Skip to main content
Top
Published in: Journal of Materials Science 14/2017

24-04-2017 | Original Paper

Improved hydrogen desorption properties of MgH2 by graphite and NiF2 addition: experimental and first-principles investigations

Authors: J. Zhang, H. Qu, S. Yan, L. R. Yin, X. F. Yu, D. W. Zhou

Published in: Journal of Materials Science | Issue 14/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The high dehydrogenation temperature is still the impediment for the practical application of magnesium-based hydride (MgH2) as a potential hydrogen storage medium. In order to improve the hydrogen desorption properties of MgH2, the graphite and NiF2 are selected as additives, and the MgH2–graphite and MgH2–graphite–NiF2 composites are prepared by high-energy ball milling. Using experimental X-ray diffraction, scanning electron microscopy, differential scanning calorimetry characterizations and first-principle calculations, the effects and mechanisms of graphite and NiF2 addition on the hydrogen desorption properties of MgH2 are systematically investigated. Experimental results show that the single addition of graphite is beneficial to the refinement of MgH2 grains and particles. The size of MgH2 particles can be further decreased after the co-addition of graphite and NiF2. Either the single addition of graphite or the co-addition of graphite and NiF2 reduces the dehydrogenation temperature of MgH2. As compared with pure milled MgH2, the dehydrogenation peak temperatures are decreased by 31 and 63 °C for MgH2–graphite and MgH2–graphite–NiF2 composites, respectively. Apparently, the co-addition of graphite and NiF2 exhibits the synergistic catalytic effects in improving the hydrogen desorption properties of MgH2. The first-principle calculations reveal that the co-addition of graphite and NiF2 leads to the structural distortion of MgH2 and results in the charge transfer between the additives and MgH2, which induce the weakened structural stability and decreased dehydrogenation enthalpy of MgH2. These may be the underlying reasons for the reduced dehydrogenation temperature of MgH2 with graphite and NiF2 addition.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhou SX, Chen HP, Ding C, Niu HL, Zhang TH, Wang NF, Zhang QQ, Liu D, Han SN, Yu HG (2013) Effectiveness of crystallitic carbon from coal as milling aid and for hydrogen storage during milling with magnesium. Fuel 109:68–75CrossRef Zhou SX, Chen HP, Ding C, Niu HL, Zhang TH, Wang NF, Zhang QQ, Liu D, Han SN, Yu HG (2013) Effectiveness of crystallitic carbon from coal as milling aid and for hydrogen storage during milling with magnesium. Fuel 109:68–75CrossRef
2.
go back to reference Zhang LT, Chen LX, Xiao XZ, Fan XL, Shao J, Li SQ, Ge HW, Wang QD (2014) Fluorographene nanosheets enhanced hydrogen absorption and desorption performances of magnesium hydride. Int J Hydrogen Energy 39:12715–12726CrossRef Zhang LT, Chen LX, Xiao XZ, Fan XL, Shao J, Li SQ, Ge HW, Wang QD (2014) Fluorographene nanosheets enhanced hydrogen absorption and desorption performances of magnesium hydride. Int J Hydrogen Energy 39:12715–12726CrossRef
3.
go back to reference Wang H, Zhang SF, Liu JW, Ouyang LZ, Zhu M (2012) Enhanced dehydrogenation of nanoscale MgH2 confined by ordered mesoporous silica. Mater Chem Phys 136:146–150CrossRef Wang H, Zhang SF, Liu JW, Ouyang LZ, Zhu M (2012) Enhanced dehydrogenation of nanoscale MgH2 confined by ordered mesoporous silica. Mater Chem Phys 136:146–150CrossRef
4.
go back to reference Zou JX, Long S, Zeng XQ, Chen X, Ding WJ (2015) Preparation and hydrogen sorption properties of a Ni decorated Mg based Mg@Ni nano-composite. Int J Hydrogen Energy 40:1820–1828CrossRef Zou JX, Long S, Zeng XQ, Chen X, Ding WJ (2015) Preparation and hydrogen sorption properties of a Ni decorated Mg based Mg@Ni nano-composite. Int J Hydrogen Energy 40:1820–1828CrossRef
5.
