Skip to main content
Top

2024 | OriginalPaper | Chapter

Improved Formability and Corrosion Resistance of Pure Magnesium by Parts-Per-Million-Level Addition of Copper and Calcium

Authors : Mingzhe Bian, Isao Nakatsugawa, Xinsheng Huang, Yasumasa Chino

Published in: Magnesium Technology 2024

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Poor cold formability, poor corrosion resistance, and high cost of alloying elements are longstanding barriers to the widespread use of magnesium (Mg) and its alloys. In this study, we demonstrated that both the room temperature (RT) stretch formability and corrosion resistance of commercially used pure Mg could be significantly improved by adding trace amounts of copper (Cu) and calcium (Ca). Owing to the addition of trace amounts of the alloying elements, the resultant alloy also showed excellent thermal conductivity, which is almost two times higher than that of the most commonly used Mg alloy (AZ31) and even higher than that of a commercial Al alloy (A5052). These findings are expected to stimulate the development of high-performance Mg alloys that can be used in portable electronic devices, automobile electronics, and household appliances.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Li, S., Yang, X., Hou, J., and Du, W. (2020) A review on thermal conductivity of magnesium and its alloys. J. Magnes. Alloy., 8 (1), 78–90.CrossRef Li, S., Yang, X., Hou, J., and Du, W. (2020) A review on thermal conductivity of magnesium and its alloys. J. Magnes. Alloy., 8 (1), 78–90.CrossRef
2.
go back to reference Hirsch, J., and Al-Samman, T. (2013) Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Mater., 61 (3), 818–843.CrossRef Hirsch, J., and Al-Samman, T. (2013) Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Mater., 61 (3), 818–843.CrossRef
3.
go back to reference Chino, Y., Kimura, K., and Mabuchi, M. (2009) Deformation characteristics at room temperature under biaxial tensile stress in textured AZ31 Mg alloy sheets. Acta Mater., 57 (5), 1476–1485.CrossRef Chino, Y., Kimura, K., and Mabuchi, M. (2009) Deformation characteristics at room temperature under biaxial tensile stress in textured AZ31 Mg alloy sheets. Acta Mater., 57 (5), 1476–1485.CrossRef
4.
go back to reference Lee, S.H., Ham, H.J., Kwon, S.Y., Kim, S.W., and Suh, C.M. (2013) Thermal Conductivity of Magnesium Alloys in the Temperature Range from −125 °C to 400 °C. Int. J. Thermophys., 34 (12), 2343–2350.CrossRef Lee, S.H., Ham, H.J., Kwon, S.Y., Kim, S.W., and Suh, C.M. (2013) Thermal Conductivity of Magnesium Alloys in the Temperature Range from −125 °C to 400 °C. Int. J. Thermophys., 34 (12), 2343–2350.CrossRef
5.
go back to reference Huang, X.S., Suzuki, K., Watazu, A., Shigematsu, I., and Saito, N. (2009) Improvement of formability of Mg–Al–Zn alloy sheet at low temperatures using differential speed rolling. J. Alloys Compd., 470 (1–2), 263–268.CrossRef Huang, X.S., Suzuki, K., Watazu, A., Shigematsu, I., and Saito, N. (2009) Improvement of formability of Mg–Al–Zn alloy sheet at low temperatures using differential speed rolling. J. Alloys Compd., 470 (1–2), 263–268.CrossRef
6.
go back to reference Huang, X., Bian, M., Nakatsugawa, I., Chino, Y., Sato, M., Yamazaki, K., Kido, F., Ueda, H., and Inoue, M. (2021) Simultaneously achieving excellent mechanical properties and high thermal conductivity in a high Mn-containing Mg–Zn–Ca–Al–Mn sheet alloy. J. Alloys Compd., 887, 161394.CrossRef Huang, X., Bian, M., Nakatsugawa, I., Chino, Y., Sato, M., Yamazaki, K., Kido, F., Ueda, H., and Inoue, M. (2021) Simultaneously achieving excellent mechanical properties and high thermal conductivity in a high Mn-containing Mg–Zn–Ca–Al–Mn sheet alloy. J. Alloys Compd., 887, 161394.CrossRef
7.
go back to reference Li, Z.H., Sasaki, T.T., Shiroyama, T., Miura, A., Uchida, K., and Hono, K. (2020) Simultaneous achievement of high thermal conductivity, high strength and formability in Mg–Zn–Ca–Zr sheet alloy. Mater. Res. Lett., 8 (9), 335–340.CrossRef Li, Z.H., Sasaki, T.T., Shiroyama, T., Miura, A., Uchida, K., and Hono, K. (2020) Simultaneous achievement of high thermal conductivity, high strength and formability in Mg–Zn–Ca–Zr sheet alloy. Mater. Res. Lett., 8 (9), 335–340.CrossRef
8.
