Skip to main content
Top
Published in: Designs, Codes and Cryptography 8/2019

20-10-2018

Improved Singleton bound on frequency hopping sequences and optimal constructions

Authors: Xing Liu, Liang Zhou

Published in: Designs, Codes and Cryptography | Issue 8/2019

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Frequency hopping (FH) sequences play an important role in FH spread spectrum communication systems. In this paper, a new theoretical bound on the FH sequences with respect to the size of the frequency slot set, the sequence length, the family size, and the maximum periodic Hamming correlation is established. The new bound is tighter than the Singleton bounds on the FH sequences derived by Ding et al. (IEEE Trans Inf Theory 55:3297–3304, 2009) and Yang et al. (IEEE Trans Inf Theory 57:7605–7613, 2011) (first by Sarwate in: Glisic and Leppanen (eds) Code division multiple access communications, Springer, Boston, 1995). In addition, the new bound employes the M\(\ddot{\text {o}}\)bius function. Then, more optimal FH sequence sets are obtained from Reed–Solomon codes. By utilizing the properties of cyclic codes, a new class of optimal FH sequence sets is obtained whose parameters meet the new bound. Further, two new constructions of FH sequence sets are presented. More new FH sequence sets are obtained by choosing proper base sequence sets. Meanwhile, the FH sequence sets constructed are optimal with respect to the new bound.
Literature
1.
3.
go back to reference Chung J.H., Gong G., Yang K.: New families of optimal frequency-hopping sequences of composite lengths. IEEE Trans. Inf. Theory 60, 3688–3697 (2014).MathSciNetCrossRefMATH Chung J.H., Gong G., Yang K.: New families of optimal frequency-hopping sequences of composite lengths. IEEE Trans. Inf. Theory 60, 3688–3697 (2014).MathSciNetCrossRefMATH
4.
go back to reference Chung J.H., Han Y.K., Yang K.: New classes of optimal frequency-hopping sequences by interleaving techniques. IEEE Trans. Inf. Theory 45, 5783–5791 (2009).MathSciNetCrossRefMATH Chung J.H., Han Y.K., Yang K.: New classes of optimal frequency-hopping sequences by interleaving techniques. IEEE Trans. Inf. Theory 45, 5783–5791 (2009).MathSciNetCrossRefMATH
5.
6.
go back to reference Ding C., Fuji-Hara R., Fujiwara Y., Jimbo M., Mishima M.: Sets of frequency hopping sequences: bounds and optimal constructions. IEEE Trans. Inf. Theory 55, 3297–3304 (2009).MathSciNetCrossRefMATH Ding C., Fuji-Hara R., Fujiwara Y., Jimbo M., Mishima M.: Sets of frequency hopping sequences: bounds and optimal constructions. IEEE Trans. Inf. Theory 55, 3297–3304 (2009).MathSciNetCrossRefMATH
7.
go back to reference Ding C., Moisio M.J., Yuan J.: Algebraic constructions of optimal frequency-hopping sequences. IEEE Trans. Inf. Theory 53, 2606–2610 (2007).MathSciNetCrossRefMATH Ding C., Moisio M.J., Yuan J.: Algebraic constructions of optimal frequency-hopping sequences. IEEE Trans. Inf. Theory 53, 2606–2610 (2007).MathSciNetCrossRefMATH
8.
go back to reference Ding C., Yang Y., Tang X.H.: Optimal sets of frequency hopping sequences from linear cyclic codes. IEEE Trans. Inf. Theory 55, 3605–3612 (2010).MathSciNetCrossRefMATH Ding C., Yang Y., Tang X.H.: Optimal sets of frequency hopping sequences from linear cyclic codes. IEEE Trans. Inf. Theory 55, 3605–3612 (2010).MathSciNetCrossRefMATH
9.
go back to reference Fan P.Z., Darnell M.: Sequence Design for Communications Applications. Research Studies Press (RSP), John Wiley and Sons, London (1996). Fan P.Z., Darnell M.: Sequence Design for Communications Applications. Research Studies Press (RSP), John Wiley and Sons, London (1996).
10.
go back to reference Fan P.Z., Lee M.H., Peng D.Y.: New family of hopping sequences for time/frequency-hopping CDMA systems. IEEE Trans. Wirel. Commun. 4, 2836–2842 (2005).CrossRef Fan P.Z., Lee M.H., Peng D.Y.: New family of hopping sequences for time/frequency-hopping CDMA systems. IEEE Trans. Wirel. Commun. 4, 2836–2842 (2005).CrossRef