go back to reference Lin HJ, Matsuda J, Li HW, Zhu M, Akiba E (2015) Enhanced hydrogen desorption property of MgH2 with the addition of cerium fluorides. J Alloys Compd 645:S392–S396CrossRef Lin HJ, Matsuda J, Li HW, Zhu M, Akiba E (2015) Enhanced hydrogen desorption property of MgH2 with the addition of cerium fluorides. J Alloys Compd 645:S392–S396CrossRef
6.
go back to reference Zhang JG, Zhu YF, Zang XX, Huan QQ, Su W, Zhu DL, Li LQ (2016) Nickel-decorated graphene nanoplates for enhanced H2 sorption properties of magnesium hydride at moderate temperatures. J Mater Chem A 4:2560–2570CrossRef Zhang JG, Zhu YF, Zang XX, Huan QQ, Su W, Zhu DL, Li LQ (2016) Nickel-decorated graphene nanoplates for enhanced H2 sorption properties of magnesium hydride at moderate temperatures. J Mater Chem A 4:2560–2570CrossRef
7.
go back to reference Jia Y, Sun CG, Peng Y, Fang WQ, Yan XC, Yang DJ, Zou J, Mao SS, Yao XD (2015) Metallic Ni nanocatalyst in situ formed from a metal–organic-framework by mechanochemical reaction for hydrogen storage in magnesium. J Mater Chem A 3:8294–8299CrossRef Jia Y, Sun CG, Peng Y, Fang WQ, Yan XC, Yang DJ, Zou J, Mao SS, Yao XD (2015) Metallic Ni nanocatalyst in situ formed from a metal–organic-framework by mechanochemical reaction for hydrogen storage in magnesium. J Mater Chem A 3:8294–8299CrossRef
8.
go back to reference Hwang SJ, Chuang YS (2016) Enhanced hydrogen storage properties of MgH2 co–catalyzed with zirconium oxide and single–walled carbon nanotubes. J Alloys Compd 664:284–290CrossRef Hwang SJ, Chuang YS (2016) Enhanced hydrogen storage properties of MgH2 co–catalyzed with zirconium oxide and single–walled carbon nanotubes. J Alloys Compd 664:284–290CrossRef
9.
go back to reference Hudson MSL, Takahashi K, Ramesh A, Awasthi S, Ghosh AK, Ravindran P, Srivastava ON (2016) Graphene decorated with Fe nanoclusters for improving the hydrogen sorption kinetics of MgH2-experimental and theoretical evidence. Catal Sci Technol 6:261–268CrossRef Hudson MSL, Takahashi K, Ramesh A, Awasthi S, Ghosh AK, Ravindran P, Srivastava ON (2016) Graphene decorated with Fe nanoclusters for improving the hydrogen sorption kinetics of MgH2-experimental and theoretical evidence. Catal Sci Technol 6:261–268CrossRef
10.
go back to reference Popilevsky L, Skripnyuk VM, Beregovsky M, Sezen M, Amouyal Y, Rabkin E (2016) Hydrogen storage and thermal transport properties of pelletized porous Mg–2 wt% multiwall carbon nanotubes and Mg–2 wt% graphite composites. Int J Hydrogen Energy 41:14461–14474CrossRef Popilevsky L, Skripnyuk VM, Beregovsky M, Sezen M, Amouyal Y, Rabkin E (2016) Hydrogen storage and thermal transport properties of pelletized porous Mg–2 wt% multiwall carbon nanotubes and Mg–2 wt% graphite composites. Int J Hydrogen Energy 41:14461–14474CrossRef
11.
go back to reference Zhao WF, Fang M, Wu FR, Wu H, Wang LW, Chen GH (2010) Preparation of graphene by exfoliation of graphite using wet ball milling. J Mater Chem 20:5817–5819CrossRef Zhao WF, Fang M, Wu FR, Wu H, Wang LW, Chen GH (2010) Preparation of graphene by exfoliation of graphite using wet ball milling. J Mater Chem 20:5817–5819CrossRef
12.
go back to reference Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244CrossRef Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244CrossRef
13.
go back to reference Delley B (1991) Analytic energy derivatives in the numerical local-density-functional approach. J Chem Phys 94:7245–7250CrossRef Delley B (1991) Analytic energy derivatives in the numerical local-density-functional approach. J Chem Phys 94:7245–7250CrossRef
14.
go back to reference Pack JD (1977) Special points for Brillouin-zone integrations–a reply. Phys Rev B 16:1748CrossRef Pack JD (1977) Special points for Brillouin-zone integrations–a reply. Phys Rev B 16:1748CrossRef
15.
go back to reference Wagemans RWP, van Lenthe JH, de Jongh PE, Jos van Dillen A, de Jong KP (2005) Hydrogen storage in magnesium clusters: quantum chemical study. J Am Chem Soc 127:16675–16680CrossRef Wagemans RWP, van Lenthe JH, de Jongh PE, Jos van Dillen A, de Jong KP (2005) Hydrogen storage in magnesium clusters: quantum chemical study. J Am Chem Soc 127:16675–16680CrossRef