go back to reference J.R. Davis, and Davis & Associates. (1993) Aluminum and aluminum alloys, ASM International. J.R. Davis, and Davis & Associates. (1993) Aluminum and aluminum alloys, ASM International.
9.
go back to reference Bian, M., Nakatsugawa, I., Matsuoka, Y., Huang, X., Tsukada, Y., Koyama, T., and Chino, Y. (2022) Improving the mechanical and corrosion properties of pure magnesium by parts-per-million-level alloying. Acta Mater., 241, 118393.CrossRef Bian, M., Nakatsugawa, I., Matsuoka, Y., Huang, X., Tsukada, Y., Koyama, T., and Chino, Y. (2022) Improving the mechanical and corrosion properties of pure magnesium by parts-per-million-level alloying. Acta Mater., 241, 118393.CrossRef
10.
go back to reference Tachi, H., Suzuki, K., Huang, X., Tsukada, Y., Koyama, T., and Chino, Y. (2021) Relationship between calculated segregation, texture and room temperature formability of binary magnesium alloys. J. Japan Inst. Met. Mater., 85 (10), 382–390.CrossRef Tachi, H., Suzuki, K., Huang, X., Tsukada, Y., Koyama, T., and Chino, Y. (2021) Relationship between calculated segregation, texture and room temperature formability of binary magnesium alloys. J. Japan Inst. Met. Mater., 85 (10), 382–390.CrossRef
11.
go back to reference Chino, Y., Huang, X., Suzuki, K., and Mabuchi, M. (2010) Enhancement of stretch formability at room temperature by addition of Ca in Mg-Zn alloy. Mater. Trans., 51 (4), 818–821.CrossRef Chino, Y., Huang, X., Suzuki, K., and Mabuchi, M. (2010) Enhancement of stretch formability at room temperature by addition of Ca in Mg-Zn alloy. Mater. Trans., 51 (4), 818–821.CrossRef
12.
go back to reference Chino, Y., Huang, X., Suzuki, K., Sassa, K., and Mabuchi, M. (2010) Influence of Zn concentration on stretch formability at room temperature of Mg–Zn–Ce alloy. Mater. Sci. Eng. A, 528 (2), 566–572.CrossRef Chino, Y., Huang, X., Suzuki, K., Sassa, K., and Mabuchi, M. (2010) Influence of Zn concentration on stretch formability at room temperature of Mg–Zn–Ce alloy. Mater. Sci. Eng. A, 528 (2), 566–572.CrossRef
13.
go back to reference Chino, Y., Sassa, K., and Mabuchi, M. (2009) Texture and stretch formability of a rolled Mg–Zn alloy containing dilute content of Y. Mater. Sci. Eng. A, 513–514, 394–400.CrossRef Chino, Y., Sassa, K., and Mabuchi, M. (2009) Texture and stretch formability of a rolled Mg–Zn alloy containing dilute content of Y. Mater. Sci. Eng. A, 513514, 394–400.CrossRef
14.
go back to reference Bian, M., Huang, X., Mabuchi, M., and Chino, Y. (2020) Compositional optimization of Mg–Zn–Sc sheet alloys for enhanced room temperature stretch formability. J. Alloys Compd., 818, 152891.CrossRef Bian, M., Huang, X., Mabuchi, M., and Chino, Y. (2020) Compositional optimization of Mg–Zn–Sc sheet alloys for enhanced room temperature stretch formability. J. Alloys Compd., 818, 152891.CrossRef
15.
go back to reference Bian, M., Huang, X., and Chino, Y. (2020) A combined experimental and numerical study on room temperature formable magnesium–silver–calcium alloys. J. Alloys Compd., 834, 155017.CrossRef Bian, M., Huang, X., and Chino, Y. (2020) A combined experimental and numerical study on room temperature formable magnesium–silver–calcium alloys. J. Alloys Compd., 834, 155017.CrossRef
16.
go back to reference Bian, M., Matsuoka, Y., Huang, X., Ishiguro, Y., Tsukada, Y., Koyama, T., and Chino, Y. (2023) Insights into the microstructures and mechanical properties of magnesium–calcium–transition elements: A combined experimental and simulation study. Acta Mater., 254, 118958.CrossRef Bian, M., Matsuoka, Y., Huang, X., Ishiguro, Y., Tsukada, Y., Koyama, T., and Chino, Y. (2023) Insights into the microstructures and mechanical properties of magnesium–calcium–transition elements: A combined experimental and simulation study. Acta Mater., 254, 118958.CrossRef
17.
go back to reference Hanawalt, J.P. (1942) Corrosion studies of magnesium and its alloys. Trans. AIME, 147, 273–299. Hanawalt, J.P. (1942) Corrosion studies of magnesium and its alloys. Trans. AIME, 147, 273–299.
Metadata
Title
Improved Formability and Corrosion Resistance of Pure Magnesium by Parts-Per-Million-Level Addition of Copper and Calcium
Authors
Mingzhe Bian
Isao Nakatsugawa
Xinsheng Huang
Yasumasa Chino
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-50240-8_5

Premium Partners