Skip to main content
Top

2019 | OriginalPaper | Chapter

10. Implication of Algal Microbiology for Wastewater Treatment and Bioenergy Production

Authors : Vinayak V. Pathak, Shamshad Ahmad, Richa Kothari

Published in: Environmental Biotechnology: For Sustainable Future

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Indian power sector has developed huge infrastructure for power generation, transmission and distribution of energy since the major utilization of fossil fuel has been an obstacle to achieve energy sustainability. Moreover, inadequate efficiency to treat the municipal and industrial wastewater is also generating serious environmental hazards. Thus concurrent management roadmap is required to tackle these challenges. In this context, algae have enormous efficiency to deal the challenges related to environment as well as energy sustainability. Algae have unique potential to grow under variety of environmental conditions due to flexible metabolic pathways. Wastewater generation and its adequate treatment are two of the major challenges to achieve the environmental sustainability that can be resolved through integration of algal cultivation in wastewater treatment systems. In this article, a holistic view on implication of algal microbiology for wastewater remediation and bioenergy production is provided. The procedures, associated challenges, and advancement in line of algal biofuel production explored by various authors are studied to project better ways for algal biofuel production process. A variety of pollutants as nutrients and their impact on lipid production in algal biomass are considered as the main advantages of this holistic approach. Advancements and challenges in algal harvesting and conversion processes for biodiesel production are also reviewed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Anderson, J. L., Peterson, R. C., & Swainson, I. P. (2005). Combined neutron powder and X-ray single-crystal diffraction refinement of the atomic structure and hydrogen bonding of goslarite (ZnSO4.7H2O). Mineralogical Magazine, 69, 259–271.CrossRef Anderson, J. L., Peterson, R. C., & Swainson, I. P. (2005). Combined neutron powder and X-ray single-crystal diffraction refinement of the atomic structure and hydrogen bonding of goslarite (ZnSO4.7H2O). Mineralogical Magazine, 69, 259–271.CrossRef
go back to reference Baccella, S., Cerichelli, G., Chiarini, M., Ercole, C., Fantauzzi, E., Lepidi, A., Toro, L., & Veglio, F. (2000). Biological treatment of alkaline industrial waste waters. Process Biochemistry, 35, 595–602.CrossRef Baccella, S., Cerichelli, G., Chiarini, M., Ercole, C., Fantauzzi, E., Lepidi, A., Toro, L., & Veglio, F. (2000). Biological treatment of alkaline industrial waste waters. Process Biochemistry, 35, 595–602.CrossRef
go back to reference Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917.CrossRef Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917.CrossRef
go back to reference Bourgeous, K. N., Darby, J. L., & Tchobanoglous, G. (2001). Ultrafiltration of wastewater effects of particles, mode of operation, and backwash effectiveness. Water Research, 35(1), 77–90.CrossRef Bourgeous, K. N., Darby, J. L., & Tchobanoglous, G. (2001). Ultrafiltration of wastewater effects of particles, mode of operation, and backwash effectiveness. Water Research, 35(1), 77–90.CrossRef
go back to reference Caputo, A. C., & Pelagagge, P. M. (2001). Waste-to-energy plant for paper industry sludges disposal: Technical-economic study. Journal of Hazardous Materials, 81(3), 265–283.CrossRef Caputo, A. C., & Pelagagge, P. M. (2001). Waste-to-energy plant for paper industry sludges disposal: Technical-economic study. Journal of Hazardous Materials, 81(3), 265–283.CrossRef
go back to reference Champagne, P., & Anderson, B. C. (2015). Enhanced biogas production from anaerobic co-digestion of municipal wastewater treatment sludge and fat, oil and grease (FOG) by a modified two-stage thermophilic digester system with selected thermo-chemical pre-treatment. Renewable Energy, 83, 474–482.CrossRef Champagne, P., & Anderson, B. C. (2015). Enhanced biogas production from anaerobic co-digestion of municipal wastewater treatment sludge and fat, oil and grease (FOG) by a modified two-stage thermophilic digester system with selected thermo-chemical pre-treatment. Renewable Energy, 83, 474–482.CrossRef
go back to reference Cheng, Y., Lu, Y., Gao, C., & Wu, Q. (2009). Alga-based biodiesel production and optimization using sugar cane as the feedstock. Energy & Fuels, 23, 4166–4173.CrossRef Cheng, Y., Lu, Y., Gao, C., & Wu, Q. (2009). Alga-based biodiesel production and optimization using sugar cane as the feedstock. Energy & Fuels, 23, 4166–4173.CrossRef
go back to reference Chinnasamy, S., Bhatnagar, A., Claxton, R., & Das, K. C. (2010). Biomass and bioenergy production potential of algae consortium in open and closed bioreactors using untreated carpet industry effluent as growth medium. Bioresource Technology, 101, 6751–6760.CrossRef Chinnasamy, S., Bhatnagar, A., Claxton, R., & Das, K. C. (2010). Biomass and bioenergy production potential of algae consortium in open and closed bioreactors using untreated carpet industry effluent as growth medium. Bioresource Technology, 101, 6751–6760.CrossRef
go back to reference Chisti, Y. (2007). Biodiesel from algae. Biotechnology Advances, 25, 294–306.CrossRef Chisti, Y. (2007). Biodiesel from algae. Biotechnology Advances, 25, 294–306.CrossRef
go back to reference Cho, Y. C., Cheng, J. H., Hsu, S. L., Hong, S. E., Lee, T. M., & Chang, C. M. J. (2011). Supercritical carbon dioxide anti-solvent precipitation of anti-oxidative zeaxanthin highly recovered by elution chromatography from Nannochloropsis oculata. Separation and Purification Technology, 78(3), 274–280.CrossRef Cho, Y. C., Cheng, J. H., Hsu, S. L., Hong, S. E., Lee, T. M., & Chang, C. M. J. (2011). Supercritical carbon dioxide anti-solvent precipitation of anti-oxidative zeaxanthin highly recovered by elution chromatography from Nannochloropsis oculata. Separation and Purification Technology, 78(3), 274–280.CrossRef
