Skip to main content
Top
Published in: Journal of Materials Science 5/2017

02-11-2016 | Original Paper

Improved cycling stability of the capping agent-free nanocrystalline FeS2 cathode via an upper cut-off voltage control

Authors: Shuang Cheng, Jian Wang, Hongzhen Lin, Wanfei Li, Yongcai Qiu, Zhaozhao Zheng, Xinluo Zhao, Yuegang Zhang

Published in: Journal of Materials Science | Issue 5/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Transition metal chalcogenides such as FeS2 are promising electrode materials for energy storage. However, poor rate performance and low cycling stability hinder the practical application of FeS2 cathode in secondary batteries. In this study, highly pure pyrite FeS2 nanocrystals (NCs) with octahedral shape and 200–300 nm size have been synthesized via a facile and environmentally benign approach based on a surfactant-free aqueous reaction. Combined with a compatible ether electrolyte, the prepared FeS2 NCs, despite their dimension far beyond the quantum confined regime, could achieve high utilization and reversibility as a cathode active material due to the well-defined crystal structure and the uncapped rough surfaces. Furthermore, we find that the last charging voltage step of FeS2 only contributes a minor capacity but caused severe capacity fading due to the formation of soluble polysulfides. By suppressing this step through setting a proper upper cut-off voltage, the cycle life of the Li/FeS2 cell is dramatically improved. The Li/FeS2 cell running over a voltage window of 1.0–2.4 V at 1C delivers an initial capacity of 486.1 mA h g−1, slightly lower than that running over 1.0–3.0 V (561.1 mA h g−1), but outperforms the latter substantially after 500 cycles (367 mA h g−1 vs 315 mA h g−1), corresponding to a capacity decay rate as low as 0.048% per cycle. Our results provide a meaningful approach for the development of not only the advanced FeS2 material for long-life rechargeable batteries, but also other transition metal chalcogenide nanomaterials for a variety of potential applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Hu Z, Wang L, Zhang K et al (2014) MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew Chem Int Ed Engl 53:12794–12798CrossRef Hu Z, Wang L, Zhang K et al (2014) MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew Chem Int Ed Engl 53:12794–12798CrossRef
2.
go back to reference Wang Q, Xu Y, Xu G et al (2015) Synthesis of hierarchical NiO microsphere with waxberry-like structure and its enhanced lithium storage performance. J Alloy Compd 648:59–66CrossRef Wang Q, Xu Y, Xu G et al (2015) Synthesis of hierarchical NiO microsphere with waxberry-like structure and its enhanced lithium storage performance. J Alloy Compd 648:59–66CrossRef
3.
go back to reference Zhao B, Huang S, Wang T et al (2015) Hollow SnO2@Co3O4 core–shell spheres encapsulated in three-dimensional graphene foams for high performance supercapacitors and lithium-ion batteries. J Power Sources 298:83–91CrossRef Zhao B, Huang S, Wang T et al (2015) Hollow SnO2@Co3O4 core–shell spheres encapsulated in three-dimensional graphene foams for high performance supercapacitors and lithium-ion batteries. J Power Sources 298:83–91CrossRef
4.
go back to reference Drescher T, Niefind F, Bensch W et al (2012) Sulfide catalysis without coordinatively unsaturated sites: hydrogenation, cis–trans isomerization, and H2/D2 scrambling over MoS2 and WS2. J Am Chem Soc 134:18896–18899CrossRef Drescher T, Niefind F, Bensch W et al (2012) Sulfide catalysis without coordinatively unsaturated sites: hydrogenation, cistrans isomerization, and H2/D2 scrambling over MoS2 and WS2. J Am Chem Soc 134:18896–18899CrossRef
5.
go back to reference Feliz M, Llusar R, Uriel S et al (2005) Heterobimetallic cuboidal [Mo3NiS4] and [W3NiS4] cluster diphosphane complexes as molecular models in hydrodesulfurization catalysis. Polyhedron 24:1212–1220CrossRef Feliz M, Llusar R, Uriel S et al (2005) Heterobimetallic cuboidal [Mo3NiS4] and [W3NiS4] cluster diphosphane complexes as molecular models in hydrodesulfurization catalysis. Polyhedron 24:1212–1220CrossRef
6.
