Skip to main content
Top
Published in: Journal of Electroceramics 3/2018

27-02-2018

Improved magnetic properties of bismuth ferrite ceramics by La and Gd co-substitution

Authors: Mehmet S. Bozgeyik, Rajesh K. Katiyar, Ram S. Katiyar

Published in: Journal of Electroceramics | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Increased magnetic properties of La and Gd substituted bismuth ferrite (Bi0.9La0.1Fe1-xGdxO3) (BLFGO) ceramics are reported. Considering perovskite structure of bismuth ferrite (BiFeO3), Bi and Fe sites were partially substituted by La and Gd, respectively. These materials were synthesized by conventional solid state reaction method. Crystal structure and phase purity were confirmed by X-ray diffraction and Raman scattering spectroscopy at room temperature. A considerable improved ferromagnetic properties with double remnant magnetization of 0.184 emu/g was observed by increasing Gd ratio up to 5%. With different ionic sizes and due to magnetic moment of Gd, an induced deformation of spin cycloid structure had thereby resulted in net magnetization. Also, we monitor some decrease in dielectric loss upon La and Gd substitutions. Additionally, these ceramics showed significant magnetoelectric coupling. Such improvements on magnetic, insulation, and magnetoelectric properties demonstrated the potential of BLFGO for possible multiferroic device applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Bibes, A. Barthelemy, Multiferroics: Towards a magnetoelectric memory. Nat. Mater. 7(6), 425–426 (2008)CrossRef M. Bibes, A. Barthelemy, Multiferroics: Towards a magnetoelectric memory. Nat. Mater. 7(6), 425–426 (2008)CrossRef
2.
go back to reference I. Busch-Vishniac, Trends in electromechanical transduction. J. Acoust. Soc. Am. 103(5), 2860–2860 (1998)CrossRef I. Busch-Vishniac, Trends in electromechanical transduction. J. Acoust. Soc. Am. 103(5), 2860–2860 (1998)CrossRef
3.
go back to reference W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442(7104), 759–765 (2006)CrossRef W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442(7104), 759–765 (2006)CrossRef
4.
go back to reference N. Fujimura et al., Epitaxially grown YMnO3 film: New candidate for nonvolatile memory devices. Appl. Phys. Lett. 69(7), 1011–1013 (1996)CrossRef N. Fujimura et al., Epitaxially grown YMnO3 film: New candidate for nonvolatile memory devices. Appl. Phys. Lett. 69(7), 1011–1013 (1996)CrossRef
5.
go back to reference R. Ramesh, N.A. Spaldin, Multiferroics: Progress and prospects in thin films. Nat. Mater. 6(1), 21–29 (2007)CrossRef R. Ramesh, N.A. Spaldin, Multiferroics: Progress and prospects in thin films. Nat. Mater. 6(1), 21–29 (2007)CrossRef
6.
go back to reference V.E. Wood et al., Magnetoelectric Interaction Phenomena in Crystals (Gordon and Breach, London, 1975) V.E. Wood et al., Magnetoelectric Interaction Phenomena in Crystals (Gordon and Breach, London, 1975)
7.
go back to reference H. Zheng et al., Controlling self-assembled perovskite-spinel nanostructures. Nano Lett. 6(7), 1401–1407 (2006)CrossRef H. Zheng et al., Controlling self-assembled perovskite-spinel nanostructures. Nano Lett. 6(7), 1401–1407 (2006)CrossRef
8.
go back to reference Y. Li et al., Multiferroic properties of sputtered BiFeO3 thin films. Appl. Phys. Lett. 92(13), 132908–132908 (2008)CrossRef Y. Li et al., Multiferroic properties of sputtered BiFeO3 thin films. Appl. Phys. Lett. 92(13), 132908–132908 (2008)CrossRef
9.
go back to reference J. Wang et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299(5613), 1719–1722 (2003)CrossRef J. Wang et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299(5613), 1719–1722 (2003)CrossRef
10.
go back to reference F. Kubel, H. Schmid, Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Crystallogr. Sect. B: Struct. Sci. 46(6), 698–702 (1990)CrossRef F. Kubel, H. Schmid, Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Crystallogr. Sect. B: Struct. Sci. 46(6), 698–702 (1990)CrossRef
11.