go back to reference Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Del Borghi, M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing, 48, 1146–1151.CrossRef Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Del Borghi, M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing, 48, 1146–1151.CrossRef
go back to reference Dahmani, S., Zerrouki, D., Ramanna, L., Rawat, I., & Bux, F. (2016). Cultivation of Chlorella pyrenoidosa in outdoor open raceway pond using domestic wastewater as medium in arid desert region. Bioresource Technology, 219, 749–752.CrossRef Dahmani, S., Zerrouki, D., Ramanna, L., Rawat, I., & Bux, F. (2016). Cultivation of Chlorella pyrenoidosa in outdoor open raceway pond using domestic wastewater as medium in arid desert region. Bioresource Technology, 219, 749–752.CrossRef
go back to reference Demirbas, A. (2000). Progress and recent trends in biodiesel fuels. Energy Conversion and Management, 50, 14–34.CrossRef Demirbas, A. (2000). Progress and recent trends in biodiesel fuels. Energy Conversion and Management, 50, 14–34.CrossRef
go back to reference Divakaran, R., & Pillai, V. N. S. (2002). Flocculation of algae using chitosan. Journal of Applied Phycology, 14, 419–422.CrossRef Divakaran, R., & Pillai, V. N. S. (2002). Flocculation of algae using chitosan. Journal of Applied Phycology, 14, 419–422.CrossRef
go back to reference Drira, N., Piras, A., Rosa, A., Porcedda, S., & Dhaouadi, H. (2016). Algae from domestic wastewater facility’s high rate algal pond: Lipids extraction, characterization and biodiesel production. Bioresource Technology, 206, 239–244.CrossRef Drira, N., Piras, A., Rosa, A., Porcedda, S., & Dhaouadi, H. (2016). Algae from domestic wastewater facility’s high rate algal pond: Lipids extraction, characterization and biodiesel production. Bioresource Technology, 206, 239–244.CrossRef
go back to reference Dufreche, S. R., Hernandez, T., French, D., Sparks, M., & Zappi, E. (2007). Extraction of lipids from municipal wastewater plant microorganisms for production of biodiesel. Journal of the American Oil Chemists’ Society, 84, 181–187.CrossRef Dufreche, S. R., Hernandez, T., French, D., Sparks, M., & Zappi, E. (2007). Extraction of lipids from municipal wastewater plant microorganisms for production of biodiesel. Journal of the American Oil Chemists’ Society, 84, 181–187.CrossRef
go back to reference Ehimen, E. A., Sun, Z. F., & Carrington, C. G. (2010). Variables affecting the in situ transesterification of algae lipids. Fuel, 89(3), 677–684.CrossRef Ehimen, E. A., Sun, Z. F., & Carrington, C. G. (2010). Variables affecting the in situ transesterification of algae lipids. Fuel, 89(3), 677–684.CrossRef
go back to reference El-Kassas, H. Y., & Mohamed, L. A. (2014). Bioremediation of textile waste effluent by Chlorella vulgaris. Egyptian Journel of Aquatic Research, 40(3), 301–208.CrossRef El-Kassas, H. Y., & Mohamed, L. A. (2014). Bioremediation of textile waste effluent by Chlorella vulgaris. Egyptian Journel of Aquatic Research, 40(3), 301–208.CrossRef
go back to reference Elrayies, G. M. (2018). Microalgae: Prospects for greener future buildings. Renewable and Sustainable Energy Reviews, 81, 1175–1191.CrossRef Elrayies, G. M. (2018). Microalgae: Prospects for greener future buildings. Renewable and Sustainable Energy Reviews, 81, 1175–1191.CrossRef
go back to reference Estévez-Landazábal, L. L., Barajas-Solano, A. F., Barajas-Ferreira, C., & Kafarov, V. (2015). Improvement of lipid productivity on Chlorella vulgaris using waste glycerol and sodium acetate. Ciencia Tecnologíay Futuro, 5(2), 113–126. Estévez-Landazábal, L. L., Barajas-Solano, A. F., Barajas-Ferreira, C., & Kafarov, V. (2015). Improvement of lipid productivity on Chlorella vulgaris using waste glycerol and sodium acetate. Ciencia Tecnologíay Futuro, 5(2), 113–126.
go back to reference Fakhry, E. M., & El Maghraby, D. M. (2015). Lipid accumulation in response to nitrogen limitation and variation of temperature in Nannochloropsis salina. Botanical Studies, 56, 6.CrossRef Fakhry, E. M., & El Maghraby, D. M. (2015). Lipid accumulation in response to nitrogen limitation and variation of temperature in Nannochloropsis salina. Botanical Studies, 56, 6.CrossRef
go back to reference Florin, L., Tsokoglou, A., & Happe, T. A. (2001). Novel type of Fe-hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetical electron transport chain. The Journal of Biological Chemistry, 276, 6125–6132.CrossRef Florin, L., Tsokoglou, A., & Happe, T. A. (2001). Novel type of Fe-hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetical electron transport chain. The Journal of Biological Chemistry, 276, 6125–6132.CrossRef
go back to reference Girma, E., Belarbi, E. H., Fernandez, G. A., Medina, A. R., & Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: Process options and economics. Biotech Advances, 20, 491–515.CrossRef Girma, E., Belarbi, E. H., Fernandez, G. A., Medina, A. R., & Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: Process options and economics. Biotech Advances, 20, 491–515.CrossRef
go back to reference Green, B., Lundquist, T., & Oswald, W. J. (1995). Energetics of advanced integrated wastewater pond systems. Water Science and Technology, 31(12), 9–20.CrossRef Green, B., Lundquist, T., & Oswald, W. J. (1995). Energetics of advanced integrated wastewater pond systems. Water Science and Technology, 31(12), 9–20.CrossRef
go back to reference Halder, S. (2014). Bioremediation of heavy metals through freshwater microalgae: A review. Scholars Academic Journal of Biosciences, 2, 825–830. Halder, S. (2014). Bioremediation of heavy metals through freshwater microalgae: A review. Scholars Academic Journal of Biosciences, 2, 825–830.
