Skip to main content
Top
Published in:
Cover of the book

2022 | OriginalPaper | Chapter

1. Improved Theoretical and Numerical Approaches for Solving Linear and Nonlinear Dynamic Systems

Authors : Fang Pan, Dai Liming, Wang Kexin, Wang Luyao

Published in: Nonlinear Approaches in Engineering Application

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Complex dynamic systems are described by differential dynamic equations, mostly nonlinear without closed form analytic solution. To solve them numerically, there are many methods such as Euler’s method, Taylor-series method and Runge-Kutta method, etc., each with advantages and disadvantages. In this chapter, a novel analytical and numerical methodology for the solutions of linear and nonlinear dynamical systems is introduced. The piecewise constant argument method combined with the Laplace transform, makes the new method called Piecewise constant argument-Laplace transform (PL). This method provides better reliability and efficiency for solving coupled dynamic systems. In addition, the numerical solutions of linear and nonlinear dynamic systems can be obtained smoothly and continuously on the entire time range from zero to t. The numerical results of the analytical solution of the method are given and compared with the results of the 4th-order Runge-Kutta (RK4) method, and the accuracy and reliability of the PL method are verified.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abukhaled MI, Allen EJ. A class of second-order Runge-Kutta methods for numerical solution of stochastic differential equations. Stochastic Analysis & Applications. 1998, 16(6):977–991.MathSciNetCrossRef Abukhaled MI, Allen EJ. A class of second-order Runge-Kutta methods for numerical solution of stochastic differential equations. Stochastic Analysis & Applications. 1998, 16(6):977–991.MathSciNetCrossRef
2.
go back to reference Cai ZF, Kou KI. Laplace transform: a new approach in solving linear quaternion differential equations. Mathematical Methods in the Applied Sciences. 2018, 41(11):4033–48.MathSciNetCrossRef Cai ZF, Kou KI. Laplace transform: a new approach in solving linear quaternion differential equations. Mathematical Methods in the Applied Sciences. 2018, 41(11):4033–48.MathSciNetCrossRef
3.
go back to reference Chen Z, Qiu Z, Li J. Two-derivative Runge-Kutta-Nyström methods for second-order ordinary differential equations. 2015, 70(4):897–927. Chen Z, Qiu Z, Li J. Two-derivative Runge-Kutta-Nyström methods for second-order ordinary differential equations. 2015, 70(4):897–927.
4.
go back to reference Butcher, JC. Numerical Methods for Ordinary Differential Equations. Ussr Computational Mathematics & Mathematical Physics. 2010, 53:153–170.MathSciNetMATH Butcher, JC. Numerical Methods for Ordinary Differential Equations. Ussr Computational Mathematics & Mathematical Physics. 2010, 53:153–170.MathSciNetMATH
5.
go back to reference Dai LM. Nonlinear Dynamics of Piecewise Constant Systems and Implementation of Piecewise Constant Arguments: World Scientific; 2008. Dai LM. Nonlinear Dynamics of Piecewise Constant Systems and Implementation of Piecewise Constant Arguments: World Scientific; 2008.
6.
go back to reference Iserles A, Ramaswami G and Mathematics M. Runge-Kutta methods for quadratic ordinary differential equations. Bit Numerical Mathematics. 1998, 38(2):315–46.MathSciNetCrossRef Iserles A, Ramaswami G and Mathematics M. Runge-Kutta methods for quadratic ordinary differential equations. Bit Numerical Mathematics. 1998, 38(2):315–46.MathSciNetCrossRef
7.
go back to reference Hussain, Kasim A, Ismail F. Fourth-Order Improved Runge-Kutta Method for Directly Solving Special Third-Order Ordinary Differential Equations. Iranian journal of ence and technology. transaction a, 2017,41:429–437.MathSciNetMATH Hussain, Kasim A, Ismail F. Fourth-Order Improved Runge-Kutta Method for Directly Solving Special Third-Order Ordinary Differential Equations. Iranian journal of ence and technology. transaction a, 2017,41:429–437.MathSciNetMATH
8.
go back to reference Ji XY, Zhou J. Solving High-Order Uncertain Differential Equations via Runge-Kutta Method. IEEE Transactions on Fuzzy Systems 2017:1–11. Ji XY, Zhou J. Solving High-Order Uncertain Differential Equations via Runge-Kutta Method. IEEE Transactions on Fuzzy Systems 2017:1–11.