go back to reference Bi Y, Yuan Y, Exstrom CL et al (2011) Air stable, photosensitive, phase pure iron pyrite nanocrystal thin films for photovoltaic application. Nano Lett 11:4953–4957CrossRef Bi Y, Yuan Y, Exstrom CL et al (2011) Air stable, photosensitive, phase pure iron pyrite nanocrystal thin films for photovoltaic application. Nano Lett 11:4953–4957CrossRef
8.
go back to reference Macpherson HA, Stoldt CR (2012) Iron pyrite nanocubes: size and shape considerations for photovoltaic application. ACS Nano 6:8940–8949CrossRef Macpherson HA, Stoldt CR (2012) Iron pyrite nanocubes: size and shape considerations for photovoltaic application. ACS Nano 6:8940–8949CrossRef
9.
go back to reference Hébert S, Guilmeau E, Berthebaud D et al (2013) Transport and magnetic properties of highly densified CoS2 ceramic. J Appl Phys 114:103703–103708CrossRef Hébert S, Guilmeau E, Berthebaud D et al (2013) Transport and magnetic properties of highly densified CoS2 ceramic. J Appl Phys 114:103703–103708CrossRef
10.
go back to reference Evans T, Piper DM, Kim SC et al (2014) Ionic liquid enabled FeS2 for high-energy-density lithium-ion batteries. Adv Mater 26:7386–7392CrossRef Evans T, Piper DM, Kim SC et al (2014) Ionic liquid enabled FeS2 for high-energy-density lithium-ion batteries. Adv Mater 26:7386–7392CrossRef
11.
go back to reference Maier J (2013) Thermodynamics of electrochemical lithium storage. Angew Chem Int Ed Engl 52:4998–5026CrossRef Maier J (2013) Thermodynamics of electrochemical lithium storage. Angew Chem Int Ed Engl 52:4998–5026CrossRef
12.
go back to reference Nam KT, Kim D, Yoo PJ et al (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312:885–888CrossRef Nam KT, Kim D, Yoo PJ et al (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312:885–888CrossRef
13.
go back to reference Wen X, Wei X, Yang L et al (2015) Self-assembled FeS2 cubes anchored on reduced graphene oxide as an anode material for lithium ion batteries. J Mater Chem A 3:2090–2096CrossRef Wen X, Wei X, Yang L et al (2015) Self-assembled FeS2 cubes anchored on reduced graphene oxide as an anode material for lithium ion batteries. J Mater Chem A 3:2090–2096CrossRef
14.
go back to reference Chen X, Wang Z, Wang X et al (2005) Single-source approach to cubic FeS2 crystallites and their optical and electrochemical properties. Inorg Chem 44:951–954CrossRef Chen X, Wang Z, Wang X et al (2005) Single-source approach to cubic FeS2 crystallites and their optical and electrochemical properties. Inorg Chem 44:951–954CrossRef
15.
go back to reference Yoder TS, Tussing M, Cloud JE et al (2015) Resilient carbon encapsulation of iron pyrite FeS2 cathodes in lithium ion batteries. J Power Sources 274:685–692CrossRef Yoder TS, Tussing M, Cloud JE et al (2015) Resilient carbon encapsulation of iron pyrite FeS2 cathodes in lithium ion batteries. J Power Sources 274:685–692CrossRef
16.
go back to reference Hu Z, Zhang K, Zhu Z et al (2015) FeS2 microspheres with an ether-based electrolyte for high-performance rechargeable lithium batteries. J Mater Chem A 3:12898–12904CrossRef Hu Z, Zhang K, Zhu Z et al (2015) FeS2 microspheres with an ether-based electrolyte for high-performance rechargeable lithium batteries. J Mater Chem A 3:12898–12904CrossRef
17.
go back to reference Tan R, Yang J, Hu J et al (2016) Core-shell nano-FeS2@N-doped graphene as an advanced cathode material for rechargeable Li-ion batteries. Chem Commun 52:986–989CrossRef Tan R, Yang J, Hu J et al (2016) Core-shell nano-FeS2@N-doped graphene as an advanced cathode material for rechargeable Li-ion batteries. Chem Commun 52:986–989CrossRef
18.