go back to reference Halim, R., Danquah, M. K., & Webley, P. A. (2012). Extraction of oil from algae for biodiesel production: A review. Biotechnology Advances, 30, 709–732.CrossRef Halim, R., Danquah, M. K., & Webley, P. A. (2012). Extraction of oil from algae for biodiesel production: A review. Biotechnology Advances, 30, 709–732.CrossRef
go back to reference Hamendez-Zamora, M., Perales-Vela, H. V., Flores-Ortiz, C. M., & Canizares-Villanueva, R. O. (2014). Physiological and biochemical responses of Chlorella vulgaris to Congo red. Ecotoxicology and Environmental Safety, 129, 189–198. Hamendez-Zamora, M., Perales-Vela, H. V., Flores-Ortiz, C. M., & Canizares-Villanueva, R. O. (2014). Physiological and biochemical responses of Chlorella vulgaris to Congo red. Ecotoxicology and Environmental Safety, 129, 189–198.
go back to reference Harun, R., Davidson, M., Doyle, M., Gopiraj, R., Danquah, M., & Forde, G. (2010). Techno-economic analysis of an integrated algae photobioreactor, biodiesel and biogas production facility. Biomass and Bioenergy, 35(1), 741–747.CrossRef Harun, R., Davidson, M., Doyle, M., Gopiraj, R., Danquah, M., & Forde, G. (2010). Techno-economic analysis of an integrated algae photobioreactor, biodiesel and biogas production facility. Biomass and Bioenergy, 35(1), 741–747.CrossRef
go back to reference He, P. J., Mao, B., Shen, C. M., Shao, L. M., Lee, D. J., & Chang, J. S. (2013). Cultivation of Chlorella vulgaris on wastewater containing high levels of ammonia for biodiesel production. Bioresource Technology, 129, 177–181.CrossRef He, P. J., Mao, B., Shen, C. M., Shao, L. M., Lee, D. J., & Chang, J. S. (2013). Cultivation of Chlorella vulgaris on wastewater containing high levels of ammonia for biodiesel production. Bioresource Technology, 129, 177–181.CrossRef
go back to reference Heasman, M., Diemar, J., O’Connor, W., Sushames, T., & Foulkes, L. (2000). Development of extended shelf-life algae concentrate diets harvested by centrifugation for bivalve molluscs—A summary. Aquaculture Research, 31, 637–659.CrossRef Heasman, M., Diemar, J., O’Connor, W., Sushames, T., & Foulkes, L. (2000). Development of extended shelf-life algae concentrate diets harvested by centrifugation for bivalve molluscs—A summary. Aquaculture Research, 31, 637–659.CrossRef
go back to reference Helwani, Z., Othman, M. R., Aziz, N., Fernando, W. J. N., & Kim, J. (2009). Technologies for production of biodiesel focusing on green catalytic techniques: A review. Fuel Processing Technology, 90, 1502–1514.CrossRef Helwani, Z., Othman, M. R., Aziz, N., Fernando, W. J. N., & Kim, J. (2009). Technologies for production of biodiesel focusing on green catalytic techniques: A review. Fuel Processing Technology, 90, 1502–1514.CrossRef
go back to reference Hodaifa, G., Martinez, M. E., & Sanchez, S. (2008). Use of industrial wastewater from olive oil extraction for biomass production of Scenedesmus obliquus. Bioresource Technology, 99, 1111–1117.CrossRef Hodaifa, G., Martinez, M. E., & Sanchez, S. (2008). Use of industrial wastewater from olive oil extraction for biomass production of Scenedesmus obliquus. Bioresource Technology, 99, 1111–1117.CrossRef
go back to reference Hong, L., & Logan, B. (2004). Electricity generation using air cathode single chamber microbial fuel cell in the presence and absence of proton exchange membrane. Environmental Science & Technology, 38, 4040–4046.CrossRef Hong, L., & Logan, B. (2004). Electricity generation using air cathode single chamber microbial fuel cell in the presence and absence of proton exchange membrane. Environmental Science & Technology, 38, 4040–4046.CrossRef
go back to reference Kalhor, A. X., Dabbagh, A., Mohammadi, N., Ehsan, A., Bahrami, A., & Movafeghi, A. (2016). Biodiesel production in crude oil contaminated environment using Chlorella vulgaris. Bioresource Technology, 222, 190–194.CrossRef Kalhor, A. X., Dabbagh, A., Mohammadi, N., Ehsan, A., Bahrami, A., & Movafeghi, A. (2016). Biodiesel production in crude oil contaminated environment using Chlorella vulgaris. Bioresource Technology, 222, 190–194.CrossRef
go back to reference Kanda, H., & Li, P. (2011). Simple extraction method of green crude from natural blue green algae by di methyl ether: Extraction efficiency on several species compared to the Bligh –Dyer’s method. Sweden: World Renewable Energy Congress. Kanda, H., & Li, P. (2011). Simple extraction method of green crude from natural blue green algae by di methyl ether: Extraction efficiency on several species compared to the Bligh –Dyer’s method. Sweden: World Renewable Energy Congress.