9.
go back to reference Kanagarajan K, Suresh R, Mathematics A. Runge-Kutta method for solving fuzzy differential equations under generalized differentiability. 2016, 14(14):1–12. Kanagarajan K, Suresh R, Mathematics A. Runge-Kutta method for solving fuzzy differential equations under generalized differentiability. 2016, 14(14):1–12.
10.
go back to reference Forcrand PD, Jäger B. Taylor expansion and the Cauchy Residue Theorem for finite-density QCD. The 36th Annual International Symposium on Lattice Field Theory. 2018. Forcrand PD, Jäger B. Taylor expansion and the Cauchy Residue Theorem for finite-density QCD. The 36th Annual International Symposium on Lattice Field Theory. 2018.
11.
go back to reference Zingg DW, Chisholm TT. Runge-Kutta methods for linear ordinary differential equations. Applied Numerical Mathematics 1999, 31:227–238.MathSciNetCrossRef Zingg DW, Chisholm TT. Runge-Kutta methods for linear ordinary differential equations. Applied Numerical Mathematics 1999, 31:227–238.MathSciNetCrossRef
12.
go back to reference Zhang CY, Chen L. A symplectic partitioned Runge-Kutta method using the eighth-order NAD operator for solving the 2D elastic wave equation. Journal of Seismic Exploration. 2015, 24:205–230. Zhang CY, Chen L. A symplectic partitioned Runge-Kutta method using the eighth-order NAD operator for solving the 2D elastic wave equation. Journal of Seismic Exploration. 2015, 24:205–230.
13.
go back to reference State Locus Drawing of RLC Circuit Based on Ode45 of MATLAB. China Science and Technology Information, 2008. State Locus Drawing of RLC Circuit Based on Ode45 of MATLAB. China Science and Technology Information, 2008.
14.
go back to reference Immler, Fabian, Traut C. The Flow of ODEs: Formalization of Variational Equation and Poincaré Map. Journal of Automated Reasoning, 2019, 62(2):215–236. Immler, Fabian, Traut C. The Flow of ODEs: Formalization of Variational Equation and Poincaré Map. Journal of Automated Reasoning, 2019, 62(2):215–236.
15.
go back to reference Hartman, Philip. Ordinary differential equations. Mathematics of Computation.1982, 20:82–122. Hartman, Philip. Ordinary differential equations. Mathematics of Computation.1982, 20:82–122.
16.
go back to reference Dai LM, Xia DD, Chen CP, An algorithm for diagnosing nonlinear characteristics of dynamic systems with the integrated periodicity ratio and lyapunov exponent methods, Communications in Nonlinear Science and Numerical Simulation, 2019, 73: 92–109. Dai LM, Xia DD, Chen CP, An algorithm for diagnosing nonlinear characteristics of dynamic systems with the integrated periodicity ratio and lyapunov exponent methods, Communications in Nonlinear Science and Numerical Simulation, 2019, 73: 92–109.
17.
go back to reference Dai LM, Wang X, Chen C. Accuracy and Reliability of Piecewise-Constant Method in Studying the Responses of Nonlinear Dynamic Systems. Journal of Computational and Nonlinear Dynamics. 2015, 10(2):021009–10.CrossRef Dai LM, Wang X, Chen C. Accuracy and Reliability of Piecewise-Constant Method in Studying the Responses of Nonlinear Dynamic Systems. Journal of Computational and Nonlinear Dynamics. 2015, 10(2):021009–10.CrossRef
18.
go back to reference Dai LM, Singh MC, Structures. An analytical and numerical method for solving linear and nonlinear vibration problems. International Journal of Solids & Structures. 1997, 34(21):2709–2731. Dai LM, Singh MC, Structures. An analytical and numerical method for solving linear and nonlinear vibration problems. International Journal of Solids & Structures. 1997, 34(21):2709–2731.
19.
go back to reference Lu X, Sun J, Li G, Wang Q, Zhang D. Dynamic analysis of vibration stability in tandem cold rolling mill. Journal of Materials Processing Technology. 2019, 272:47–57.CrossRef Lu X, Sun J, Li G, Wang Q, Zhang D. Dynamic analysis of vibration stability in tandem cold rolling mill. Journal of Materials Processing Technology. 2019, 272:47–57.CrossRef
20.
