Skip to main content
Top
Published in: Wireless Personal Communications 3/2023

02-04-2023

Improved African Buffalo Optimization-Based Energy Efficient Clustering Wireless Sensor Networks using Metaheuristic Routing Technique

Authors: Sweta Kumari Barnwal, Amit Prakash, Dilip Kumar Yadav

Published in: Wireless Personal Communications | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Wireless sensor network (WSN) plays a crucial role in the Internet of Things (IoTs), which assist to produce seamless information that have a great impact on the network lifetime. Despite the substantial application of the WSN numerous challenges like energy, load balancing, security, and storage exist. Energy efficacy is regarded as an integral part of the design of WSN; this can be achieved by clustering and multi-hop routing technique using metaheuristic optimization algorithm. This paper concentrates on design of Metaheuristics Cluster-based Routing Technique for Energy-Efficient WSN (MHCRT-EEWSN). The presented MHCRT-EEWSN technique mainly concentrates on the improvements of energy efficiency and lifespan of the WSN via clustering and routing process. For effectual clustering process, the MHCRT-EEWSN model utilizes Whale Moth Flame Optimization technique and can be utilized by the use of fitness function involving intra-cluster distance, inter-cluster distance, energy, and balancing factor. Besides, the MHCRT-EEWSN model employs Improved African Buffalo Optimization (IABO) based routing technique. To select optimal routes in WSN, the IABO algorithm designs a fitness function comprising multiple parameters like residual energy and distance factor. The experimental validation of the MHCRT-EEWSN model can be tested by making use of a series of simulations. A wide-ranging comparative study shows the promising performances of the MHCRT-EEWSN model than other recent methods. The experimental validation of the MHCRT-EEWSN model can be tested by making use of a series of simulations. A wide-ranging comparative study shows the promising performances of the MHCRT-EEWSN model than other recent methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Durairaj, U. M., & Selvaraj, S. (2020). Two-level clustering and routing algorithms to prolong the lifetime of wind farm-based WSN. IEEE Sensors Journal, 21(1), 857–867.CrossRef Durairaj, U. M., & Selvaraj, S. (2020). Two-level clustering and routing algorithms to prolong the lifetime of wind farm-based WSN. IEEE Sensors Journal, 21(1), 857–867.CrossRef
2.
go back to reference Sumathi, J., & Velusamy, R. L. (2021). A review on distributed cluster based routing approaches in mobile wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, 12(1), 835–849.CrossRef Sumathi, J., & Velusamy, R. L. (2021). A review on distributed cluster based routing approaches in mobile wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, 12(1), 835–849.CrossRef
3.
go back to reference Sujanthi, S., & Nithya Kalyani, S. (2020). SecDL: QoS-aware secure deep learning approach for dynamic cluster-based routing in WSN assisted IoT. Wireless Personal Communications, 114(3), 2135–2169.CrossRef Sujanthi, S., & Nithya Kalyani, S. (2020). SecDL: QoS-aware secure deep learning approach for dynamic cluster-based routing in WSN assisted IoT. Wireless Personal Communications, 114(3), 2135–2169.CrossRef
4.
go back to reference Reddy, D. L., Puttamadappa, C., & Suresh, H. N. (2021). Merged glowworm swarm with ant colony optimization for energy efficient clustering and routing in wireless sensor network. Pervasive and Mobile Computing, 71, 101338.CrossRef Reddy, D. L., Puttamadappa, C., & Suresh, H. N. (2021). Merged glowworm swarm with ant colony optimization for energy efficient clustering and routing in wireless sensor network. Pervasive and Mobile Computing, 71, 101338.CrossRef
5.
go back to reference Shafiq, M., Ashraf, H., Ullah, A., & Tahira, S. (2020). Systematic literature review on energy efficient routing schemes in WSN—A survey. Mobile Networks and Applications, 25(3), 882–895.CrossRef Shafiq, M., Ashraf, H., Ullah, A., & Tahira, S. (2020). Systematic literature review on energy efficient routing schemes in WSN—A survey. Mobile Networks and Applications, 25(3), 882–895.CrossRef
6.