go back to reference Kasiri, S., Ulrich, A., & Prasad, V. (2015). Optimization of CO2 fixation by Chlorella kessleri cultivated in closed raceway photobioreactor. Bioresource Technology, 194, 144–155.CrossRef Kasiri, S., Ulrich, A., & Prasad, V. (2015). Optimization of CO2 fixation by Chlorella kessleri cultivated in closed raceway photobioreactor. Bioresource Technology, 194, 144–155.CrossRef
go back to reference Khatee, A. R., Vafaei, F., & Jannatkhah. (2013). Biosorption of three textile dyes from contaminated water by filamentous green alga Spirogyra sp. kinetic isotherm and thermodynamic studies. International Biodeterioration and Biodegradation, 83, 33–40.CrossRef Khatee, A. R., Vafaei, F., & Jannatkhah. (2013). Biosorption of three textile dyes from contaminated water by filamentous green alga Spirogyra sp. kinetic isotherm and thermodynamic studies. International Biodeterioration and Biodegradation, 83, 33–40.CrossRef
go back to reference Kisku, G. C., Barman, S. C., & Bhargava, S. K. (2000). Contamination of soil and plants potentially toxic elements irrigated with mixed industrial effluent and impact in the environment. Water, Air, and Soil Pollution, 120, 121–137.CrossRef Kisku, G. C., Barman, S. C., & Bhargava, S. K. (2000). Contamination of soil and plants potentially toxic elements irrigated with mixed industrial effluent and impact in the environment. Water, Air, and Soil Pollution, 120, 121–137.CrossRef
go back to reference Knothe, G., Bagby, M. O., & Ryan, T. A. (1997). Cetane numbers of fatty compounds: Influence of compound structure and of various potential cetane improvers. SAE Technical Paper, 971681, 127–132. Knothe, G., Bagby, M. O., & Ryan, T. A. (1997). Cetane numbers of fatty compounds: Influence of compound structure and of various potential cetane improvers. SAE Technical Paper, 971681, 127–132.
go back to reference Kong, Q., Li, L., Martinez, B., Chen, P., & Ruan, R. (2010). Culture of algae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Applied Biochemistry and Biotechnology, 160, 9–18.CrossRef Kong, Q., Li, L., Martinez, B., Chen, P., & Ruan, R. (2010). Culture of algae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Applied Biochemistry and Biotechnology, 160, 9–18.CrossRef
go back to reference Kothari, R., Pathak, V. V., Chopra, A. K., Ahmad, S., Allen, T., & Yadav, B. C. (2015). Developments in bioenergy and sustainable agriculture sectors for climate change mitigation in Indian context: A state of art. Climate Change and Environment Sustainability, 3(2), 93–103.CrossRef Kothari, R., Pathak, V. V., Chopra, A. K., Ahmad, S., Allen, T., & Yadav, B. C. (2015). Developments in bioenergy and sustainable agriculture sectors for climate change mitigation in Indian context: A state of art. Climate Change and Environment Sustainability, 3(2), 93–103.CrossRef
go back to reference Kothari, R., Kumar, V., Pathak, V. V., Ahmad, S., Aoyi, O., & Tyagi, V. V. (2017a). A critical review on factors influencing fermentative hydrogen production. Frontier Bioscience (Landmark Edition), 22, 1195.CrossRef Kothari, R., Kumar, V., Pathak, V. V., Ahmad, S., Aoyi, O., & Tyagi, V. V. (2017a). A critical review on factors influencing fermentative hydrogen production. Frontier Bioscience (Landmark Edition), 22, 1195.CrossRef
go back to reference Kothari, R., Pathak, V. V., Pandey, A., Ahmad, S., Srivastava, C., & Tyagi, V. V. (2017b). A novel method to harvest Chlorella sp. via low cost bioflocculant: Influence of temperature with kinetic an thermodynamic functions. Bioresource Technology, 225, 84–89.CrossRef Kothari, R., Pathak, V. V., Pandey, A., Ahmad, S., Srivastava, C., & Tyagi, V. V. (2017b). A novel method to harvest Chlorella sp. via low cost bioflocculant: Influence of temperature with kinetic an thermodynamic functions. Bioresource Technology, 225, 84–89.CrossRef
go back to reference Kothari, R., Pandey, A., Ahmad, S., Kumar, A., Pathak, V. V., & Tyagi, V. V. (2017c). Microalgal cultivation for value-added products: A critical enviro-economical assessment. 3 Biotech, 7(4), 243.CrossRef Kothari, R., Pandey, A., Ahmad, S., Kumar, A., Pathak, V. V., & Tyagi, V. V. (2017c). Microalgal cultivation for value-added products: A critical enviro-economical assessment. 3 Biotech, 7(4), 243.CrossRef
go back to reference Kousha, A., Daneshvar, E., Esmaeli, A. R., Jokar, M., & Khatee, A. R. (2012). Optimization of Aci blue 25 removal from aqueous solutions by raw esterified and protonated Janiaadhaerens biomass. International Journal of Biodeterioration & Biodegradation, 69, 97–105.CrossRef Kousha, A., Daneshvar, E., Esmaeli, A. R., Jokar, M., & Khatee, A. R. (2012). Optimization of Aci blue 25 removal from aqueous solutions by raw esterified and protonated Janiaadhaerens biomass. International Journal of Biodeterioration & Biodegradation, 69, 97–105.CrossRef
go back to reference Kumar, P. R., Sameera, K., Mahalakshmi, G., Akbersha, M. A. A., & Thajuddin, N. (2012). Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga, Chlorella sp., BUM11008: Evaluation for biodiesel production. Biomass and Bioenergy, 37, 60–66.CrossRef Kumar, P. R., Sameera, K., Mahalakshmi, G., Akbersha, M. A. A., & Thajuddin, N. (2012). Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga, Chlorella sp., BUM11008: Evaluation for biodiesel production. Biomass and Bioenergy, 37, 60–66.CrossRef
go back to reference Lee, A. K., Lewis, D. M., & Ashman, P. J. (2012). Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements. Biomass and Bioenergy, 46, 89–101.CrossRef Lee, A. K., Lewis, D. M., & Ashman, P. J. (2012). Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements. Biomass and Bioenergy, 46, 89–101.CrossRef