go back to reference Zhu Y, Fan X, Suo L et al (2016) Electrospun FeS2@carbon fiber electrode as a high energy density cathode for rechargeable lithium batteries. ACS Nano 10:1529–1538CrossRef Zhu Y, Fan X, Suo L et al (2016) Electrospun FeS2@carbon fiber electrode as a high energy density cathode for rechargeable lithium batteries. ACS Nano 10:1529–1538CrossRef
19.
go back to reference Skwarek E, Bolbukh Y, Tertykh V et al (2016) Electrokinetic properties of the pristine and oxidized MWCNT depending on the electrolyte type and concentration. Nanoscale Res Lett 11:166–182CrossRef Skwarek E, Bolbukh Y, Tertykh V et al (2016) Electrokinetic properties of the pristine and oxidized MWCNT depending on the electrolyte type and concentration. Nanoscale Res Lett 11:166–182CrossRef
20.
go back to reference Zhu J, Chen C, Lu Y et al (2016) Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium–sulfur batteries. Carbon 101:272–280CrossRef Zhu J, Chen C, Lu Y et al (2016) Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium–sulfur batteries. Carbon 101:272–280CrossRef
21.
go back to reference Zhu J, Yanilmaz M, Fu K et al (2016) Understanding glass fiber membrane used as a novel separator for lithium–sulfur batteries. J Membr Sci 504:89–96CrossRef Zhu J, Yanilmaz M, Fu K et al (2016) Understanding glass fiber membrane used as a novel separator for lithium–sulfur batteries. J Membr Sci 504:89–96CrossRef
22.
go back to reference Li H, Yang X, Wang X et al (2016) A dual-spatially-confined reservoir by packing micropores within dense graphene for long-life lithium–sulfur batteries. Nanoscale 8:2395–2402CrossRef Li H, Yang X, Wang X et al (2016) A dual-spatially-confined reservoir by packing micropores within dense graphene for long-life lithium–sulfur batteries. Nanoscale 8:2395–2402CrossRef
23.
go back to reference Li H, Yang X, Wang X et al (2015) Dense integration of graphene and sulfur through the soft approach for compact lithium–sulfur battery cathode. Nano Energy 12:468–475CrossRef Li H, Yang X, Wang X et al (2015) Dense integration of graphene and sulfur through the soft approach for compact lithium–sulfur battery cathode. Nano Energy 12:468–475CrossRef
24.
go back to reference Liu J, Wen Y, Wang Y et al (2014) Carbon-encapsulated pyrite as stable and earth-abundant high energy cathode material for rechargeable lithium batteries. Adv Mater 26:6025–6030CrossRef Liu J, Wen Y, Wang Y et al (2014) Carbon-encapsulated pyrite as stable and earth-abundant high energy cathode material for rechargeable lithium batteries. Adv Mater 26:6025–6030CrossRef
25.
go back to reference Douglas A, Carter R, Oakes L et al (2015) Ultrafine iron pyrite FeS2 nanocrystals improve sodium–sulfur and lithium–sulfur conversion reactions for efficient batteries. ACS Nano 9:11156–11165CrossRef Douglas A, Carter R, Oakes L et al (2015) Ultrafine iron pyrite FeS2 nanocrystals improve sodium–sulfur and lithium–sulfur conversion reactions for efficient batteries. ACS Nano 9:11156–11165CrossRef
26.
go back to reference Zhang SS, Tran DT (2015) Electrochemical verification of the redox mechanism of FeS2 in a rechargeable lithium battery. Electrochim Acta 176:784–789CrossRef Zhang SS, Tran DT (2015) Electrochemical verification of the redox mechanism of FeS2 in a rechargeable lithium battery. Electrochim Acta 176:784–789CrossRef
27.
go back to reference Son S, Yersak TA, Piper DM et al (2014) A stabilized PAN-FeS2 cathode with an EC/DEC liquid electrolyte. Adv Energy Mater 4:1300961CrossRef Son S, Yersak TA, Piper DM et al (2014) A stabilized PAN-FeS2 cathode with an EC/DEC liquid electrolyte. Adv Energy Mater 4:1300961CrossRef
28.