go back to reference E. Palaimiene et al., Dielectric investigations of polycrystalline samarium bismuth ferrite ceramic. Appl. Phys. Lett. 106(1) (2015) E. Palaimiene et al., Dielectric investigations of polycrystalline samarium bismuth ferrite ceramic. Appl. Phys. Lett. 106(1) (2015)
12.
go back to reference B. Ruette et al., Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: Cycloidal to homogeneous spin order. Phys. Rev. B 69(6) (2004) B. Ruette et al., Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: Cycloidal to homogeneous spin order. Phys. Rev. B 69(6) (2004)
13.
go back to reference T.D. Rao, S. Asthana, Evidence of improved ferroelectric phase stabilization in Nd and Sc co-substituted BiFeO3. J. Appl. Phys. 116(16), 164102 (2014)CrossRef T.D. Rao, S. Asthana, Evidence of improved ferroelectric phase stabilization in Nd and Sc co-substituted BiFeO3. J. Appl. Phys. 116(16), 164102 (2014)CrossRef
14.
go back to reference D.H. Kuang et al., Thickness dependent ferroelectric and magnetic properties of Bi0.9Gd0.1Fe0.9Co0.1O3 films prepared by RF magnetron sputtering. J. Magn. Magn. Mater. 397, 33–38 (2016)CrossRef D.H. Kuang et al., Thickness dependent ferroelectric and magnetic properties of Bi0.9Gd0.1Fe0.9Co0.1O3 films prepared by RF magnetron sputtering. J. Magn. Magn. Mater. 397, 33–38 (2016)CrossRef
15.
go back to reference A.K. Tagantsev et al., Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features. J. Appl. Phys. 90(3), 1387–1402 (2001)CrossRef A.K. Tagantsev et al., Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features. J. Appl. Phys. 90(3), 1387–1402 (2001)CrossRef
16.
go back to reference M. Kumar, K.L. Yadav, Study of room temperature magnetoelectric coupling in Ti substituted bismuth ferrite system. J. Appl. Phys. 100(7), 074111 (2006)CrossRef M. Kumar, K.L. Yadav, Study of room temperature magnetoelectric coupling in Ti substituted bismuth ferrite system. J. Appl. Phys. 100(7), 074111 (2006)CrossRef
17.
go back to reference X.D. Qi et al., Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phys. Lett. 86(6), 062903 (2005)CrossRef X.D. Qi et al., Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phys. Lett. 86(6), 062903 (2005)CrossRef
18.
go back to reference C. Tabares-Mun̄oz et al., Measurement of the quadratic magnetoelectric effect on single crystalline BiFeO3. Jpn. J. Appl. Phys. 24(S2), 1051 (1985)CrossRef C. Tabares-Mun̄oz et al., Measurement of the quadratic magnetoelectric effect on single crystalline BiFeO3. Jpn. J. Appl. Phys. 24(S2), 1051 (1985)CrossRef
19.
go back to reference R. Przenioslo, M. Regulski, I. Sosnowska, Modulation in multiferroic BiFeO3: Cycloidal, elliptical or SDW? J. Phys. Soc. Jpn. 75(8), 084718 (2006)CrossRef R. Przenioslo, M. Regulski, I. Sosnowska, Modulation in multiferroic BiFeO3: Cycloidal, elliptical or SDW? J. Phys. Soc. Jpn. 75(8), 084718 (2006)CrossRef
20.
go back to reference I. Sosnowska, T. Peterlinneumaier, E. Steichele, Spiral magnetic-ordering in bismuth ferrite. J. Phys. C-Solid State Physics 15(23), 4835–4846 (1982)CrossRef I. Sosnowska, T. Peterlinneumaier, E. Steichele, Spiral magnetic-ordering in bismuth ferrite. J. Phys. C-Solid State Physics 15(23), 4835–4846 (1982)CrossRef
21.
go back to reference K.S. Nalwa, A. Garg, Phase evolution, magnetic and electrical properties in Sm-doped bismuth ferrite. J. Appl. Phys. 103(4), 044101 (2008)CrossRef K.S. Nalwa, A. Garg, Phase evolution, magnetic and electrical properties in Sm-doped bismuth ferrite. J. Appl. Phys. 103(4), 044101 (2008)CrossRef
22.