go back to reference Yarinezhad, R., & Hashemi, S. N. (2019). Solving the load balanced clustering and routing problems in WSNs with an fpt-approximation algorithm and a grid structure. Pervasive and Mobile Computing, 58, 101033.CrossRef Yarinezhad, R., & Hashemi, S. N. (2019). Solving the load balanced clustering and routing problems in WSNs with an fpt-approximation algorithm and a grid structure. Pervasive and Mobile Computing, 58, 101033.CrossRef
7.
go back to reference Ghorbani Dehkordi, E., & Barati, H. (2022). Cluster based routing method using mobile sinks in wireless sensor network. International Journal of Electronics, 110, 1–13. Ghorbani Dehkordi, E., & Barati, H. (2022). Cluster based routing method using mobile sinks in wireless sensor network. International Journal of Electronics, 110, 1–13.
8.
go back to reference Farsi, M., Badawy, M., Moustafa, M., Ali, H. A., & Abdulazeem, Y. (2019). A congestion-aware clustering and routing (CCR) protocol for mitigating congestion in WSN. IEEE Access, 7, 105402–105419.CrossRef Farsi, M., Badawy, M., Moustafa, M., Ali, H. A., & Abdulazeem, Y. (2019). A congestion-aware clustering and routing (CCR) protocol for mitigating congestion in WSN. IEEE Access, 7, 105402–105419.CrossRef
9.
go back to reference Wang, Z., Ding, H., Li, B., Bao, L., Yang, Z., & Liu, Q. (2022). Energy efficient cluster based routing protocol for WSN using firefly algorithm and ant colony optimization. Wireless Personal Communications, 125, 1–34.CrossRef Wang, Z., Ding, H., Li, B., Bao, L., Yang, Z., & Liu, Q. (2022). Energy efficient cluster based routing protocol for WSN using firefly algorithm and ant colony optimization. Wireless Personal Communications, 125, 1–34.CrossRef
10.
go back to reference Abasıkeleş-Turgut, İ, & Altan, G. (2021). A fully distributed energy-aware multi-level clustering and routing for WSN-based IoT. Transactions on Emerging Telecommunications Technologies, 32(12), e4355.CrossRef Abasıkeleş-Turgut, İ, & Altan, G. (2021). A fully distributed energy-aware multi-level clustering and routing for WSN-based IoT. Transactions on Emerging Telecommunications Technologies, 32(12), e4355.CrossRef
11.
go back to reference Maheshwari, P., Sharma, A. K., & Verma, K. (2021). Energy efficient cluster-based routing protocol for WSN using butterfly optimization algorithm and ant colony optimization. Ad Hoc Networks, 110, 102317.CrossRef Maheshwari, P., Sharma, A. K., & Verma, K. (2021). Energy efficient cluster-based routing protocol for WSN using butterfly optimization algorithm and ant colony optimization. Ad Hoc Networks, 110, 102317.CrossRef
12.
go back to reference Shafiq, M., Ashraf, H., Ullah, A., Masud, M., Azeem, M., Jhanjhi, N., & Humayun, M. (2021). Robust cluster-based routing protocol for IoT-assisted smart devices in WSN. Computers, Materials & Continua, 67(3), 3505–3521.CrossRef Shafiq, M., Ashraf, H., Ullah, A., Masud, M., Azeem, M., Jhanjhi, N., & Humayun, M. (2021). Robust cluster-based routing protocol for IoT-assisted smart devices in WSN. Computers, Materials & Continua, 67(3), 3505–3521.CrossRef
13.
go back to reference Al-Otaibi, S., Al-Rasheed, A., Mansour, R. F., Yang, E., Joshi, G. P., & Cho, W. (2021). Hybridization of metaheuristic algorithm for dynamic cluster-based routing protocol in wireless sensor Networksx. IEEE Access, 9, 83751–83761.CrossRef Al-Otaibi, S., Al-Rasheed, A., Mansour, R. F., Yang, E., Joshi, G. P., & Cho, W. (2021). Hybridization of metaheuristic algorithm for dynamic cluster-based routing protocol in wireless sensor Networksx. IEEE Access, 9, 83751–83761.CrossRef
14.