go back to reference Berry N, Cheng M, Perkins CL et al (2012) Atmospheric-pressure chemical vapor deposition of iron pyrite thin films. Adv Energy Mater 2:1124–1135CrossRef Berry N, Cheng M, Perkins CL et al (2012) Atmospheric-pressure chemical vapor deposition of iron pyrite thin films. Adv Energy Mater 2:1124–1135CrossRef
29.
go back to reference Bai Y, Yeom J, Yang M et al (2013) Universal synthesis of single-phase pyrite FeS2 nanoparticles, nanowires, and nanosheets. J Phys Chem C 117:2567–2573CrossRef Bai Y, Yeom J, Yang M et al (2013) Universal synthesis of single-phase pyrite FeS2 nanoparticles, nanowires, and nanosheets. J Phys Chem C 117:2567–2573CrossRef
30.
go back to reference Li L, Caban-Acevedo M, Girard SN et al (2014) High-purity iron pyrite FeS2 nanowires as high-capacity nanostructured cathodes for lithium-ion batteries. Nanoscale 6:2112–2118CrossRef Li L, Caban-Acevedo M, Girard SN et al (2014) High-purity iron pyrite FeS2 nanowires as high-capacity nanostructured cathodes for lithium-ion batteries. Nanoscale 6:2112–2118CrossRef
31.
go back to reference Wang M, Xue D, Qin H et al (2016) Preparation of FeS2 nanotube arrays based on layer-by-layer assembly and their photoelectrochemical properties. Mater Sci Eng 204:38–44CrossRef Wang M, Xue D, Qin H et al (2016) Preparation of FeS2 nanotube arrays based on layer-by-layer assembly and their photoelectrochemical properties. Mater Sci Eng 204:38–44CrossRef
32.
go back to reference Kirkeminde A, Ruzicka BA, Wang R et al (2012) Synthesis and optoelectronic properties of two-dimensional FeS2 nanoplates. ACS Appl Mater Interfaces 4:1174–1177CrossRef Kirkeminde A, Ruzicka BA, Wang R et al (2012) Synthesis and optoelectronic properties of two-dimensional FeS2 nanoplates. ACS Appl Mater Interfaces 4:1174–1177CrossRef
33.
go back to reference Duan H, Zheng Y, Dong Y et al (2004) Pyrite FeS2 films prepared via sol–gel hydrothermal method combined with electrophoretic deposition (EPD). Mater Res Bull 39:1861–1868CrossRef Duan H, Zheng Y, Dong Y et al (2004) Pyrite FeS2 films prepared via sol–gel hydrothermal method combined with electrophoretic deposition (EPD). Mater Res Bull 39:1861–1868CrossRef
34.
go back to reference Huang L, Wang F, Luan Z et al (2010) Pyrite FeS2 thin films deposited by sol–gel method. Mater Lett 64:2612–2615CrossRef Huang L, Wang F, Luan Z et al (2010) Pyrite FeS2 thin films deposited by sol–gel method. Mater Lett 64:2612–2615CrossRef
35.
go back to reference Liu W, Rui X, Tan H et al (2014) Solvothermal synthesis of pyrite FeS2 nanocubes and their superior high rate lithium storage properties. RSC Adv 4:48770–48776CrossRef Liu W, Rui X, Tan H et al (2014) Solvothermal synthesis of pyrite FeS2 nanocubes and their superior high rate lithium storage properties. RSC Adv 4:48770–48776CrossRef
36.
go back to reference Wang D, Wang Q, Wang T (2010) Controlled growth of pyrite FeS2 crystallites by a facile surfactant-assisted solvothermal method. CrystEngComm 12:755–761CrossRef Wang D, Wang Q, Wang T (2010) Controlled growth of pyrite FeS2 crystallites by a facile surfactant-assisted solvothermal method. CrystEngComm 12:755–761CrossRef
37.
