norton L, Riemer P, Sandhu U, Schucht R, Hauser H (2007) Road to precision: recombinase-based targeting technologies for genome engineering. Curr Opin Biotechnol 18:411–419CrossRef
67.
go back to reference Tsai PS, Friedman B, Ifarraguerri AI, Thompson BD, Lev-Ram V, Schaffer CB et al (2003) All-optical histology using ultrashort laser pulses. Neuron 39:27–41CrossRef Tsai PS, Friedman B, Ifarraguerri AI, Thompson BD, Lev-Ram V, Schaffer CB et al (2003) All-optical histology using ultrashort laser pulses. Neuron 39:27–41CrossRef
68.
go back to reference Chemla S, Chavane F (2010) Voltage-sensitive dye imaging: technique review and models. J Physiol Paris 104:40–50CrossRef Chemla S, Chavane F (2010) Voltage-sensitive dye imaging: technique review and models. J Physiol Paris 104:40–50CrossRef
69.
go back to reference Siegel MS, Isacoff EY (1997) A genetically encoded optical probe of membrane voltage. Neuron 19:735–741CrossRef Siegel MS, Isacoff EY (1997) A genetically encoded optical probe of membrane voltage. Neuron 19:735–741CrossRef
70.
go back to reference Akemann W, Mutoh H, Perron A, Rossier J, Knöpfel T (2010) Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Nat Methods 7:643–649CrossRef Akemann W, Mutoh H, Perron A, Rossier J, Knöpfel T (2010) Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Nat Methods 7:643–649CrossRef
71.
go back to reference Akemann W, Sasaki M, Mutoh H, Imamura T, Honkura N, Knöpfel T (2013) Two-photon voltage imaging using a genetically encoded voltage indicator. Sci Rep 3:2231CrossRef Akemann W, Sasaki M, Mutoh H, Imamura T, Honkura N, Knöpfel T (2013) Two-photon voltage imaging using a genetically encoded voltage indicator. Sci Rep 3:2231CrossRef
72.
go back to reference Ross WN, Werman R (1987) Mapping calcium transients in the dendrites of Purkinje cells from the guinea-pig cerebellum in vitro. J Physiol 389:319–336CrossRef Ross WN, Werman R (1987) Mapping calcium transients in the dendrites of Purkinje cells from the guinea-pig cerebellum in vitro. J Physiol 389:319–336CrossRef
73.
go back to reference Baker BJ, Kosmidis EK, Vucinic D, Falk CX, Cohen LB, Djurisic M et al (2005) Imaging brain activity with voltage- and calcium-sensitive dyes. Cell Mol Neurobiol 25:245–282CrossRef Baker BJ, Kosmidis EK, Vucinic D, Falk CX, Cohen LB, Djurisic M et al (2005) Imaging brain activity with voltage- and calcium-sensitive dyes. Cell Mol Neurobiol 25:245–282CrossRef
74.
go back to reference Adelsberger H, Garaschuk O, Konnerth A (2005) Cortical calcium waves in resting newborn mice. Nat Neurosci 8:988–990CrossRef Adelsberger H, Garaschuk O, Konnerth A (2005) Cortical calcium waves in resting newborn mice. Nat Neurosci 8:988–990CrossRef
75.
go back to reference Cui G, Jun SB, Jin X, Pham MD, Vogel SS, Lovinger DM et al (2013) Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494:238–242CrossRef Cui G, Jun SB, Jin X, Pham MD, Vogel SS, Lovinger DM et al (2013) Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494:238–242CrossRef
76.
go back to reference Minsky M (1988) Memoir on inventing the confocal scanning microscope. Scanning 10:128–138CrossRef Minsky M (1988) Memoir on inventing the confocal scanning microscope. Scanning 10:128–138CrossRef
77.
go back to reference Pawley JB (ed) (2006) Handbook of biological confocal microscopy. Springer, Boston, MA Pawley JB (ed) (2006) Handbook of biological confocal microscopy. Springer, Boston, MA
78.
go back to reference Denk W, Strickler J, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76CrossRef Denk W, Strickler J, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76CrossRef
79.
go back to reference Kobat D, Horton NG, Xu C (2011) In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J Biomed Opt 16:106014CrossRef Kobat D, Horton NG, Xu C (2011) In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J Biomed Opt 16:106014CrossRef
80.
go back to reference Horton NG, Wang K, Kobat D, Clark CG, Wise FW, Schaffer CB et al (2013) In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat Photonics 7:205–209CrossRef Horton NG, Wang K, Kobat D, Clark CG, Wise FW, Schaffer CB et al (2013) In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat Photonics 7:205–209CrossRef
81.