go back to reference Heidari, E., Movaghar, A., Motameni, H., & Barzegar, B. (2022). A novel approach for clustering and routing in WSN using genetic algorithm and equilibrium optimizer. International Journal of Communication Systems, 35, e5148.CrossRef Heidari, E., Movaghar, A., Motameni, H., & Barzegar, B. (2022). A novel approach for clustering and routing in WSN using genetic algorithm and equilibrium optimizer. International Journal of Communication Systems, 35, e5148.CrossRef
15.
go back to reference Sahoo, B. M., Pandey, H. M., & Amgoth, T. (2021). GAPSO-H: A hybrid approach towards optimizing the cluster based routing in wireless sensor network. Swarm and Evolutionary Computation, 60, 100772.CrossRef Sahoo, B. M., Pandey, H. M., & Amgoth, T. (2021). GAPSO-H: A hybrid approach towards optimizing the cluster based routing in wireless sensor network. Swarm and Evolutionary Computation, 60, 100772.CrossRef
16.
go back to reference Rajeswari, A. R., Kulothungan, K., Ganapathy, S., & Kannan, A. (2021). Trusted energy aware cluster based routing using fuzzy logic for WSN in IoT. Journal of Intelligent & Fuzzy Systems, 40(5), 9197–9211.CrossRef Rajeswari, A. R., Kulothungan, K., Ganapathy, S., & Kannan, A. (2021). Trusted energy aware cluster based routing using fuzzy logic for WSN in IoT. Journal of Intelligent & Fuzzy Systems, 40(5), 9197–9211.CrossRef
17.
go back to reference Wang, Z. X., Zhang, M., Gao, X., Wang, W., & Li, X. (2019). A clustering WSN routing protocol based on node energy and multipath. Cluster Computing, 22(3), 5811–5823.CrossRef Wang, Z. X., Zhang, M., Gao, X., Wang, W., & Li, X. (2019). A clustering WSN routing protocol based on node energy and multipath. Cluster Computing, 22(3), 5811–5823.CrossRef
18.
go back to reference Pandey, A., & Yadav, S. (2019). Physical-layer security for cellular multiuser two way relaying networks with single and multiple decode-and-forward relays. Transactions on Emerging Telecommunications Technologies, 30(12), e3639.CrossRef Pandey, A., & Yadav, S. (2019). Physical-layer security for cellular multiuser two way relaying networks with single and multiple decode-and-forward relays. Transactions on Emerging Telecommunications Technologies, 30(12), e3639.CrossRef
19.
go back to reference Yan, G., Liu, J., & Huang, B. (2018). Limits of control performance for distributed networked control systems in presence of communication delays. International Journal of Adaptive Control and Signal Processing, 32(9), 1282–1293.MathSciNetMATH Yan, G., Liu, J., & Huang, B. (2018). Limits of control performance for distributed networked control systems in presence of communication delays. International Journal of Adaptive Control and Signal Processing, 32(9), 1282–1293.MathSciNetMATH
20.
go back to reference Tsai, C. W., Chang, W. L., Hu, K. C., & Chiang, M. C. (2017). An improved hyper-heuristic clustering algorithm for wireless sensor networks. Mobile Networks and Applications, 22, 1–16.CrossRef Tsai, C. W., Chang, W. L., Hu, K. C., & Chiang, M. C. (2017). An improved hyper-heuristic clustering algorithm for wireless sensor networks. Mobile Networks and Applications, 22, 1–16.CrossRef
21.
go back to reference Rajakumar, R., Amudhavel, J., Dhavachelvan, P., & Vengattaraman, T. (2017). GWO-LPWSN: Grey wolf optimization algorithm for node localization problem in wireless sensor networks. Journal of Computer Networks and Communications. Rajakumar, R., Amudhavel, J., Dhavachelvan, P., & Vengattaraman, T. (2017). GWO-LPWSN: Grey wolf optimization algorithm for node localization problem in wireless sensor networks. Journal of Computer Networks and Communications.