go back to reference Kim EJ, Batchelor B (2009) Synthesis and characterization of pyrite FeS2 using microwave irradiation. Mater Res Bull 44:1553–1558CrossRef Kim EJ, Batchelor B (2009) Synthesis and characterization of pyrite FeS2 using microwave irradiation. Mater Res Bull 44:1553–1558CrossRef
38.
go back to reference Bock DC, Kirshenbaum KC, Wang J et al (2015) 2D cross sectional analysis and associated electrochemistry of composite electrodes containing dispersed agglomerates of nanocrystalline magnetite, Fe3O4. ACS Appl Mater Interfaces 7:13457–13466CrossRef Bock DC, Kirshenbaum KC, Wang J et al (2015) 2D cross sectional analysis and associated electrochemistry of composite electrodes containing dispersed agglomerates of nanocrystalline magnetite, Fe3O4. ACS Appl Mater Interfaces 7:13457–13466CrossRef
39.
go back to reference Deshmukh R, Zeng G, Tervoort E et al (2015) Ultrasmall Cu3N nanoparticles: surfactant-free solution-phase synthesis, nitridation mechanism, and application for lithium storage. Chem Mater 27:8282–8288CrossRef Deshmukh R, Zeng G, Tervoort E et al (2015) Ultrasmall Cu3N nanoparticles: surfactant-free solution-phase synthesis, nitridation mechanism, and application for lithium storage. Chem Mater 27:8282–8288CrossRef
40.
go back to reference Kwon Y, Kim MG, Kim Y et al (2006) Effect of capping agents in tin nanoparticles on electrochemical cycling. Electrochem Solid State Lett 9:A34–A38CrossRef Kwon Y, Kim MG, Kim Y et al (2006) Effect of capping agents in tin nanoparticles on electrochemical cycling. Electrochem Solid State Lett 9:A34–A38CrossRef
41.
go back to reference Sisbandini C, Brandell D, Gustafsson Tr et al (2009) Effect of short-chain amine coatings on the performance of LiFePO4 li-ion battery cathodes. Electrochem Solid State Lett 12:A99–A101CrossRef Sisbandini C, Brandell D, Gustafsson Tr et al (2009) Effect of short-chain amine coatings on the performance of LiFePO4 li-ion battery cathodes. Electrochem Solid State Lett 12:A99–A101CrossRef
42.
go back to reference Liu H, Chen X, Deng L et al (2016) Preparation of ultrathin 2D MoS2/graphene heterostructure assembled foam-like structure with enhanced electrochemical performance for lithium-ion batteries. Electrochim Acta 206:184–191CrossRef Liu H, Chen X, Deng L et al (2016) Preparation of ultrathin 2D MoS2/graphene heterostructure assembled foam-like structure with enhanced electrochemical performance for lithium-ion batteries. Electrochim Acta 206:184–191CrossRef
43.
go back to reference Sen S, Dutta D, Bhattacharyya AJ (2015) Ultra-small sulphur nanoparticles configured inside a flexible organic mixed conducting network as a cathode for lithium–sulphur batteries. J Mater Chem A 3:20958–20965CrossRef Sen S, Dutta D, Bhattacharyya AJ (2015) Ultra-small sulphur nanoparticles configured inside a flexible organic mixed conducting network as a cathode for lithium–sulphur batteries. J Mater Chem A 3:20958–20965CrossRef
44.
go back to reference Jana D, Matti C, He J et al (2015) Capping agent-free gold nanostars show greatly increased versatility and sensitivity for biosensing. Anal Chem 87:3964–3972CrossRef Jana D, Matti C, He J et al (2015) Capping agent-free gold nanostars show greatly increased versatility and sensitivity for biosensing. Anal Chem 87:3964–3972CrossRef
45.
go back to reference Liu J, Du X, Yang Y et al (2015) A one-step, clean, capping-agent-free electrochemical approach to prepare Pt nanoparticles with preferential (100) orientation and their high electrocatalytic activities. Electrochem Commun 58:6–10CrossRef Liu J, Du X, Yang Y et al (2015) A one-step, clean, capping-agent-free electrochemical approach to prepare Pt nanoparticles with preferential (100) orientation and their high electrocatalytic activities. Electrochem Commun 58:6–10CrossRef
46.