go back to reference K.F. Wang, J.M. Liu, Z.F. Ren, Multiferroicity: The coupling between magnetic and polarization orders. Adv. Phys. 58(4), 321–448 (2009)CrossRef K.F. Wang, J.M. Liu, Z.F. Ren, Multiferroicity: The coupling between magnetic and polarization orders. Adv. Phys. 58(4), 321–448 (2009)CrossRef
23.
go back to reference P. Yang et al., Effect of BaTiO3 buffer layer on multiferroic properties of BiFeO3 thin films. J. Appl. Phys. 105(6), 061618 (2009)CrossRef P. Yang et al., Effect of BaTiO3 buffer layer on multiferroic properties of BiFeO3 thin films. J. Appl. Phys. 105(6), 061618 (2009)CrossRef
24.
go back to reference C. Ederer, N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71(6), 060401 (2005)CrossRef C. Ederer, N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71(6), 060401 (2005)CrossRef
25.
go back to reference K. Praveena et al., Structural, multiferroic properties and enhanced magnetoelectric coupling in Sm1-xCaxFeO3. Ceram. Int. 42(12), 13572–13585 (2016)CrossRef K. Praveena et al., Structural, multiferroic properties and enhanced magnetoelectric coupling in Sm1-xCaxFeO3. Ceram. Int. 42(12), 13572–13585 (2016)CrossRef
26.
go back to reference S. Madolappa et al., Improved electrical characteristics of Pr-doped BiFeO3 ceramics prepared by sol-gel route. Mater. Res. Express 3(6), 065009 (2016)CrossRef S. Madolappa et al., Improved electrical characteristics of Pr-doped BiFeO3 ceramics prepared by sol-gel route. Mater. Res. Express 3(6), 065009 (2016)CrossRef
27.
go back to reference V.A. Khomchenko et al., Doping strategies for increased performance in BiFeO3. J. Magn. Magn. Mater. 321(11), 1692–1698 (2009)CrossRef V.A. Khomchenko et al., Doping strategies for increased performance in BiFeO3. J. Magn. Magn. Mater. 321(11), 1692–1698 (2009)CrossRef
28.
go back to reference T.J. Park et al., Composition-dependent magnetic properties of BiFeO3-BaTiO3 solid solution nanostructures. Phys. Rev. B 82(2), 024431 (2010)CrossRef T.J. Park et al., Composition-dependent magnetic properties of BiFeO3-BaTiO3 solid solution nanostructures. Phys. Rev. B 82(2), 024431 (2010)CrossRef
29.
go back to reference H. Ishiwara, Impurity substitution effects in BiFeO3 thin films-from a viewpoint of FeRAM applications. Curr. Appl. Phys. 12(3), 603–611 (2012)CrossRef H. Ishiwara, Impurity substitution effects in BiFeO3 thin films-from a viewpoint of FeRAM applications. Curr. Appl. Phys. 12(3), 603–611 (2012)CrossRef
30.
go back to reference Y.K. Jun et al., Effects of Nb-doping on electric and magnetic properties in multi-ferroic BiFeO3 ceramics. Solid State Commun. 135(1–2), 133–137 (2005)CrossRef Y.K. Jun et al., Effects of Nb-doping on electric and magnetic properties in multi-ferroic BiFeO3 ceramics. Solid State Commun. 135(1–2), 133–137 (2005)CrossRef
31.
go back to reference V.R. Palkar et al., Magnetoelectricity at room temperature in the Bi0.9-xTbxLa0.1FeO3 system. Phys. Rev. B 69(21), 212102 (2004)CrossRef V.R. Palkar et al., Magnetoelectricity at room temperature in the Bi0.9-xTbxLa0.1FeO3 system. Phys. Rev. B 69(21), 212102 (2004)CrossRef
32.