go back to reference Flusberg BA, Nimmerjahn A, Cocker ED, Mukamel EA, Barretto RPJ, Ko TH et al (2008) High-speed, miniaturized fluorescence microscopy in freely moving mice. Nat Methods 5:935–938CrossRef Flusberg BA, Nimmerjahn A, Cocker ED, Mukamel EA, Barretto RPJ, Ko TH et al (2008) High-speed, miniaturized fluorescence microscopy in freely moving mice. Nat Methods 5:935–938CrossRef
82.
go back to reference Barretto RPJ, Messerschmidt B, Schnitzer MJ (2009) In vivo fluorescence imaging with high-resolution microlenses. Nat Methods 6:511–512CrossRef Barretto RPJ, Messerschmidt B, Schnitzer MJ (2009) In vivo fluorescence imaging with high-resolution microlenses. Nat Methods 6:511–512CrossRef
83.
go back to reference Zemelman BV, Lee GA, Ng M, Miesenbock G (2002) Selective photostimulation of genetically chARGed neurons. Neuron 33:15–22CrossRef Zemelman BV, Lee GA, Ng M, Miesenbock G (2002) Selective photostimulation of genetically chARGed neurons. Neuron 33:15–22CrossRef
84.
go back to reference Zemelman BV, Nesnas N, Lee GA, Miesenbock G (2003) Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons. Proc Natl Acad Sci U S A 100:1352–1357CrossRef Zemelman BV, Nesnas N, Lee GA, Miesenbock G (2003) Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons. Proc Natl Acad Sci U S A 100:1352–1357CrossRef
85.
go back to reference Lima SQ, Miesenbock G (2005) Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121:141–152CrossRef Lima SQ, Miesenbock G (2005) Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121:141–152CrossRef
86.
go back to reference Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268CrossRef Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268CrossRef
87.
go back to reference Li X, Gutierrez DV, Hanson MG, Han J, Mark MD, Chiel H et al (2005) Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci U S A 102:17816–17821CrossRef Li X, Gutierrez DV, Hanson MG, Han J, Mark MD, Chiel H et al (2005) Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci U S A 102:17816–17821CrossRef
88.
go back to reference Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E et al (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398CrossRef Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E et al (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398CrossRef
89.
go back to reference Zhao S, Cunha C, Zhang F, Liu Q, Gloss B, Deisseroth K et al (2008) Improved expression of halorhodopsin for light-induced silencing of neuronal activity. Brain Cell Biol 36:141–154CrossRef Zhao S, Cunha C, Zhang F, Liu Q, Gloss B, Deisseroth K et al (2008) Improved expression of halorhodopsin for light-induced silencing of neuronal activity. Brain Cell Biol 36:141–154CrossRef
90.
go back to reference Gradinaru V, Thompson KR, Deisseroth K (2008) eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol 36:129–139CrossRef Gradinaru V, Thompson KR, Deisseroth K (2008) eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol 36:129–139CrossRef
91.
go back to reference Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K (2009) Bi-stable neural state switches. Nat Neurosci 12:229–234CrossRef Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K (2009) Bi-stable neural state switches. Nat Neurosci 12:229–234CrossRef
92.
go back to reference Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O'Shea DJ et al (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477:171–178CrossRef Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O'Shea DJ et al (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477:171–178CrossRef
93.
go back to reference Madisen L, Mao T, Koch H, Zhuo JM, Berenyi A, Fujisawa S et al (2012) A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 15:793–802CrossRef Madisen L, Mao T, Koch H, Zhuo JM, Berenyi A, Fujisawa S et al (2012) A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 15:793–802CrossRef
94.
go back to reference Madisen L, Garner AR, Shimaoka D, Chuong AS, Klapoetke NC, Li L et al (2015) Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85:942–958CrossRef Madisen L, Garner AR, Shimaoka D, Chuong AS, Klapoetke NC, Li L et al (2015) Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85:942–958CrossRef
95.
go back to reference Tsien JZ, Chen DF, Gerber D, Tom C, Mercer EH, Anderson DJ et al (1996) Subregion- and cell type-restricted gene knockout in mouse brain. Cell 87:1317–1326CrossRef Tsien JZ, Chen DF, Gerber D, Tom C, Mercer EH, Anderson DJ et al (1996) Subregion- and cell type-restricted gene knockout in mouse brain. Cell 87:1317–1326CrossRef
96.
go back to reference Bass CE, Grinevich VP, Vance ZB, Sullivan RP, Bonin KD, Budygin EA (2010) Optogenetic control of striatal dopamine release in rats. J Neurochem 114:1344–1352 Bass CE, Grinevich VP, Vance ZB, Sullivan RP, Bonin KD, Budygin EA (2010) Optogenetic control of striatal dopamine release in rats. J Neurochem 114:1344–1352
97.
go back to reference Witten IB, Lin SC, Brodsky M, Prakash R, Diester I, Anikeeva P et al (2010) Cholinergic interneurons control local circuit activity and cocaine conditioning. Science 330:1677–1681CrossRef Witten IB, Lin SC, Brodsky M, Prakash R, Diester I, Anikeeva P et al (2010) Cholinergic interneurons control local circuit activity and cocaine conditioning. Science 330:1677–1681CrossRef
98.
