Skip to main content
Top
Published in: Wireless Personal Communications 4/2021

19-06-2021

Implementing Single Path and Multipath Techniques Under Feedback Channel for Molecular Communication

Authors: Sanjit Ningthoujam, Swarnendu Kumar Chakraborty

Published in: Wireless Personal Communications | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we have considered the feedback channel for molecular communication in order to increase the rate of communication and also to reduce energy consumption by implementing the single and multipath techniques. The transmitter nanomachine (TN) transmits ‘n’ number of molecules to the receiver nanomachine (RN). If the RN receives the molecules successfully, it will send positive feedback (PF) molecules to the TN; otherwise, it will send negative feedback (NF) molecules. The TN can determine the channel state condition and enforce either single or multipath technique based on the number of received PF and NF. The symbols 1 and 0 describe the PF and NF molecules, respectively. When the TN receives 11 and 00 in a row, the channel state is assumed to be good and bad. If the TN receives either 01 or 10, however, it will consider the channel state to be neither good nor bad (also termed as intermediate state). As a result, we assume that the next expected/predicted symbol of 0 and 1 will bring the channel state into a fixed state, i.e. good or bad. If the next expected symbol is either 0 or 1, we conduct a three-symbol majority vote to determine if the channel is good or bad (for example, if the current state is 10, then 101 is a good state, and if the current state is 01, then 011 is also a good state). Similarly, we get the channel is in bad state after conducting majority voting of the symbols for the next predicted symbol of 0 with the current state 01 and 0 or 10 and 0). In order to achieve a higher average complete transmission of the target molecules as well as a higher communication rate, single path and multipath techniques are used in the good and bad states, respectively. The simulation results using MATLAB show that in the bad state channel, the rate of communication, average successful complete transmission, and mean energy consumption of the desired molecules all perform better using the multipath technique. If the channel state is good, however, the single path technique provides better performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chang, S. (1956). Theory of information feedback systems. IRE Transactions on Information Theory, 2(3), 29–40.CrossRef Chang, S. (1956). Theory of information feedback systems. IRE Transactions on Information Theory, 2(3), 29–40.CrossRef
2.
go back to reference Li, J., & Zhao, Y. Q. (2009). Resequencing analysis of stop-and-wait ARQ for parallel multichannel communications. IEEE/ACM Transactions on Networking, 17(3), 817–830.CrossRef Li, J., & Zhao, Y. Q. (2009). Resequencing analysis of stop-and-wait ARQ for parallel multichannel communications. IEEE/ACM Transactions on Networking, 17(3), 817–830.CrossRef
3.
go back to reference Felicetti, L., Femminella, M., Reali, G., Nakano, T., & Vasilakos, A. (2014). TCP-like molecular communications. IEEE Journal on Selected Areas in Communications, 32(12), 2354–2367.CrossRef Felicetti, L., Femminella, M., Reali, G., Nakano, T., & Vasilakos, A. (2014). TCP-like molecular communications. IEEE Journal on Selected Areas in Communications, 32(12), 2354–2367.CrossRef
4.
go back to reference Furubayashi, T., Nakano, T., Eckford, A., & Yomo, T. (2015). Reliable end-to-end molecular communication with packet replication and retransmission. In IEEE GLOBECOM. Furubayashi, T., Nakano, T., Eckford, A., & Yomo, T. (2015). Reliable end-to-end molecular communication with packet replication and retransmission. In IEEE GLOBECOM.
5.
go back to reference Bai, C., Leeson, M. S., & Higgins, M. D. (2015). Performance of SW-ARQ in bacterial quorum communications. NanoCommunication Networks, 6(1), 3–14. Bai, C., Leeson, M. S., & Higgins, M. D. (2015). Performance of SW-ARQ in bacterial quorum communications. NanoCommunication Networks, 6(1), 3–14.
6.