go back to reference V.R. Palkar, K. Prashanthi, Observation of magnetoelectric coupling in Bi(0.7)Dy(0.3)FeO(3) thin films at room temperature. Appl. Phys. Lett. 93(13), 132906 (2008)CrossRef V.R. Palkar, K. Prashanthi, Observation of magnetoelectric coupling in Bi(0.7)Dy(0.3)FeO(3) thin films at room temperature. Appl. Phys. Lett. 93(13), 132906 (2008)CrossRef
33.
go back to reference S. Madolappa et al., Magnetic and ferroelectric characteristics of Gd3+ and Ti4+ co-doped BiFeO3 ceramics. Bull. Mater. Sci. 39(2), 593–601 (2016)CrossRef S. Madolappa et al., Magnetic and ferroelectric characteristics of Gd3+ and Ti4+ co-doped BiFeO3 ceramics. Bull. Mater. Sci. 39(2), 593–601 (2016)CrossRef
34.
go back to reference Y.H. Gu et al., Structural transformation and multiferroic properties of Sm and Ti co-doped BiFeO3 ceramics with Fe vacancies. Ceram. Int. 43(17), 14666–14671 (2017)CrossRef Y.H. Gu et al., Structural transformation and multiferroic properties of Sm and Ti co-doped BiFeO3 ceramics with Fe vacancies. Ceram. Int. 43(17), 14666–14671 (2017)CrossRef
35.
go back to reference M. Amin et al., Multiferroicity in sol-gel synthesized Sr/Mn co-doped BiFeO3 nanoparticles. J. Mater. Sci. - Mater. Electron. 28(22), 17234–17244 (2017)CrossRef M. Amin et al., Multiferroicity in sol-gel synthesized Sr/Mn co-doped BiFeO3 nanoparticles. J. Mater. Sci. - Mater. Electron. 28(22), 17234–17244 (2017)CrossRef
36.
go back to reference A.K. Vishwakarma et al., Band gap engineering of Gd and Co doped BiFeO3 and their application in hydrogen production through photoelectrochemical route. Int. J. Hydrog. Energy 42(36), 22677–22686 (2017)CrossRef A.K. Vishwakarma et al., Band gap engineering of Gd and Co doped BiFeO3 and their application in hydrogen production through photoelectrochemical route. Int. J. Hydrog. Energy 42(36), 22677–22686 (2017)CrossRef
37.
go back to reference J. Anthoniappen et al., Electric field induced nanoscale polarization switching and piezoresponse in Sm and Mn co-doped BiFeO3 multiferroic ceramics by using piezoresponse force microscopy. Acta Mater. 132, 174–181 (2017)CrossRef J. Anthoniappen et al., Electric field induced nanoscale polarization switching and piezoresponse in Sm and Mn co-doped BiFeO3 multiferroic ceramics by using piezoresponse force microscopy. Acta Mater. 132, 174–181 (2017)CrossRef
38.
go back to reference S. Irfan et al., Band-gap engineering and enhanced photocatalytic activity of Sm and Mn doped BiFeO3 nanoparticles. J. Am. Ceram. Soc. 100(1), 31–40 (2017)CrossRef S. Irfan et al., Band-gap engineering and enhanced photocatalytic activity of Sm and Mn doped BiFeO3 nanoparticles. J. Am. Ceram. Soc. 100(1), 31–40 (2017)CrossRef
39.
go back to reference Z. Cheng, et al., J. Appl. Phys. 103, 07E507 (2008) Z. Cheng, et al., J. Appl. Phys. 103, 07E507 (2008)
40.
go back to reference R.Q. Guo et al., Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles. J. Phys. Chem. C 114(49), 21390–21396 (2010)CrossRef R.Q. Guo et al., Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles. J. Phys. Chem. C 114(49), 21390–21396 (2010)CrossRef
41.
go back to reference P.R. Vanga, R.V. Mangalaraja, M. Ashok, Effect of co-doping on the optical, magnetic and photocatalytic properties of the Gd modified BiFeO3. J. Mater. Sci. - Mater. Electron. 27(6), 5699–5706 (2016)CrossRef P.R. Vanga, R.V. Mangalaraja, M. Ashok, Effect of co-doping on the optical, magnetic and photocatalytic properties of the Gd modified BiFeO3. J. Mater. Sci. - Mater. Electron. 27(6), 5699–5706 (2016)CrossRef
42.