go back to reference Levine, R. B., Pinnarat, T., & Savage, P. E. (2010). Biodiesel production from wet algal biomass through in-situ lipid hydrolysis and supercritical transesterification. Energy & Fuels, 24, 5235–5243.CrossRef Levine, R. B., Pinnarat, T., & Savage, P. E. (2010). Biodiesel production from wet algal biomass through in-situ lipid hydrolysis and supercritical transesterification. Energy & Fuels, 24, 5235–5243.CrossRef
go back to reference Liang, Y., Sarkany, N., & Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31, 1043–1049.CrossRef Liang, Y., Sarkany, N., & Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31, 1043–1049.CrossRef
go back to reference Lin, T. S., & Wu, J. Y. (2015). Effect of carbon sources on growth and lipid accumulation of newly isolated algae cultured under mixotrophic condition. Bioresource Technology, 184, 100–107.CrossRef Lin, T. S., & Wu, J. Y. (2015). Effect of carbon sources on growth and lipid accumulation of newly isolated algae cultured under mixotrophic condition. Bioresource Technology, 184, 100–107.CrossRef
go back to reference Lynch, F., Santana-Sanchez, A., Jamsa, M., Sivonen, K., Aro, E. M., & Allahverdiyeva, Y. (2015). Screening native isolates of cyanobacteria and a green alga for integrated wastewater treatment, biomass accumulation and neutral lipid production. Algal Research, 11, 411–420.CrossRef Lynch, F., Santana-Sanchez, A., Jamsa, M., Sivonen, K., Aro, E. M., & Allahverdiyeva, Y. (2015). Screening native isolates of cyanobacteria and a green alga for integrated wastewater treatment, biomass accumulation and neutral lipid production. Algal Research, 11, 411–420.CrossRef
go back to reference Ma, L. P., Li, B., & Zhang, T. (2014). Abundant rifampin resistance genes and significant correlations of antibiotic resistance genes and plasmids in various environments revealed by metagenomic analysis. Applied Microbiology and Biotechnology, 98, 5195–5204.CrossRef Ma, L. P., Li, B., & Zhang, T. (2014). Abundant rifampin resistance genes and significant correlations of antibiotic resistance genes and plasmids in various environments revealed by metagenomic analysis. Applied Microbiology and Biotechnology, 98, 5195–5204.CrossRef
go back to reference Mansoorian, H. J., Amir, H. M., Ahmad, J. J., & Narges, K. (2016). Evaluation of dairy industry wastewater treatment and simultaneous bioelectricity generation in a catalyst-less and mediator-less membrane microbial fuel cell. Journal of Saudi Chemical Society, 20, 88–100.CrossRef Mansoorian, H. J., Amir, H. M., Ahmad, J. J., & Narges, K. (2016). Evaluation of dairy industry wastewater treatment and simultaneous bioelectricity generation in a catalyst-less and mediator-less membrane microbial fuel cell. Journal of Saudi Chemical Society, 20, 88–100.CrossRef
go back to reference Markov, S. A., Thomas, A. D., Bazin, M. J., & Hall, D. O. (1997). Photoproduction of hydrogen by cyanobacteria under partial vacuum in batch culture or in a photobioreactor. International Journal of Hydrogen Energy, 22, 521.CrossRef Markov, S. A., Thomas, A. D., Bazin, M. J., & Hall, D. O. (1997). Photoproduction of hydrogen by cyanobacteria under partial vacuum in batch culture or in a photobioreactor. International Journal of Hydrogen Energy, 22, 521.CrossRef
go back to reference Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Algae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14, 217–232.CrossRef Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Algae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14, 217–232.CrossRef
go back to reference Mata, T. M., Martins, A. A., & Caetane, N. S. (2012). Algae processing for biodiesel production. In Advances in biodiesel production (pp. 204–231).CrossRef Mata, T. M., Martins, A. A., & Caetane, N. S. (2012). Algae processing for biodiesel production. In Advances in biodiesel production (pp. 204–231).CrossRef
go back to reference Meher, L. C., Dharmagadda, V. S. S., & Naik, S. N. (2006). Optimization of alkali catalyzedtransesterification of Pongamiapinnata oil for production of biodiesel. Bioresource Technology, 97, 1392.CrossRef Meher, L. C., Dharmagadda, V. S. S., & Naik, S. N. (2006). Optimization of alkali catalyzedtransesterification of Pongamiapinnata oil for production of biodiesel. Bioresource Technology, 97, 1392.CrossRef
go back to reference Mendes Rui, L., Reis Alberto, D., & Palvara Antonio, F. (2006). Supercritical CO2 extraction of γ-linolenic acid and other lipids from Arthrospira (Spirulina) maxima: Comparison with organic solvent extraction. Food Chemistry, 99(1), 57–63.CrossRef Mendes Rui, L., Reis Alberto, D., & Palvara Antonio, F. (2006). Supercritical CO2 extraction of γ-linolenic acid and other lipids from Arthrospira (Spirulina) maxima: Comparison with organic solvent extraction. Food Chemistry, 99(1), 57–63.CrossRef
go back to reference Milledge, J. J., & Heaven, S. (2013). A review on the harvesting of algae for biofuel production. Review in Environmental Science and Biotechnology, 12(2), 165–178.CrossRef Milledge, J. J., & Heaven, S. (2013). A review on the harvesting of algae for biofuel production. Review in Environmental Science and Biotechnology, 12(2), 165–178.CrossRef
go back to reference Mohan, V. S., Rohit, M. V., Chandra, R., & Goud, K. K. (2015) Algal biorefinary. In J. Shibu & B. Thallada (Eds.), Advanced biorefineries for sustainable production and distribution (pp. 199–216). Mohan, V. S., Rohit, M. V., Chandra, R., & Goud, K. K. (2015) Algal biorefinary. In J. Shibu & B. Thallada (Eds.), Advanced biorefineries for sustainable production and distribution (pp. 199–216).