go back to reference Wang, X., Higgins, M., & Leeson, M. (2013). Stop-and-wait automatic repeat reQuest schemes for molecular communications. In First international black sea conference on communications and networking (BlackSeaCom) (pp. 84–88). Wang, X., Higgins, M., & Leeson, M. (2013). Stop-and-wait automatic repeat reQuest schemes for molecular communications. In First international black sea conference on communications and networking (BlackSeaCom) (pp. 84–88).
7.
go back to reference Nakano, T., Moore, M. J., Wei, F., Vasilakos, A. V., & Shuai, J. (2012). Molecular communication and networking: Opportunities and challenges. IEEE Transactions on Nanobioscience, 11(2), 135–148.CrossRef Nakano, T., Moore, M. J., Wei, F., Vasilakos, A. V., & Shuai, J. (2012). Molecular communication and networking: Opportunities and challenges. IEEE Transactions on Nanobioscience, 11(2), 135–148.CrossRef
8.
go back to reference Nakano, T., Okaie, Y., & Liu, J. Q. (2012). Channel model and capacity analysis of molecular communication with Brownian motion. IEEE Communications Letters, 16(6), 797–800.CrossRef Nakano, T., Okaie, Y., & Liu, J. Q. (2012). Channel model and capacity analysis of molecular communication with Brownian motion. IEEE Communications Letters, 16(6), 797–800.CrossRef
9.
go back to reference Pierobon, M., & Akyildiz, I. F. (2013). Capacity of a diffusion-based molecular communication system with channel memory and molecular noise. IEEE Transactions on Information Theory, 59(2), 942–954.MathSciNetCrossRef Pierobon, M., & Akyildiz, I. F. (2013). Capacity of a diffusion-based molecular communication system with channel memory and molecular noise. IEEE Transactions on Information Theory, 59(2), 942–954.MathSciNetCrossRef
10.
go back to reference Kuran, M. S., Yilmaz, H. B., Tugcu, T., & Ozerman, B. (2010). Energy model for communication via diffusion in nanonetworks. Nano Communication Networks, 1(2), 86–95.CrossRef Kuran, M. S., Yilmaz, H. B., Tugcu, T., & Ozerman, B. (2010). Energy model for communication via diffusion in nanonetworks. Nano Communication Networks, 1(2), 86–95.CrossRef
11.
go back to reference Tepekule, B., Pusane, A. E., Yilmaz, H. B., &Tugcu, T. (2014). Energy efficient ISI mitigation for communication via diffusion. In IEEE International black sea conference on communications and networking (pp. 33–37). Tepekule, B., Pusane, A. E., Yilmaz, H. B., &Tugcu, T. (2014). Energy efficient ISI mitigation for communication via diffusion. In IEEE International black sea conference on communications and networking (pp. 33–37).
12.
go back to reference Mosayebi, R., Gohari, A., Mirmohseni, M., & Kenari, M. N. (2018). Type-based sign modulation and its application for ISI mitigation in molecular communication. IEEE Transactions on Communications, 66(1), 180–193.CrossRef Mosayebi, R., Gohari, A., Mirmohseni, M., & Kenari, M. N. (2018). Type-based sign modulation and its application for ISI mitigation in molecular communication. IEEE Transactions on Communications, 66(1), 180–193.CrossRef
13.
go back to reference Tepekule, B., Pusane, A. E., Yilmaz, H. B., Chae, C.-B., & Tugcu, T. (2015). ISI mitigation techniques in molecular communication. IEEE Transactions on Molecular, Biological and Multi-Scale Communications, 1(2), 202–216.CrossRef Tepekule, B., Pusane, A. E., Yilmaz, H. B., Chae, C.-B., & Tugcu, T. (2015). ISI mitigation techniques in molecular communication. IEEE Transactions on Molecular, Biological and Multi-Scale Communications, 1(2), 202–216.CrossRef
14.
go back to reference Yilmaz, H. B., & Chae, C.-B. (2014). Simulation study of molecular communication systems with an absorbing receiver: Modulation and ISI mitigation techniques. Simulation Modelling Practice and Theory, 49(15), 136–150.CrossRef Yilmaz, H. B., & Chae, C.-B. (2014). Simulation study of molecular communication systems with an absorbing receiver: Modulation and ISI mitigation techniques. Simulation Modelling Practice and Theory, 49(15), 136–150.CrossRef
15.
go back to reference Kuran, M. S., Yilmaz, H. B., Tugcu, T., & Akyildiz, I. F. (2011). Modulation techniques for communication via diffusion in nanonetworks. In Proceedings of the IEEE international conference on communications (pp. 1–5). Kuran, M. S., Yilmaz, H. B., Tugcu, T., & Akyildiz, I. F. (2011). Modulation techniques for communication via diffusion in nanonetworks. In Proceedings of the IEEE international conference on communications (pp. 1–5).