go back to reference P. Suresh, P.D. Babu, S. Srinath, Role of (La, Gd) co-doping on the enhanced dielectric and magnetic properties of BiFeO3 ceramics. Ceram. Int. 42(3), 4176–4184 (2016)CrossRef P. Suresh, P.D. Babu, S. Srinath, Role of (La, Gd) co-doping on the enhanced dielectric and magnetic properties of BiFeO3 ceramics. Ceram. Int. 42(3), 4176–4184 (2016)CrossRef
43.
go back to reference Q.H. Jiang, C.W. Nan, Z.J. Shen, Synthesis and properties of multiferroic la-modified BiFeO3 ceramics. J. Am. Ceram. Soc. 89(7), 2123–2127 (2006) Q.H. Jiang, C.W. Nan, Z.J. Shen, Synthesis and properties of multiferroic la-modified BiFeO3 ceramics. J. Am. Ceram. Soc. 89(7), 2123–2127 (2006)
44.
go back to reference Y.R. Song et al., Appl. Phys. Lett. 100, 242403 (2012) Y.R. Song et al., Appl. Phys. Lett. 100, 242403 (2012)
45.
go back to reference R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32(5), 751–767 (1976)CrossRef R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32(5), 751–767 (1976)CrossRef
46.
go back to reference G. Arya, R.K. Kotnala, N.S. Negi, A novel approach to improve properties of BiFeO3 Nanomultiferroics. J. Am. Ceram. Soc. 97(5), 1475–1480 (2014)CrossRef G. Arya, R.K. Kotnala, N.S. Negi, A novel approach to improve properties of BiFeO3 Nanomultiferroics. J. Am. Ceram. Soc. 97(5), 1475–1480 (2014)CrossRef
47.
go back to reference R. Haumont, J. Kreisel, P. Bouvier, Raman scattering of the model multiferroic oxide BiFeO3: Effect of temperature, pressure and stress. Phase Transit. 79(12), 1043–1064 (2006)CrossRef R. Haumont, J. Kreisel, P. Bouvier, Raman scattering of the model multiferroic oxide BiFeO3: Effect of temperature, pressure and stress. Phase Transit. 79(12), 1043–1064 (2006)CrossRef
48.
go back to reference W.B. White, The structure of particles and the structure of crystals: Information from vibrational spectroscopy. J. Ceram. Process. Res. 6(1), 1–9 (2005) W.B. White, The structure of particles and the structure of crystals: Information from vibrational spectroscopy. J. Ceram. Process. Res. 6(1), 1–9 (2005)
49.
go back to reference A.Z. Simoes et al., Strain behavior of lanthanum modified BiFeO3 thin films prepared via soft chemical method. J. Appl. Phys. 104(10), 104115 (2008) A.Z. Simoes et al., Strain behavior of lanthanum modified BiFeO3 thin films prepared via soft chemical method. J. Appl. Phys. 104(10), 104115 (2008)
50.
go back to reference K. Praveena et al., Enhanced magnetic domain relaxation frequency and low power losses in Zn2+ substituted manganese ferrites potential for high frequency applications. J. Magn. Magn. Mater. 420, 129–142 (2016)CrossRef K. Praveena et al., Enhanced magnetic domain relaxation frequency and low power losses in Zn2+ substituted manganese ferrites potential for high frequency applications. J. Magn. Magn. Mater. 420, 129–142 (2016)CrossRef
51.
go back to reference P. Kumar, C. Panda, M. Kar, Effect of rhombohedral to orthorhombic transition on magnetic and dielectric properties of La and Ti co-substituted BiFeO3. Smart Mater. Struct. 24(4), 045028 (2015)CrossRef P. Kumar, C. Panda, M. Kar, Effect of rhombohedral to orthorhombic transition on magnetic and dielectric properties of La and Ti co-substituted BiFeO3. Smart Mater. Struct. 24(4), 045028 (2015)CrossRef
52.
go back to reference T.J. Park et al., Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7(3), 766–772 (2007)CrossRef T.J. Park et al., Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7(3), 766–772 (2007)CrossRef
53.