go back to reference Molinuevo-Salces, B., García-González, M. C., González-Fernández, C., Cuetos, M. J., Morán, A., & Gómez, X. (2010). Anaerobic co-digestion of livestock wastes with vegetable processing wastes: A statistical analysis. Bioresource Technology, 101(24), 9479–9485.CrossRef Molinuevo-Salces, B., García-González, M. C., González-Fernández, C., Cuetos, M. J., Morán, A., & Gómez, X. (2010). Anaerobic co-digestion of livestock wastes with vegetable processing wastes: A statistical analysis. Bioresource Technology, 101(24), 9479–9485.CrossRef
go back to reference Mona, S., Kaushik, A., & Kaushik, C. P. (2011). Waste biomass of Nostoclinckia as adsorbent of crystal violet dye: Optimization based on statistical model. International Journal of Biodeterioration & Biodegradation, 65(3), 513–521.CrossRef Mona, S., Kaushik, A., & Kaushik, C. P. (2011). Waste biomass of Nostoclinckia as adsorbent of crystal violet dye: Optimization based on statistical model. International Journal of Biodeterioration & Biodegradation, 65(3), 513–521.CrossRef
go back to reference Muga, H. E., & Mihelcic, J. R. (2008). Sustainability of wastewater treatment technologies. Journal of Environmental Management, 88, 437–447.CrossRef Muga, H. E., & Mihelcic, J. R. (2008). Sustainability of wastewater treatment technologies. Journal of Environmental Management, 88, 437–447.CrossRef
go back to reference Mujtaba, G., Choi, W., Lee, C. G., & Lee, K. (2012). Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions. Bioresource Technology, 123, 279–283.CrossRef Mujtaba, G., Choi, W., Lee, C. G., & Lee, K. (2012). Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions. Bioresource Technology, 123, 279–283.CrossRef
go back to reference Munoz, R., Köllner, C., & Guieysse, B. (2009). Biofilm photobioreactors for the treatment of industrial wastewaters. Journal of Hazardous Materials, 161, 29–34.CrossRef Munoz, R., Köllner, C., & Guieysse, B. (2009). Biofilm photobioreactors for the treatment of industrial wastewaters. Journal of Hazardous Materials, 161, 29–34.CrossRef
go back to reference Naidoo, S., & Olaniran, A. O. (2013). Treated wastewater effluent as a source of microbial pollution of surface water resources. International Journal of Environmental Research and Public Health, 11(1), 249–270.CrossRef Naidoo, S., & Olaniran, A. O. (2013). Treated wastewater effluent as a source of microbial pollution of surface water resources. International Journal of Environmental Research and Public Health, 11(1), 249–270.CrossRef
go back to reference Oh, H. M., Lee, S. J., Park, M. H., Kim, H. S., Kim, H. C., Yoon, J. H., Kwon, G. S., & Yoon, B. D. (2001). Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49. Biotechnology Letters, 23, 1229–1234.CrossRef Oh, H. M., Lee, S. J., Park, M. H., Kim, H. S., Kim, H. C., Yoon, J. H., Kwon, G. S., & Yoon, B. D. (2001). Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49. Biotechnology Letters, 23, 1229–1234.CrossRef
go back to reference Okoh, A. I., Sibanda, T., & Gusha, S. S. (2010). Inadequately treated wastewater as a source of human enteric viruses in the environment. International Journal of Environmental Research and Public Health, 7(6), 2620–2637.CrossRef Okoh, A. I., Sibanda, T., & Gusha, S. S. (2010). Inadequately treated wastewater as a source of human enteric viruses in the environment. International Journal of Environmental Research and Public Health, 7(6), 2620–2637.CrossRef
go back to reference Osundeko, O., Davies, H., & Pittman, J. K. (2013). Oxidative stress tolerant algae strains are highly efficient for biofuel feedstock production on wastewater. Biomass and Bioenergy, 56, 284–294CrossRef Osundeko, O., Davies, H., & Pittman, J. K. (2013). Oxidative stress tolerant algae strains are highly efficient for biofuel feedstock production on wastewater. Biomass and Bioenergy, 56, 284–294CrossRef
go back to reference Pandey, A., Lee, D. J., Chisti, Y., & Scccol, C. (2014). Biofuels from algae (p. 348). San Diego: Elsevier. Pandey, A., Lee, D. J., Chisti, Y., & Scccol, C. (2014). Biofuels from algae (p. 348). San Diego: Elsevier.
go back to reference Pathak, V. V., Kothari, R., Chopra, A. K., & Singh, D. P. (2015). Experimental and kinetic studies for Phycoremediation and dye removal by Chlorella pyrenoidosa from textile wastewater. Journal of Environmental Management, 2015, 1–8. Pathak, V. V., Kothari, R., Chopra, A. K., & Singh, D. P. (2015). Experimental and kinetic studies for Phycoremediation and dye removal by Chlorella pyrenoidosa from textile wastewater. Journal of Environmental Management, 2015, 1–8.
go back to reference Pathak, V. V., Kothari, R., Chopra, A. K., Ahmad, S., Pandey, A. K., & Rahim, N. A. (2016). Effect of solvent extraction methods on oil yield and its parametric feasibility with C. Pyrenoidosa (pp. 87–86). Pathak, V. V., Kothari, R., Chopra, A. K., Ahmad, S., Pandey, A. K., & Rahim, N. A. (2016). Effect of solvent extraction methods on oil yield and its parametric feasibility with C. Pyrenoidosa (pp. 87–86).