go back to reference Han X (2012) Optogenetics in the nonhuman primate. Prog Brain Res 196:215–233CrossRef Han X (2012) Optogenetics in the nonhuman primate. Prog Brain Res 196:215–233CrossRef
99.
go back to reference Carter BJ (2005) Adeno-associated virus vectors in clinical trials. Hum Gene Ther 16:541–550CrossRef Carter BJ (2005) Adeno-associated virus vectors in clinical trials. Hum Gene Ther 16:541–550CrossRef
100.
go back to reference Lin JY, Knutsen PM, Muller A, Kleinfeld D, Tsien RY (2013) ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 16:1499–1508CrossRef Lin JY, Knutsen PM, Muller A, Kleinfeld D, Tsien RY (2013) ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 16:1499–1508CrossRef
101.
go back to reference Chuong AS, Miri ML, Busskamp V, Matthews GA, Acker LC, Sorensen AT et al (2014) Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat Neurosci 17:1123–1129CrossRef Chuong AS, Miri ML, Busskamp V, Matthews GA, Acker LC, Sorensen AT et al (2014) Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat Neurosci 17:1123–1129CrossRef
102.
go back to reference Zhang J, Laiwalla F, Kim JA, Urabe H, Van Wagenen R, Song YK et al (2009) Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue. J Neural Eng 6:055007CrossRef Zhang J, Laiwalla F, Kim JA, Urabe H, Van Wagenen R, Song YK et al (2009) Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue. J Neural Eng 6:055007CrossRef
103.
go back to reference Zhang J, Laiwalla F, Kim JA, Urabe H, Van Wagenen R, Song YK et al (2009) A microelectrode array incorporating an optical waveguide device for stimulation and spatiotemporal electrical recording of neural activity. Conf Proc IEEE Eng Med Biol Soc 2009:2046–2049 Zhang J, Laiwalla F, Kim JA, Urabe H, Van Wagenen R, Song YK et al (2009) A microelectrode array incorporating an optical waveguide device for stimulation and spatiotemporal electrical recording of neural activity. Conf Proc IEEE Eng Med Biol Soc 2009:2046–2049
104.
go back to reference Chen S, Pei W, Gui Q, Chen Y, Zhao S, Wang H et al (2013) A fiber-based implantable multi-optrode array with contiguous optical and electrical sites. J Neural Eng 10:046020CrossRef Chen S, Pei W, Gui Q, Chen Y, Zhao S, Wang H et al (2013) A fiber-based implantable multi-optrode array with contiguous optical and electrical sites. J Neural Eng 10:046020CrossRef
105.
go back to reference Ozden I, Wang J, Lu Y, May T, Lee J, Goo W et al (2013) A coaxial optrode as multifunction write-read probe for optogenetic studies in non-human primates. J Neurosci Methods 219:142–154CrossRef Ozden I, Wang J, Lu Y, May T, Lee J, Goo W et al (2013) A coaxial optrode as multifunction write-read probe for optogenetic studies in non-human primates. J Neurosci Methods 219:142–154CrossRef
106.
go back to reference Cao H, Gu L, Mohanty SK, Chiao JC (2013) An integrated muLED optrode for optogenetic stimulation and electrical recording. IEEE Trans Biomed Eng 60:225–229CrossRef Cao H, Gu L, Mohanty SK, Chiao JC (2013) An integrated muLED optrode for optogenetic stimulation and electrical recording. IEEE Trans Biomed Eng 60:225–229CrossRef
107.
go back to reference Iwai Y, Honda S, Ozeki H, Hashimoto M, Hirase H (2011) A simple head-mountable LED device for chronic stimulation of optogenetic molecules in freely moving mice. Neurosci Res 70:124–127CrossRef Iwai Y, Honda S, Ozeki H, Hashimoto M, Hirase H (2011) A simple head-mountable LED device for chronic stimulation of optogenetic molecules in freely moving mice. Neurosci Res 70:124–127CrossRef
108.
go back to reference Wentz CT, Bernstein JG, Monahan P, Guerra A, Rodriguez A, Boyden ES (2011) A wirelessly powered and controlled device for optical neural control of freely-behaving animals. J Neural Eng 8:046021CrossRef Wentz CT, Bernstein JG, Monahan P, Guerra A, Rodriguez A, Boyden ES (2011) A wirelessly powered and controlled device for optical neural control of freely-behaving animals. J Neural Eng 8:046021CrossRef
109.
go back to reference Warden MR, Cardin JA, Deisseroth K (2014) Optical neural interfaces. Annu Rev Biomed Eng 16:103–129CrossRef Warden MR, Cardin JA, Deisseroth K (2014) Optical neural interfaces. Annu Rev Biomed Eng 16:103–129CrossRef
110.