go back to reference A. Jaiswal et al., Effect of reduced particle size on the magnetic properties of chemically synthesized BiFeO3 nanocrystals. J. Phys. Chem. C 114(5), 2108–2115 (2010)CrossRef A. Jaiswal et al., Effect of reduced particle size on the magnetic properties of chemically synthesized BiFeO3 nanocrystals. J. Phys. Chem. C 114(5), 2108–2115 (2010)CrossRef
54.
go back to reference D. Kothari et al., Raman scattering study of polycrystalline magnetoelectric BiFeO3. J. Magn. Magn. Mater. 320(3–4), 548–552 (2008)CrossRef D. Kothari et al., Raman scattering study of polycrystalline magnetoelectric BiFeO3. J. Magn. Magn. Mater. 320(3–4), 548–552 (2008)CrossRef
55.
go back to reference Y. Yang et al., High pressure Raman investigations of multiferroic BiFeO3. J. Phys. Condens. Matter 21(38) (2009) Y. Yang et al., High pressure Raman investigations of multiferroic BiFeO3. J. Phys. Condens. Matter 21(38) (2009)
56.
go back to reference S. Mandal et al., X-ray photoelectron spectroscopic investigation on the elemental chemical shifts in multiferroic BiFeO3 and its valence band structure. Solid State Sci. 12(10), 1803–1808 (2010)CrossRef S. Mandal et al., X-ray photoelectron spectroscopic investigation on the elemental chemical shifts in multiferroic BiFeO3 and its valence band structure. Solid State Sci. 12(10), 1803–1808 (2010)CrossRef
57.
go back to reference W. Eerenstein et al., Comment on" Epitaxial BiFeO3 multiferroic thin film heterostructures". Science 307(5713), 1203 (2005)CrossRef W. Eerenstein et al., Comment on" Epitaxial BiFeO3 multiferroic thin film heterostructures". Science 307(5713), 1203 (2005)CrossRef
58.
go back to reference L. Fang et al., Experimental and theoretical evidence of enhanced ferromagnetism in sonochemical synthesized BiFeO3 nanoparticles. Appl. Phys. Lett. 97(24), 242501 (2010)CrossRef L. Fang et al., Experimental and theoretical evidence of enhanced ferromagnetism in sonochemical synthesized BiFeO3 nanoparticles. Appl. Phys. Lett. 97(24), 242501 (2010)CrossRef
59.
go back to reference Z.X. Cheng et al., A way to enhance the magnetic moment of multiferroic bismuth ferrite. J. Phys. D. Appl. Phys. 43(24), 242001 (2010)CrossRef Z.X. Cheng et al., A way to enhance the magnetic moment of multiferroic bismuth ferrite. J. Phys. D. Appl. Phys. 43(24), 242001 (2010)CrossRef
60.
go back to reference S.R. Das et al., Structural and multiferroic properties of La-modified BiFeO3 ceramics. J. Appl. Phys. 101(3), 034104 (2007)CrossRef S.R. Das et al., Structural and multiferroic properties of La-modified BiFeO3 ceramics. J. Appl. Phys. 101(3), 034104 (2007)CrossRef
61.
go back to reference Z.B. Xing et al., Structural, Raman, and dielectric studies on Multiferroic Mn-doped Bi1-xLaxFeO3 ceramics. J. Am. Ceram. Soc. 97(7), 2323–2330 (2014)CrossRef Z.B. Xing et al., Structural, Raman, and dielectric studies on Multiferroic Mn-doped Bi1-xLaxFeO3 ceramics. J. Am. Ceram. Soc. 97(7), 2323–2330 (2014)CrossRef
Metadata
Title
Improved magnetic properties of bismuth ferrite ceramics by La and Gd co-substitution
Authors
Mehmet S. Bozgeyik
Rajesh K. Katiyar
Ram S. Katiyar
Publication date
27-02-2018
Publisher
Springer US
Published in
Journal of Electroceramics / Issue 3/2018
Print ISSN: 1385-3449
Electronic ISSN: 1573-8663
DOI
https://doi.org/10.1007/s10832-018-0126-1

Other articles of this Issue 3/2018

Journal of Electroceramics 3/2018 Go to the issue