16.
go back to reference Jin SA, Shim JH, Cho YW, Yi KW (2007) Dehydrogenation and hydrogenation characteristics of MgH2 with transition metal fluorides. J Power Sources 172:859–862CrossRef Jin SA, Shim JH, Cho YW, Yi KW (2007) Dehydrogenation and hydrogenation characteristics of MgH2 with transition metal fluorides. J Power Sources 172:859–862CrossRef
17.
go back to reference Liang G, Huot J, Boily S, Van Neste A, Schulz R (1999) Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm = Ti, V, Mn, Fe and Ni) systems. J Alloys Compd 292:247–252CrossRef Liang G, Huot J, Boily S, Van Neste A, Schulz R (1999) Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm = Ti, V, Mn, Fe and Ni) systems. J Alloys Compd 292:247–252CrossRef
18.
go back to reference Deledda S, Borissova A, Poinsignon C, Bottaa WJ, Dornheimb M, Klassen T (2005) H-sorption in MgH2 nanocomposites containing Fe or Ni with fluorine. J Alloys Compd 404:409–412CrossRef Deledda S, Borissova A, Poinsignon C, Bottaa WJ, Dornheimb M, Klassen T (2005) H-sorption in MgH2 nanocomposites containing Fe or Ni with fluorine. J Alloys Compd 404:409–412CrossRef
19.
go back to reference Li L, Zhang ZC, Jiao LF, Yuan HT, Wang YZ (2016) In situ preparation of nanocrystalline Ni@C and its effect on hydrogen storage properties of MgH2. Int J Hydrogen Energy 41:18121–18129CrossRef Li L, Zhang ZC, Jiao LF, Yuan HT, Wang YZ (2016) In situ preparation of nanocrystalline Ni@C and its effect on hydrogen storage properties of MgH2. Int J Hydrogen Energy 41:18121–18129CrossRef
20.
go back to reference Gasan H, Celik ON, Aydinbeyli N, Yaman YM (2012) Effect of V, Nb, Ti and graphite additions on the hydrogen desorption temperature of magnesium hydride. Int J Hydrogen Energy 37:1912–1918CrossRef Gasan H, Celik ON, Aydinbeyli N, Yaman YM (2012) Effect of V, Nb, Ti and graphite additions on the hydrogen desorption temperature of magnesium hydride. Int J Hydrogen Energy 37:1912–1918CrossRef
21.
go back to reference Yu H, Bennici S, Auroux A (2014) Hydrogen storage and release: kinetic and thermodynamic studies of MgH2 activated by transition metal nanoparticles. Int J Hydrogen Energy 39:11633–11641CrossRef Yu H, Bennici S, Auroux A (2014) Hydrogen storage and release: kinetic and thermodynamic studies of MgH2 activated by transition metal nanoparticles. Int J Hydrogen Energy 39:11633–11641CrossRef
22.
go back to reference Zhang J, Sun LQ, Zhou YC, Peng P (2015) Dehydrogenation thermodynamics of magnesium hydride doped with transition metals: experimental and theoretical studies. Comput Mater Sci 98:211–219CrossRef Zhang J, Sun LQ, Zhou YC, Peng P (2015) Dehydrogenation thermodynamics of magnesium hydride doped with transition metals: experimental and theoretical studies. Comput Mater Sci 98:211–219CrossRef
23.
go back to reference Wang JC, Du Y, Sun LX, Li XH (2014) Effects of F and Cl on the stability of MgH2. Int J Hydrogen Energy 39:877–883CrossRef Wang JC, Du Y, Sun LX, Li XH (2014) Effects of F and Cl on the stability of MgH2. Int J Hydrogen Energy 39:877–883CrossRef
24.
go back to reference Zhang J, Qu H, Wu G, Song LB, Yu XF, Zhou DW (2016) Remarkably enhanced dehydrogenation properties and mechanisms of MgH2 by sequential-doping of nickel and graphene. Int J Hydrogen Energy 41:17433–17441CrossRef Zhang J, Qu H, Wu G, Song LB, Yu XF, Zhou DW (2016) Remarkably enhanced dehydrogenation properties and mechanisms of MgH2 by sequential-doping of nickel and graphene. Int J Hydrogen Energy 41:17433–17441CrossRef
25.
Metadata
Title
Improved hydrogen desorption properties of MgH2 by graphite and NiF2 addition: experimental and first-principles investigations
Authors
J. Zhang
H. Qu
S. Yan
L. R. Yin
X. F. Yu
D. W. Zhou
Publication date
24-04-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 14/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1097-3

Other articles of this Issue 14/2017

Journal of Materials Science 14/2017 Go to the issue

Premium Partners