go back to reference Patil, V., Tran, K. Q., & Giselrød, H. R. (2009). Towards sustainable production of biofuels from algae. International Journal of Molecular Sciences, 9(7), 1188–1195.CrossRef Patil, V., Tran, K. Q., & Giselrød, H. R. (2009). Towards sustainable production of biofuels from algae. International Journal of Molecular Sciences, 9(7), 1188–1195.CrossRef
go back to reference Ponnuswamy, I., Soundararajan, M., Shabudeen, S., & Shoba, U. S. (2014). Resolution of lipid content from algal growth in carbon sequestration studies. International Journal of Advance Science and Technology, 67, 23–32.CrossRef Ponnuswamy, I., Soundararajan, M., Shabudeen, S., & Shoba, U. S. (2014). Resolution of lipid content from algal growth in carbon sequestration studies. International Journal of Advance Science and Technology, 67, 23–32.CrossRef
go back to reference Rahimnejad, M., Ghoreyshi, A. A., Najafpour, G., & Jafary, T. (2011). Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Applied Energy, 88(11), 3999–4004.CrossRef Rahimnejad, M., Ghoreyshi, A. A., Najafpour, G., & Jafary, T. (2011). Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Applied Energy, 88(11), 3999–4004.CrossRef
go back to reference Ruiz-Marin, A., Mendoza-Espinosa, L. G., & Stephenson, T. (2010). Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresource Technology, 101, 58–64.CrossRef Ruiz-Marin, A., Mendoza-Espinosa, L. G., & Stephenson, T. (2010). Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresource Technology, 101, 58–64.CrossRef
go back to reference Salama, E. S., Kim, J. R., Ji, M. K., Cho, D. W., Abou-Shanab, R. A., & Kabra, A. N. (2015). Application of acid mine drainage for coagulation/flocculation of microalgal biomass. Bioresource Technology, 186, 232–237.CrossRef Salama, E. S., Kim, J. R., Ji, M. K., Cho, D. W., Abou-Shanab, R. A., & Kabra, A. N. (2015). Application of acid mine drainage for coagulation/flocculation of microalgal biomass. Bioresource Technology, 186, 232–237.CrossRef
go back to reference Sathish, A., & Sins, R. C. (2012). Biodiesel from mixed culture algae via a wet lipid extraction procedure. Bioresource Technology, 118, 643–647.CrossRef Sathish, A., & Sins, R. C. (2012). Biodiesel from mixed culture algae via a wet lipid extraction procedure. Bioresource Technology, 118, 643–647.CrossRef
go back to reference Schaar, H., Clara, M., Gans, O., & Kreuzinger, N. (2010). Micropollutant removal during biological wastewater treatment and a subsequent ozonation step. Environmental Pollution, 158(5), 1399–1404.CrossRef Schaar, H., Clara, M., Gans, O., & Kreuzinger, N. (2010). Micropollutant removal during biological wastewater treatment and a subsequent ozonation step. Environmental Pollution, 158(5), 1399–1404.CrossRef
go back to reference Shamshad, A., Pandey, A., Kothari, R., Pathak, V. V., & Tyagi, V. V. (2017) Closed photobioreactors: Construction material and influencing parameters at the commercial scale. In: Y.F. Tsang (Ed.), Photobioreactors: Advancements, applications and research (pp. 149–161). NOVA Publication. ISBN: 978-1-53612-354-8. Shamshad, A., Pandey, A., Kothari, R., Pathak, V. V., & Tyagi, V. V. (2017) Closed photobioreactors: Construction material and influencing parameters at the commercial scale. In: Y.F. Tsang (Ed.), Photobioreactors: Advancements, applications and research (pp. 149–161). NOVA Publication. ISBN: 978-1-53612-354-8.
go back to reference Sheehan, J., Dunahay, T., Benemann, J., Roessler, P. (1998). A look back at the U.S. Department of Energy’s Aquatic Species Program—biodiesel from algae. National Renewable Energy Laboratory, Golden, CO. Report NREL/TP-580–24190. Sheehan, J., Dunahay, T., Benemann, J., Roessler, P. (1998). A look back at the U.S. Department of Energy’s Aquatic Species Program—biodiesel from algae. National Renewable Energy Laboratory, Golden, CO. Report NREL/TP-580–24190.
go back to reference Sierra, E., Acien, F. G., Fernandez, J. M., Garcia, J. L., Gonzalez, C., & Molina, E. (2008). Characterization of flat plate photobioreactor for the production of algae. Chemical Engineering Journal, 138, 136–147.CrossRef Sierra, E., Acien, F. G., Fernandez, J. M., Garcia, J. L., Gonzalez, C., & Molina, E. (2008). Characterization of flat plate photobioreactor for the production of algae. Chemical Engineering Journal, 138, 136–147.CrossRef
go back to reference Sonune, A., & Ghate, R. (2004). Developments in wastewater treatment methods. Desalination, 167, 55–63.CrossRef Sonune, A., & Ghate, R. (2004). Developments in wastewater treatment methods. Desalination, 167, 55–63.CrossRef
go back to reference Soxhlet, F. (1879). Die gewichtsanalytischebestimmung des milchfettes. Dinglers’ Polytechisches Journal, 232, 461–465. Soxhlet, F. (1879). Die gewichtsanalytischebestimmung des milchfettes. Dinglers’ Polytechisches Journal, 232, 461–465.