11.
go back to reference Fuji-Hara R., Miao Y., Mishima M.: Optimal frequency hopping sequences: a combinatorial approach. IEEE Trans. Inf. Theory 50, 2408–2420 (2004).MathSciNetCrossRefMATH Fuji-Hara R., Miao Y., Mishima M.: Optimal frequency hopping sequences: a combinatorial approach. IEEE Trans. Inf. Theory 50, 2408–2420 (2004).MathSciNetCrossRefMATH
12.
go back to reference Ge G., Miao Y., Yao Z.: Optimal frequency hopping sequences: auto- and cross-correlation properties. IEEE Trans. Inf. Theory 55, 867–879 (2009).MathSciNetCrossRefMATH Ge G., Miao Y., Yao Z.: Optimal frequency hopping sequences: auto- and cross-correlation properties. IEEE Trans. Inf. Theory 55, 867–879 (2009).MathSciNetCrossRefMATH
13.
go back to reference Golomb S.W.: A mathematical theory of discrete classification. In: Proc. 4th London Symp. Information Theory. London, UK, pp. 404–425 (1961). Golomb S.W.: A mathematical theory of discrete classification. In: Proc. 4th London Symp. Information Theory. London, UK, pp. 404–425 (1961).
14.
go back to reference Golomb S.W., Gong G.: Signal Design for Good Correlation: For Wireless Communication, Cryptography and Radar. Cambridge University Press, Cambridge (2005).CrossRefMATH Golomb S.W., Gong G.: Signal Design for Good Correlation: For Wireless Communication, Cryptography and Radar. Cambridge University Press, Cambridge (2005).CrossRefMATH
16.
go back to reference Kumar P.V.: Frequency-hopping code sequence designs having large linear span. IEEE Trans. Inf. Theory 34, 146–151 (1988).MathSciNetCrossRef Kumar P.V.: Frequency-hopping code sequence designs having large linear span. IEEE Trans. Inf. Theory 34, 146–151 (1988).MathSciNetCrossRef
17.
go back to reference Lam A.W., Sarwate D.V.: Time-hopping and frequency-hopping multiple-access packet communications. IEEE Trans. Commun. 38, 875–888 (1990).CrossRef Lam A.W., Sarwate D.V.: Time-hopping and frequency-hopping multiple-access packet communications. IEEE Trans. Commun. 38, 875–888 (1990).CrossRef
18.
go back to reference Lempel A., Greenberger H.: Families of sequences with optimal Hamming correlation properties. IEEE Trans. Inf. Theory 20, 90–94 (1974).MathSciNetCrossRefMATH Lempel A., Greenberger H.: Families of sequences with optimal Hamming correlation properties. IEEE Trans. Inf. Theory 20, 90–94 (1974).MathSciNetCrossRefMATH
19.
go back to reference Ling S., Xing C.: Coding Theory: A First Course. Cambridge University Press, Cambridge (2004).CrossRef Ling S., Xing C.: Coding Theory: A First Course. Cambridge University Press, Cambridge (2004).CrossRef
20.
go back to reference Liu X., Peng D.Y.: Sets of frequency hopping sequences under aperiodic Hamming correlation: upper bound and optimal constructions. Adv. Math. Commun. 8, 359–373 (2014).MathSciNetCrossRefMATH Liu X., Peng D.Y.: Sets of frequency hopping sequences under aperiodic Hamming correlation: upper bound and optimal constructions. Adv. Math. Commun. 8, 359–373 (2014).MathSciNetCrossRefMATH
21.
go back to reference Liu X., Peng D.Y.: Frequency hopping sequences with optimal aperiodic Hamming correlation by interleaving techniques. Adv. Math. Commun. 11, 151–159 (2017).MathSciNetCrossRefMATH Liu X., Peng D.Y.: Frequency hopping sequences with optimal aperiodic Hamming correlation by interleaving techniques. Adv. Math. Commun. 11, 151–159 (2017).MathSciNetCrossRefMATH
22.
go back to reference Liu X., Peng D.Y., Han H.Y.: Low-hit-zone frequency hopping sequence sets with optimal partial Hamming correlation properties. Des. Codes Cryptogr. 73, 167–176 (2014).MathSciNetCrossRefMATH Liu X., Peng D.Y., Han H.Y.: Low-hit-zone frequency hopping sequence sets with optimal partial Hamming correlation properties. Des. Codes Cryptogr. 73, 167–176 (2014).MathSciNetCrossRefMATH
23.