go back to reference Reyhanoglu M, van der Schaft A, Mcclamroch NH, Kolmanovsky I. Dynamics and control of a class of underactuated mechanical systems. IEEE Transactions on Automatic Control, 2017, 44(9):1663–1671. Reyhanoglu M, van der Schaft A, Mcclamroch NH, Kolmanovsky I. Dynamics and control of a class of underactuated mechanical systems. IEEE Transactions on Automatic Control, 2017, 44(9):1663–1671.
21.
go back to reference Bryant P, Brown R, Abarbanel H. Lyapunov Exponents from Observed Time Series. Phys. rev. lett. 1990, 65(13):1523–1526. Bryant P, Brown R, Abarbanel H. Lyapunov Exponents from Observed Time Series. Phys. rev. lett. 1990, 65(13):1523–1526.
22.
go back to reference Zhang W, Ye M. Local and global bifurcations of valve mechanism. Nonlinear Dynamics. 1994, 6(3):301–316. Zhang W, Ye M. Local and global bifurcations of valve mechanism. Nonlinear Dynamics. 1994, 6(3):301–316.
23.
go back to reference Wolf A, Swift JB, Swinney HL, Vastano JA. Determining Lyapounov exponents from a time series. Springer Berlin Heidelberg. 1985, 16(3):285–317. Wolf A, Swift JB, Swinney HL, Vastano JA. Determining Lyapounov exponents from a time series. Springer Berlin Heidelberg. 1985, 16(3):285–317.
25.
go back to reference Dai, LM, Singh MC. Periodic, quasiperiodic and chaotic behavior of a driven Froude pendulum. International Journal of Nonlinear Mechanics. 1998, 33(6):947–965.MathSciNetCrossRef Dai, LM, Singh MC. Periodic, quasiperiodic and chaotic behavior of a driven Froude pendulum. International Journal of Nonlinear Mechanics. 1998, 33(6):947–965.MathSciNetCrossRef
26.
go back to reference Ma H, Ho DWC, Lai YC, Lin W. Detection meeting control: Unstable steady states in high-dimensional nonlinear dynamical systems. Physical Review E. 2015.92. Ma H, Ho DWC, Lai YC, Lin W. Detection meeting control: Unstable steady states in high-dimensional nonlinear dynamical systems. Physical Review E. 2015.92.
27.
go back to reference Zhang W, Wang FX, Zu JW. Local bifurcations and codimension-3 degenerate bifurcations of a quintic nonlinear beam under parametric excitation. Chaos, Solitons & Fractals. 2005, 24(4):977–98.MathSciNetCrossRef Zhang W, Wang FX, Zu JW. Local bifurcations and codimension-3 degenerate bifurcations of a quintic nonlinear beam under parametric excitation. Chaos, Solitons & Fractals. 2005, 24(4):977–98.MathSciNetCrossRef
28.
go back to reference Fang P, Dai LM, Hou YJ, Du MJ, Wang LY, Xi ZJ. Numerical Computation for the Inertial Coupling Vibration System Using PL Method. Journal of Vibration Engineering & Technologies, 2019, 7(2):139–148. Fang P, Dai LM, Hou YJ, Du MJ, Wang LY, Xi ZJ. Numerical Computation for the Inertial Coupling Vibration System Using PL Method. Journal of Vibration Engineering & Technologies, 2019, 7(2):139–148.
29.
go back to reference Dai L, Assessment of Solutions to Vibration Problems Involving Piecewise Constant Exertions, Symposium on Dynamics, Acoustic and Simulations (DAS2000) in ASME IMECE 2000, Orlando, 2000.CrossRef Dai L, Assessment of Solutions to Vibration Problems Involving Piecewise Constant Exertions, Symposium on Dynamics, Acoustic and Simulations (DAS2000) in ASME IMECE 2000, Orlando, 2000.CrossRef
30.
go back to reference Arendt W, Batty CJ, Hieber M, Neubrander F. Vector-Valued Laplace Transforms and Cauchy Problems. Israel Journal of Mathematics. 1987, 59(3):327–352.CrossRef Arendt W, Batty CJ, Hieber M, Neubrander F. Vector-Valued Laplace Transforms and Cauchy Problems. Israel Journal of Mathematics. 1987, 59(3):327–352.CrossRef
31.
go back to reference Fang P, Dai L, Hou Y, Du M, Wang L. The Study of Identification Method for Dynamic Behavior of High-Dimensional Nonlinear System. Shock and vibration. 2019. Fang P, Dai L, Hou Y, Du M, Wang L. The Study of Identification Method for Dynamic Behavior of High-Dimensional Nonlinear System. Shock and vibration. 2019.
32.
go back to reference Fang P, Hou YJ, Zhang LP, Du MJ, Zhang MY. Synchronous behavior of a rotor-pendulum system. Acta Physica Sinica. 2016, 65. Fang P, Hou YJ, Zhang LP, Du MJ, Zhang MY. Synchronous behavior of a rotor-pendulum system. Acta Physica Sinica. 2016, 65.
Metadata
Title
Improved Theoretical and Numerical Approaches for Solving Linear and Nonlinear Dynamic Systems
Authors
Fang Pan
Dai Liming
Wang Kexin
Wang Luyao
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-82719-9_1