go back to reference Yan J, Li H, Feng K et al (2016) Capping-agent-free synthesis of catkin-like cob microstrucutres composed of untrathin nanosheets and their catalytic performance in the hydrolysis of sodium borohydride. Int J Electrochem Sci 11:226–232 Yan J, Li H, Feng K et al (2016) Capping-agent-free synthesis of catkin-like cob microstrucutres composed of untrathin nanosheets and their catalytic performance in the hydrolysis of sodium borohydride. Int J Electrochem Sci 11:226–232
47.
go back to reference Song MK, Zhang Y, Cairns EJ (2013) A long-life, high-rate lithium–sulfur cell: a multifaceted approach to enhancing cell performance. Nano Lett 13:5891–5899CrossRef Song MK, Zhang Y, Cairns EJ (2013) A long-life, high-rate lithium–sulfur cell: a multifaceted approach to enhancing cell performance. Nano Lett 13:5891–5899CrossRef
48.
go back to reference Xu J, Xue H, Yang X et al (2014) Synthesis of honeycomb-like mesoporous pyrite FeS2 microspheres as efficient counter electrode in quantum dots sensitized solar cells. Small 10:4754–4759CrossRef Xu J, Xue H, Yang X et al (2014) Synthesis of honeycomb-like mesoporous pyrite FeS2 microspheres as efficient counter electrode in quantum dots sensitized solar cells. Small 10:4754–4759CrossRef
49.
go back to reference Shukla S, Xing G, Ge H et al (2016) Origin of photocarrier losses in iron pyrite FeS2 nanocubes. ACS Nano 10:4431–4440CrossRef Shukla S, Xing G, Ge H et al (2016) Origin of photocarrier losses in iron pyrite FeS2 nanocubes. ACS Nano 10:4431–4440CrossRef
50.
go back to reference Cai K, Song MK, Cairns EJ et al (2012) Nanostructured Li2S–C composites as cathode material for high-energy lithium–sulfur batteries. Nano Lett 12:6474–6479CrossRef Cai K, Song MK, Cairns EJ et al (2012) Nanostructured Li2S–C composites as cathode material for high-energy lithium–sulfur batteries. Nano Lett 12:6474–6479CrossRef
51.
go back to reference Chen H, Dong W, Ge J et al (2013) Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium–sulfur batteries. Sci Rep 3:1910–1915 Chen H, Dong W, Ge J et al (2013) Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium–sulfur batteries. Sci Rep 3:1910–1915
52.
go back to reference Qiu Y, Rong G, Yang J et al (2015) Highly nitridated graphene-Li2S cathodes with stable modulated cycles. Adv Energy Mater 5:1501369–1501376CrossRef Qiu Y, Rong G, Yang J et al (2015) Highly nitridated graphene-Li2S cathodes with stable modulated cycles. Adv Energy Mater 5:1501369–1501376CrossRef
53.
go back to reference Wang J, Cheng S, Li W et al (2016) Simultaneous optimization of surface chemistry and pore morphology of 3D graphene-sulfur cathode via multi-ion modulation. J Power Sources 321:193–200CrossRef Wang J, Cheng S, Li W et al (2016) Simultaneous optimization of surface chemistry and pore morphology of 3D graphene-sulfur cathode via multi-ion modulation. J Power Sources 321:193–200CrossRef
54.
go back to reference Pang Q, Kundu D, Cuisinier M et al (2014) Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium–sulphur batteries. Nat Commun 5:4706–4759CrossRef Pang Q, Kundu D, Cuisinier M et al (2014) Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium–sulphur batteries. Nat Commun 5:4706–4759CrossRef
Metadata
Title
Improved cycling stability of the capping agent-free nanocrystalline FeS2 cathode via an upper cut-off voltage control
Authors
Shuang Cheng
Jian Wang
Hongzhen Lin
Wanfei Li
Yongcai Qiu
Zhaozhao Zheng
Xinluo Zhao
Yuegang Zhang
Publication date
02-11-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 5/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0538-8

Other articles of this Issue 5/2017

Journal of Materials Science 5/2017 Go to the issue

Premium Partners