Skip to main content
Top

2020 | OriginalPaper | Chapter

Improved Differential-Linear Attacks with Applications to ARX Ciphers

Authors : Christof Beierle, Gregor Leander, Yosuke Todo

Published in: Advances in Cryptology – CRYPTO 2020

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present several improvements to the framework of differential-linear attacks with a special focus on ARX ciphers. As a demonstration of their impact, we apply them to Chaskey and ChaCha and we are able to significantly improve upon the best attacks published so far.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
After the submission of this paper, the authors of  [13] independently found the same distinguisher without applying the technique for improving over the differential part, and the presented attack complexities are very close to ours.
 
2
Under the assumption that the sets \(\{\langle \varGamma _{\mathrm{out}}, E(x) \rangle \oplus \langle \varGamma _{\mathrm{out}}, E(x \oplus \varDelta _{\mathrm{in}}) \rangle \mid x \in \mathcal {X}\}\) and \(\{\langle \varGamma _{\mathrm{out}}, E(x) \rangle \oplus \langle \varGamma _{\mathrm{out}}, E(x \oplus \varDelta _{\mathrm{in}}) \rangle \mid x \in \mathcal {S}\}\) are indistinguishable, where \(\mathcal {S}\) denotes a set of uniformly chosen samples of the same size as \(\mathcal {X}\).
 
3
Or at least with a cost much lower than \(p^{-1}\), see Sect. 3.2.
 
4
Of course, the discarded data has to be considered in the data complexity of the attack.
 
5
If \(|q_{i,j}|\) is not too small and if the number s of approximations is not too huge, we can empirically compute \(q_{i,j}\) for all ij. In other cases, we estimate \(q_{i,j} = \mathbf {Cor}_{x \in \mathcal {X} }\left[ \langle \varGamma _{\mathrm{out}}^{(p_i)},z \rangle \oplus \langle \varGamma _{\mathrm{out}}^{(p_j)},\tilde{z} \rangle \right] \) by assuming indistinguishability of the sets \(\{\langle \varGamma _{\mathrm{out}}^{(p_i)},z \rangle \oplus \langle \varGamma _{\mathrm{out}}^{(p_j)},\tilde{z} \rangle \mid x \in \mathcal {X} \text { s.t. } (y,\tilde{y}) \in \mathcal {T}_{p_i} \times \mathcal {T}_{p_j}\}\) and \(\{\langle \varGamma _{\mathrm{out}}^{(p_i)},z \rangle \oplus \langle \varGamma _{\mathrm{out}}^{(p_j)},\tilde{z} \rangle \mid x \in \mathcal {S}\}\), where \(\mathcal {S}\) is a set of uniformly random samples of \(\mathcal {X}\) of suitable size.
 
6
Note that we might choose different \((\varGamma _{\mathrm{out}}^{(b_0b_1)},\gamma ^{(b_0b_1)})\) for \(\mathcal {T}_{b_0b_1}\). For example, for https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-56877-1_12/503460_1_En_12_IEq319_HTML.gif , we might alternatively choose which is obtained from Lemma 2. To verify, note that \(\mathcal {S}_4 \subseteq \mathcal {S}_1\).
 
7
Note that \(\mathcal {P}\) is not necessarily a direct sum of \(\mathcal {P}_1\), \(\mathcal {P}_2\), and \(\mathcal {P}_3\). In other words, the dimension of \(\mathcal {P}\) might be smaller than 6, for instance if \(i=j\), i.e., \(\zeta _1 = \zeta _2\).
 
8
The first case is the exactly same as the one shown in [20], but its correlation was reported as \(2^{-6.1}\). We are not sure the reason of this gap, but we think that \(2^{-6.1}\) refers to the bias instead of the correlation.
 
9
It means that the success probability is \(0.489 \times 2 = 0.978\) under the condition that the right pair is successfully obtained during \(2^{17.206}\) iterations.
 
10
Note that it means that the success probability is \(0.499 \times 2 = 0.999\) under the condition that the right pair is successfully obtained during \(2^{7}\) iterations.
 
Literature
2.
go back to reference Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal Blake. In: Submission to NIST (2008) Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal Blake. In: Submission to NIST (2008)
5.
go back to reference Beierle, C., et al.: Lightweight AEAD and Hashing using the sparkle permutation family. IACR Trans. Symm. Cryptol. 2020(S1), 208–261 (2020) Beierle, C., et al.: Lightweight AEAD and Hashing using the sparkle permutation family. IACR Trans. Symm. Cryptol. 2020(S1), 208–261 (2020)
10.
go back to reference Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P. (eds.) Boolean Methods and Models. Cambridge University Press (2007) Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P. (eds.) Boolean Methods and Models. Cambridge University Press (2007)
11.
go back to reference Choudhuri, A.R., Maitra, S.: Significantly improved multi-bit differentials for reduced round Salsa and ChaCha. IACR Trans. Symm. Cryptol. 2016(2), 261–287 (2016) Choudhuri, A.R., Maitra, S.: Significantly improved multi-bit differentials for reduced round Salsa and ChaCha. IACR Trans. Symm. Cryptol. 2016(2), 261–287 (2016)
14.
go back to reference Dey, S., Sarkar, S.: Improved analysis for reduced round Salsa and ChaCha. Discrete Appl. Math. 227, 58–69 (2017)MathSciNetCrossRef Dey, S., Sarkar, S.: Improved analysis for reduced round Salsa and ChaCha. Discrete Appl. Math. 227, 58–69 (2017)MathSciNetCrossRef
16.
22.
24.
Metadata
Title
Improved Differential-Linear Attacks with Applications to ARX Ciphers
Authors
Christof Beierle
Gregor Leander
Yosuke Todo
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-56877-1_12

Premium Partner