16.
go back to reference Kimand, N.-R., & Chae, C.-B. (2012). Novel modulation techniques using isomers as messenger molecules for nanocommunication networks via diffusion. In IEEE international conference on communications (ICC workshop on molecular and nano-scale communications). Kimand, N.-R., & Chae, C.-B. (2012). Novel modulation techniques using isomers as messenger molecules for nanocommunication networks via diffusion. In IEEE international conference on communications (ICC workshop on molecular and nano-scale communications).
17.
go back to reference Kabir, M. H., Riazul Islam, S. M., & Kwak, K. S. (2015). D-MoSK modulation in molecular communications. IEEE Transctions on Nanobioscience, 14(6), 680–683.CrossRef Kabir, M. H., Riazul Islam, S. M., & Kwak, K. S. (2015). D-MoSK modulation in molecular communications. IEEE Transctions on Nanobioscience, 14(6), 680–683.CrossRef
18.
go back to reference Farsad, N., Yilmaz, H. B., Eckford, A., Chae, C. B., & Guo, W. (2016). A comprehensive survey of recent advancements in molecular communication. IEEE Communications Surveys & Tutorials, 18(3), 1887–1919.CrossRef Farsad, N., Yilmaz, H. B., Eckford, A., Chae, C. B., & Guo, W. (2016). A comprehensive survey of recent advancements in molecular communication. IEEE Communications Surveys & Tutorials, 18(3), 1887–1919.CrossRef
19.
go back to reference Moore, M. J., Nakano, T., Enomoto, A., & Suda, T. (2012). Measuring distance from single spike feedback signals in molecular communication. IEEE Transactions on Signal Processing, 60(7), 3576–3587.MathSciNetCrossRef Moore, M. J., Nakano, T., Enomoto, A., & Suda, T. (2012). Measuring distance from single spike feedback signals in molecular communication. IEEE Transactions on Signal Processing, 60(7), 3576–3587.MathSciNetCrossRef
20.
go back to reference Huang, J.-T., Lai, H.-Y., Lee, Y.-C., Lee, C.-H., & Yeh, P.-C. (2013). Distance estimation in concentration-based molecular communications. In IEEE global communications conference (GLOBECOM) (pp. 2587–2591). Huang, J.-T., Lai, H.-Y., Lee, Y.-C., Lee, C.-H., & Yeh, P.-C. (2013). Distance estimation in concentration-based molecular communications. In IEEE global communications conference (GLOBECOM) (pp. 2587–2591).
22.
go back to reference Ningthoujam, S., Chingkheinganba, T., & Chakraborty, S. K. (2020). Finding an effective distance between T-Cell and B-Cell using S/W ARQ in an immune system communication. China Communications, 17(1), 174–185.CrossRef Ningthoujam, S., Chingkheinganba, T., & Chakraborty, S. K. (2020). Finding an effective distance between T-Cell and B-Cell using S/W ARQ in an immune system communication. China Communications, 17(1), 174–185.CrossRef
23.
go back to reference Eckford, A. W., Furubayashi, T., & Nakano, T. (2016). RNA as a nanoscale data transmission medium: error analysis. In IEEE 16th international conference on nanotechnology (IEEE-NANO) (pp. 224–227). Eckford, A. W., Furubayashi, T., & Nakano, T. (2016). RNA as a nanoscale data transmission medium: error analysis. In IEEE 16th international conference on nanotechnology (IEEE-NANO) (pp. 224–227).
24.
go back to reference Furubayashi, T., Nakano, T., Eckford, A., Okaie, Y., & Yomo, T. (2016). Packet fragmentation and reassembly in molecular communication. IEEE Transactions on Nano Bioscience, 15(3), 284–288.CrossRef Furubayashi, T., Nakano, T., Eckford, A., Okaie, Y., & Yomo, T. (2016). Packet fragmentation and reassembly in molecular communication. IEEE Transactions on Nano Bioscience, 15(3), 284–288.CrossRef
25.
go back to reference Atakan, B., Akan, O. B., & Balasubramaniam, S. (2012). Body area nanonetworks with molecular communications in nanomedicine. IEEE Communications Magazine, 50(1), 28–34.CrossRef Atakan, B., Akan, O. B., & Balasubramaniam, S. (2012). Body area nanonetworks with molecular communications in nanomedicine. IEEE Communications Magazine, 50(1), 28–34.CrossRef
Metadata
Title
Implementing Single Path and Multipath Techniques Under Feedback Channel for Molecular Communication
Authors
Sanjit Ningthoujam
Swarnendu Kumar Chakraborty
Publication date
19-06-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08615-9

Other articles of this Issue 4/2021

Wireless Personal Communications 4/2021 Go to the issue