22.
go back to reference Siddiqui, S., Ghani, S., & Khan, A. A. (2018). PD-MAC: Design and implementation of polling distribution-MAC for improving energy efficiency of wireless sensor networks. International Journal of Wireless Information Networks, 25(2), 200–208.CrossRef Siddiqui, S., Ghani, S., & Khan, A. A. (2018). PD-MAC: Design and implementation of polling distribution-MAC for improving energy efficiency of wireless sensor networks. International Journal of Wireless Information Networks, 25(2), 200–208.CrossRef
23.
go back to reference Rao, Y., Deng, C., Zhao, G., Qiao, Y., Fu, L. Y., Shao, X., & Wang, R. C. (2018). Self-adaptive implicit contention window adjustment mechanism for QoS optimization in wireless sensor networks. Journal of Network and Computer Applications, 109, 36–52.CrossRef Rao, Y., Deng, C., Zhao, G., Qiao, Y., Fu, L. Y., Shao, X., & Wang, R. C. (2018). Self-adaptive implicit contention window adjustment mechanism for QoS optimization in wireless sensor networks. Journal of Network and Computer Applications, 109, 36–52.CrossRef
24.
go back to reference Municio, E., Daneels, G., Vučinić, M., Latré, S., Famaey, J., Tanaka, Y., Brun, K., Muraoka, K., Vilajosana, X., & Watteyne, T. (2019). Simulating 6TiSCH networks. Transactions on Emerging Telecommunications Technologies, 30(3), e3494.CrossRef Municio, E., Daneels, G., Vučinić, M., Latré, S., Famaey, J., Tanaka, Y., Brun, K., Muraoka, K., Vilajosana, X., & Watteyne, T. (2019). Simulating 6TiSCH networks. Transactions on Emerging Telecommunications Technologies, 30(3), e3494.CrossRef
25.
go back to reference Sridevi Ponmalar, P., Kumar, V. J. S., & Harikrishnan, R. (2017). Hybrid firefly variants algorithm for localization optimization in WSN. International Journal of Computational Intelligence Systems, 10, 1263–1271.CrossRef Sridevi Ponmalar, P., Kumar, V. J. S., & Harikrishnan, R. (2017). Hybrid firefly variants algorithm for localization optimization in WSN. International Journal of Computational Intelligence Systems, 10, 1263–1271.CrossRef
26.
go back to reference Cerrone, C., D’Ambrosio, C., & Raiconi, A. (2019). Heuristics for the strong generalized minimum label spanning tree problem. Networks, 74(2), 148–160.MathSciNetCrossRef Cerrone, C., D’Ambrosio, C., & Raiconi, A. (2019). Heuristics for the strong generalized minimum label spanning tree problem. Networks, 74(2), 148–160.MathSciNetCrossRef
27.
go back to reference Nguyen, H. T., & Thai, N. H. (2019). Temporal and spatial outlier detection in wireless sensor networks. ETRI Journal, 41(4), 437–451.CrossRef Nguyen, H. T., & Thai, N. H. (2019). Temporal and spatial outlier detection in wireless sensor networks. ETRI Journal, 41(4), 437–451.CrossRef
28.
go back to reference Sapre, S., & Mini, S. (2018). Optimized relay nodes positioning to achieve full connectivity in wireless sensor networks. Wireless Personal Communications, 99(4), 1521–1540.CrossRef Sapre, S., & Mini, S. (2018). Optimized relay nodes positioning to achieve full connectivity in wireless sensor networks. Wireless Personal Communications, 99(4), 1521–1540.CrossRef
29.