go back to reference Liu X., Zhou L.: New bound on partial Hamming correlation of low-hit-zone frequency hopping sequences and optimal constructions. IEEE Commun. Lett. 22, 878–881 (2018).CrossRef Liu X., Zhou L.: New bound on partial Hamming correlation of low-hit-zone frequency hopping sequences and optimal constructions. IEEE Commun. Lett. 22, 878–881 (2018).CrossRef
24.
go back to reference Liu X., Zhou L., Zeng Q.: No-hit-zone frequency hopping sequence sets with respect to aperiodic Hamming correlation. Electron. Lett. 54, 212–213 (2018).CrossRef Liu X., Zhou L., Zeng Q.: No-hit-zone frequency hopping sequence sets with respect to aperiodic Hamming correlation. Electron. Lett. 54, 212–213 (2018).CrossRef
25.
go back to reference Peng D.Y., Fan P.Z.: Lower bounds on the Hamming auto- and cross correlations of frequency-hopping sequences. IEEE Trans. Inf. Theory 50, 2149–2154 (2004).MathSciNetCrossRefMATH Peng D.Y., Fan P.Z.: Lower bounds on the Hamming auto- and cross correlations of frequency-hopping sequences. IEEE Trans. Inf. Theory 50, 2149–2154 (2004).MathSciNetCrossRefMATH
26.
go back to reference Sarwate D.V.: Optimum PN sequences for CDMA systems. In: Glisic S.G., Leppanen P.A. (eds.) Code Division Multiple Access Communications, pp. 53–78. Springer, Boston, MA (1995).CrossRef Sarwate D.V.: Optimum PN sequences for CDMA systems. In: Glisic S.G., Leppanen P.A. (eds.) Code Division Multiple Access Communications, pp. 53–78. Springer, Boston, MA (1995).CrossRef
27.
go back to reference Song H.Y., Reed I.S., Golomb S.W.: On the nonperiodic cyclic equivalent classes of Reed-Solomon codes. IEEE Trans. Inf. Theory 39, 1431–1434 (1993).CrossRefMATH Song H.Y., Reed I.S., Golomb S.W.: On the nonperiodic cyclic equivalent classes of Reed-Solomon codes. IEEE Trans. Inf. Theory 39, 1431–1434 (1993).CrossRefMATH
28.
go back to reference Udaya P., Siddiqi M.U.: Optimal large linear span frequency hopping patterns derived from polynomial residue class rings. IEEE Trans. Inf. Theory 44, 1492–1503 (1998).CrossRefMATH Udaya P., Siddiqi M.U.: Optimal large linear span frequency hopping patterns derived from polynomial residue class rings. IEEE Trans. Inf. Theory 44, 1492–1503 (1998).CrossRefMATH
29.
30.
go back to reference Yang Y., Tang X.H., Udaya P., Peng D.Y.: New bound on frequency hopping sequence sets and its optimal constructions. IEEE Trans. Inf. Theory 57, 7605–7613 (2011).MathSciNetCrossRefMATH Yang Y., Tang X.H., Udaya P., Peng D.Y.: New bound on frequency hopping sequence sets and its optimal constructions. IEEE Trans. Inf. Theory 57, 7605–7613 (2011).MathSciNetCrossRefMATH
31.
go back to reference Zeng X.Y., Cai H., Tang X.H., Yang Y.: A class of optimal frequency hopping sequences with new parameters. IEEE Trans. Inf. Theory 58, 4899–4907 (2012).MathSciNetCrossRefMATH Zeng X.Y., Cai H., Tang X.H., Yang Y.: A class of optimal frequency hopping sequences with new parameters. IEEE Trans. Inf. Theory 58, 4899–4907 (2012).MathSciNetCrossRefMATH
32.
go back to reference Zeng X.Y., Cai H., Tang X.H., Yang Y.: Optimal frequency hopping sequences of odd length. IEEE Trans. Inf. Theory 59, 3237–3248 (2013).MathSciNetCrossRefMATH Zeng X.Y., Cai H., Tang X.H., Yang Y.: Optimal frequency hopping sequences of odd length. IEEE Trans. Inf. Theory 59, 3237–3248 (2013).MathSciNetCrossRefMATH
33.
go back to reference Zhou Z.C., Tang X.H., Peng D.Y., Udaya P.: New constructions for optimal sets of frequency-hopping sequences. IEEE Trans. Inf. Theory 57, 3831–3840 (2011).MathSciNetCrossRefMATH Zhou Z.C., Tang X.H., Peng D.Y., Udaya P.: New constructions for optimal sets of frequency-hopping sequences. IEEE Trans. Inf. Theory 57, 3831–3840 (2011).MathSciNetCrossRefMATH
Metadata
Title
Improved Singleton bound on frequency hopping sequences and optimal constructions
Authors
Xing Liu
Liang Zhou
Publication date
20-10-2018
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 8/2019
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-018-0572-4

Other articles of this Issue 8/2019

Designs, Codes and Cryptography 8/2019 Go to the issue

Premium Partner