go back to reference Davis GW (2006) Homeostatic control of neural activity: from phenomenology to molecular design. Annu Rev Neurosci 29:307–323CrossRef Davis GW (2006) Homeostatic control of neural activity: from phenomenology to molecular design. Annu Rev Neurosci 29:307–323CrossRef
111.
go back to reference Davis GW, Goodman CS (1998) Genetic analysis of synaptic development and plasticity: homeostatic regulation of synaptic efficacy. Curr Opin Neurobiol 8:149–156CrossRef Davis GW, Goodman CS (1998) Genetic analysis of synaptic development and plasticity: homeostatic regulation of synaptic efficacy. Curr Opin Neurobiol 8:149–156CrossRef
112.
go back to reference Marder E, Prinz AA (2002) Modeling stability in neuron and network function: the role of activity in homeostasis. Bioessays 24:1145–1154CrossRef Marder E, Prinz AA (2002) Modeling stability in neuron and network function: the role of activity in homeostasis. Bioessays 24:1145–1154CrossRef
113.
go back to reference Ginsberg MD, Sternau LL, Globus MY, Dietrich WD, Busto R (1992) Therapeutic modulation of brain temperature: relevance to ischemic brain injury. Cerebrovasc Brain Metab Rev 4:189–225 Ginsberg MD, Sternau LL, Globus MY, Dietrich WD, Busto R (1992) Therapeutic modulation of brain temperature: relevance to ischemic brain injury. Cerebrovasc Brain Metab Rev 4:189–225
114.
go back to reference Pérez-Otaño I, Ehlers MD (2005) Homeostatic plasticity and NMDA receptor trafficking. Trends Neurosci 28:229–238CrossRef Pérez-Otaño I, Ehlers MD (2005) Homeostatic plasticity and NMDA receptor trafficking. Trends Neurosci 28:229–238CrossRef
115.
go back to reference Turrigiano GG, Nelson SB (2000) Hebb and homeostasis in neuronal plasticity. Curr Opin Neurobiol 10:358–364CrossRef Turrigiano GG, Nelson SB (2000) Hebb and homeostasis in neuronal plasticity. Curr Opin Neurobiol 10:358–364CrossRef
116.
go back to reference Long MA, Fee MS (2008) Using temperature to analyse temporal dynamics in the songbird motor pathway. Nature 456:189–194CrossRef Long MA, Fee MS (2008) Using temperature to analyse temporal dynamics in the songbird motor pathway. Nature 456:189–194CrossRef
117.
go back to reference Andrasfalvy BK, Zemelman BV, Tang J, Vaziri A (2010) Two-photon single-cell optogenetic control of neuronal activity by sculpted light. Proc Natl Acad Sci U S A 107:11981–11986CrossRef Andrasfalvy BK, Zemelman BV, Tang J, Vaziri A (2010) Two-photon single-cell optogenetic control of neuronal activity by sculpted light. Proc Natl Acad Sci U S A 107:11981–11986CrossRef
118.
go back to reference Papagiakoumou E, Anselmi F, Bègue A, de Sars V, Glückstad J, Isacoff EY et al (2010) Scanless two-photon excitation of channelrhodopsin-2. Nat Methods 7:848–854CrossRef Papagiakoumou E, Anselmi F, Bègue A, de Sars V, Glückstad J, Isacoff EY et al (2010) Scanless two-photon excitation of channelrhodopsin-2. Nat Methods 7:848–854CrossRef
119.
go back to reference Roberts TF, Gobes SMH, Murugan M, Olveczky BP, Mooney R (2012) Motor circuits are required to encode a sensory model for imitative learning. Nat Neurosci 15:1454–1459 Roberts TF, Gobes SMH, Murugan M, Olveczky BP, Mooney R (2012) Motor circuits are required to encode a sensory model for imitative learning. Nat Neurosci 15:1454–1459
120.
go back to reference Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K (2011) Optogenetics in neural systems. Neuron 71:9–34CrossRef Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K (2011) Optogenetics in neural systems. Neuron 71:9–34CrossRef
121.
go back to reference Miyashita T, Shao YR, Chung J, Pourzia O, Feldman DE (2013) Long-term channelrhodopsin-2 (ChR2) expression can induce abnormal axonal morphology and targeting in cerebral cortex. Front Neural Circuits 7:8 Miyashita T, Shao YR, Chung J, Pourzia O, Feldman DE (2013) Long-term channelrhodopsin-2 (ChR2) expression can induce abnormal axonal morphology and targeting in cerebral cortex. Front Neural Circuits 7:8
Metadata
Title
Implantable Optical Neural Interface
Authors
Sang Beom Jun
Yoonseob Lim
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-33201-7_9