go back to reference Mazinani, A., Mazinani, S. M., & Mirzaie, M. (2019). FMCR-CT: An energy-efficient fuzzy multi-cluster based routing withaconstant threshold in wireless sensor network. Alexandria Engineering Journal, 58(1), 127–141.CrossRef Mazinani, A., Mazinani, S. M., & Mirzaie, M. (2019). FMCR-CT: An energy-efficient fuzzy multi-cluster based routing withaconstant threshold in wireless sensor network. Alexandria Engineering Journal, 58(1), 127–141.CrossRef
30.
go back to reference Nadimi-Shahraki, M. H., Fatahi, A., Zamani, H., Mirjalili, S., & Oliva, D. (2022). Hybridizing of whale and moth-flame optimization algorithms to solve diverse scales of optimal power flow problem. Electronics, 11(5), 831.CrossRef Nadimi-Shahraki, M. H., Fatahi, A., Zamani, H., Mirjalili, S., & Oliva, D. (2022). Hybridizing of whale and moth-flame optimization algorithms to solve diverse scales of optimal power flow problem. Electronics, 11(5), 831.CrossRef
31.
go back to reference El-Ashmawi, W. H. (2018). An improved African buffalo optimization algorithm for collaborative team formation in social network. International Journal of Information Technology and Computer Science, 10, 16–29.CrossRef El-Ashmawi, W. H. (2018). An improved African buffalo optimization algorithm for collaborative team formation in social network. International Journal of Information Technology and Computer Science, 10, 16–29.CrossRef
32.
go back to reference Oliva, D., & Elaziz, M. A. (2020). An improved brainstorm optimization using chaotic opposite-based learning with disruption operator for global optimization and feature selection. Soft Computing, 24(18), 14051–14072.CrossRef Oliva, D., & Elaziz, M. A. (2020). An improved brainstorm optimization using chaotic opposite-based learning with disruption operator for global optimization and feature selection. Soft Computing, 24(18), 14051–14072.CrossRef
34.
go back to reference Lakshmanna, K., Subramani, N., Alotaibi, Y., Alghamdi, S., Khalafand, O. I., & Nanda, A. K. (2022). Improved metaheuristic-driven energy-aware cluster-based routing scheme for IoT-Assisted wireless sensor networks. Sustainability, 14, 7712. https://doi.org/10.3390/su14137712CrossRef Lakshmanna, K., Subramani, N., Alotaibi, Y., Alghamdi, S., Khalafand, O. I., & Nanda, A. K. (2022). Improved metaheuristic-driven energy-aware cluster-based routing scheme for IoT-Assisted wireless sensor networks. Sustainability, 14, 7712. https://​doi.​org/​10.​3390/​su14137712CrossRef
35.
go back to reference Rowshanrad, S., Keshtgary, M., & Javidan, R. (2014). MBC: A multihop balanced clustering routing protocol for wireless sensor networks. International Journal of Artificial Intelligence and Mechatronics, 2(6), 164–170. Rowshanrad, S., Keshtgary, M., & Javidan, R. (2014). MBC: A multihop balanced clustering routing protocol for wireless sensor networks. International Journal of Artificial Intelligence and Mechatronics, 2(6), 164–170.
36.
go back to reference Daniel, A., Balamurugan, K. M., Vijay, R., & Arjun, K. (2021). Energy aware clustering with multihop routing algorithm for wireless sensor networks. Intelligent Automation & Soft Computing, 29(1), 233–246.CrossRef Daniel, A., Balamurugan, K. M., Vijay, R., & Arjun, K. (2021). Energy aware clustering with multihop routing algorithm for wireless sensor networks. Intelligent Automation & Soft Computing, 29(1), 233–246.CrossRef
Metadata
Title
Improved African Buffalo Optimization-Based Energy Efficient Clustering Wireless Sensor Networks using Metaheuristic Routing Technique
Authors
Sweta Kumari Barnwal
Amit Prakash
Dilip Kumar Yadav
Publication date
02-04-2023
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 3/2023
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-023-10345-z

Other articles of this Issue 3/2023

Wireless Personal Communications 3/2023 Go to the issue