go back to reference Spilling, K., Ása, B., Dagmar, E., Heiko, R., & Halldór, G. S. (2013). The effect of high pH on structural lipids in diatoms. Journal of Applied Phycology, 25(5), 1435–1439.CrossRef Spilling, K., Ása, B., Dagmar, E., Heiko, R., & Halldór, G. S. (2013). The effect of high pH on structural lipids in diatoms. Journal of Applied Phycology, 25(5), 1435–1439.CrossRef
go back to reference Srivastava, A., & Prasad, R. (2000). Triglycerides-based diesel fuels. Renewable and Sustainable Energy Reviews, 4, 111–133.CrossRef Srivastava, A., & Prasad, R. (2000). Triglycerides-based diesel fuels. Renewable and Sustainable Energy Reviews, 4, 111–133.CrossRef
go back to reference Stillwell, A. S., King, C. W., Webber, M. E., Duncan, I. J., & Hardberger, A. (2011). The energy water nexus in Texas. Ecology and Society, 16(1), 2.CrossRef Stillwell, A. S., King, C. W., Webber, M. E., Duncan, I. J., & Hardberger, A. (2011). The energy water nexus in Texas. Ecology and Society, 16(1), 2.CrossRef
go back to reference Talebi, A. F., Mohtashami, S. K., Tabatabaei, M., Tohidfar, M., Bagheri, A., Zeinalabedini, M., Mirzaei, H. H., Mirzajanzadeh, M., Shafaroudi, S. M., & Bakhtiari, S. (2015). Fatty acid profiling: A selective criterion for screening algae strains for biodiesel production. Algal Research, 2(3), 258–267.CrossRef Talebi, A. F., Mohtashami, S. K., Tabatabaei, M., Tohidfar, M., Bagheri, A., Zeinalabedini, M., Mirzaei, H. H., Mirzajanzadeh, M., Shafaroudi, S. M., & Bakhtiari, S. (2015). Fatty acid profiling: A selective criterion for screening algae strains for biodiesel production. Algal Research, 2(3), 258–267.CrossRef
go back to reference Tang, H., Abunasser, N., Garcia, M. E. D., Chen, M., Ng, K. S., & Salley, S. O. (2011). Potential of algae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Applied Energy, 88(10), 3324–3330.CrossRef Tang, H., Abunasser, N., Garcia, M. E. D., Chen, M., Ng, K. S., & Salley, S. O. (2011). Potential of algae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Applied Energy, 88(10), 3324–3330.CrossRef
go back to reference Ugwu, C. U., Aoyagi, H., & Uchiyama, H. (2008). Photobioreactor for mass cultivation of algae. Bioresource Technology, 99(10), 4021–4028.CrossRef Ugwu, C. U., Aoyagi, H., & Uchiyama, H. (2008). Photobioreactor for mass cultivation of algae. Bioresource Technology, 99(10), 4021–4028.CrossRef
go back to reference Ummalyma, S. B., Anil, K. M., Pandey, A., & Sukumaran, R. K. (2016). Harvesting of microalgal biomass: Efficient method for flocculation through pH modulation. Bioresource Technology, 213, 216–221.CrossRef Ummalyma, S. B., Anil, K. M., Pandey, A., & Sukumaran, R. K. (2016). Harvesting of microalgal biomass: Efficient method for flocculation through pH modulation. Bioresource Technology, 213, 216–221.CrossRef
go back to reference USEPA. (1999). Guidelines for Carcinogen risk assessment review draft. NCEA-F-0644. USEPA. (1999). Guidelines for Carcinogen risk assessment review draft. NCEA-F-0644.
go back to reference Victoria, O., Adesanya, E. C., Stuart, A. S., & Alison, G. S. (2014). Life cycle assessment on microalgal biodiesel production using a hybrid cultivation system. Bioresource Technology, 163, 343–355.CrossRef Victoria, O., Adesanya, E. C., Stuart, A. S., & Alison, G. S. (2014). Life cycle assessment on microalgal biodiesel production using a hybrid cultivation system. Bioresource Technology, 163, 343–355.CrossRef
go back to reference Wagenen, V. J., Miller, T. W., Hobbs, S., Hook, P., Crowe, B., & Huesemann, M. (2012). Effects of light and temperature on fatty acid production in Nannochloropsis Salina. Energies, 5, 731.CrossRef Wagenen, V. J., Miller, T. W., Hobbs, S., Hook, P., Crowe, B., & Huesemann, M. (2012). Effects of light and temperature on fatty acid production in Nannochloropsis Salina. Energies, 5, 731.CrossRef
go back to reference Wang, Y., Ho, S. H., Cheng, C. L., Guo, W. Q., Nagarajan, D., Ren, N. Q., Lee, D. J., & Chang, J. S. (2016). Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresource Technology, 222, 485–497.CrossRef Wang, Y., Ho, S. H., Cheng, C. L., Guo, W. Q., Nagarajan, D., Ren, N. Q., Lee, D. J., & Chang, J. S. (2016). Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresource Technology, 222, 485–497.CrossRef
go back to reference Yi, L., Yanting, X., Lei, L., Xiaobing, J., Kun, Z., Tianling, Z., & Wang, H. (2016). First evidence of bioflocculant from Shinella albus with flocculation activity on harvesting of Chlorella vulgaris biomass. Bioresource Technology, 218, 807–815.CrossRef Yi, L., Yanting, X., Lei, L., Xiaobing, J., Kun, Z., Tianling, Z., & Wang, H. (2016). First evidence of bioflocculant from Shinella albus with flocculation activity on harvesting of Chlorella vulgaris biomass. Bioresource Technology, 218, 807–815.CrossRef
go back to reference Zhang, X., Wang, L., Sommerfeld, M., & Hu, Q. (2016). Harvesting microalgal biomass using magnesium coagulation-dissolved air flotation. Biomass and Bioenergy, 93, 43–49.CrossRef Zhang, X., Wang, L., Sommerfeld, M., & Hu, Q. (2016). Harvesting microalgal biomass using magnesium coagulation-dissolved air flotation. Biomass and Bioenergy, 93, 43–49.CrossRef
go back to reference Zhu, F., Wang, W., & ZhangX, T. G. (2011). Electricity generation in a membrane-less microbial fuel cell with down-flow feeding onto the cathode. Bioresource Technology, 102(15), 7324–7328.CrossRef Zhu, F., Wang, W., & ZhangX, T. G. (2011). Electricity generation in a membrane-less microbial fuel cell with down-flow feeding onto the cathode. Bioresource Technology, 102(15), 7324–7328.CrossRef
Metadata
Title
Implication of Algal Microbiology for Wastewater Treatment and Bioenergy Production
Authors
Vinayak V. Pathak
Shamshad Ahmad
Richa Kothari
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7284-0_10