Skip to main content
Top
Published in: Wireless Personal Communications 4/2021

26-01-2021

Improvement of Transmission Control Protocol for High Bandwidth Applications

Authors: Jansi Rani Sella Veluswami, Karthikeyan Chinnusamy, Kailash Kumar, Villalba-Condori Klinge, Suryakanth Mohankumar

Published in: Wireless Personal Communications | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Transmission control protocol (TCP) is the widely and dominantly used protocol in today’s internet. A very recent implementation of congestion control algorithm is BBR by Google. Bottleneck bandwidth and round-trip time (BBR) is a congestion control algorithm which is created with the aim of increasing throughput and reducing delay. The congestion control protocols mentioned previously try to determine congestion limits by filling router queues. BBR drains the router queues at the bottleneck by sending exactly at the bottleneck link rate. This is done by the BBR through pacing rate which infers the delivery rate of the receiver and uses this as the estimated bottleneck bandwidth. But when the data rate is high, in the startup phase itself pipe becomes full and leads to some degradation in the Access Point of wireless environments by inducing losses specific to this environment. So the current pacing rate is not suitable for producing higher throughputs. Therefore, in the proposed system named R-BBR, this startup gain should be lower than the current startup gain which eventually would reduce pacing rate to reduce queue pressure in the sink node during the startup phase. The startup phase of BBR is modified to solve the problem of pipe full under high data rate. R-BBR has been evaluated over a wide range of wired as well as wireless networks by varying different factors like startup gain, congestion window, and pacing rate. It is inferred that R-BBR performs better than BBR with significant performance improvement.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Khorov, E., Kiryanov, A., Lyakhov, A., & Bianchi, G. (2018). A tutorial on IEEE 802.11 ax high efficiency WLANs. IEEE Communications Surveys & Tutorials, 21(1), 197–216.CrossRef Khorov, E., Kiryanov, A., Lyakhov, A., & Bianchi, G. (2018). A tutorial on IEEE 802.11 ax high efficiency WLANs. IEEE Communications Surveys & Tutorials, 21(1), 197–216.CrossRef
2.
go back to reference Bellalta, B. (2016). IEEE 802.11 ax: High-efficiency WLANs. IEEE Wireless Communications, 23(1), 38–46.CrossRef Bellalta, B. (2016). IEEE 802.11 ax: High-efficiency WLANs. IEEE Wireless Communications, 23(1), 38–46.CrossRef
3.
go back to reference Islam, M. M., Funabiki, N., Kuribayashi, M., Debnath, S. K., Munene, K. I., Lwin, K. S., & Al Mamun, M. S. (2018). Dynamic access-point configuration approach for elastic wireless local-area network system and its implementation using Raspberry Pi. International Journal of Networking and Computing, 8(2), 254–281.CrossRef Islam, M. M., Funabiki, N., Kuribayashi, M., Debnath, S. K., Munene, K. I., Lwin, K. S., & Al Mamun, M. S. (2018). Dynamic access-point configuration approach for elastic wireless local-area network system and its implementation using Raspberry Pi. International Journal of Networking and Computing, 8(2), 254–281.CrossRef
4.
go back to reference Cardwell, N., Cheng, Y., Gunn, C. S., Yeganeh, S. H., & Jacobson, V. (2016). BBR: Congestion-based congestion control. Queue, 14(5), 20–53.CrossRef Cardwell, N., Cheng, Y., Gunn, C. S., Yeganeh, S. H., & Jacobson, V. (2016). BBR: Congestion-based congestion control. Queue, 14(5), 20–53.CrossRef
5.
go back to reference Scholz, D., Jaeger, B., Schwaighofer, L., Raumer, D., Geyer, F., & Carle, G. (2018). Towards a deeper understanding of TCP BBR congestion control. In 2018 IFIP networking conference (IFIP networking) and workshops (pp. 1–9), May 2018. IEEE. Scholz, D., Jaeger, B., Schwaighofer, L., Raumer, D., Geyer, F., & Carle, G. (2018). Towards a deeper understanding of TCP BBR congestion control. In 2018 IFIP networking conference (IFIP networking) and workshops (pp. 1–9), May 2018. IEEE.
6.
go back to reference Hock, M., Bless, R., & Zitterbart, M. (2017). Experimental evaluation of BBR congestion control. In 2017 IEEE 25th international conference on network protocols (ICNP) (pp. 1–10), October 2017. IEEE. Hock, M., Bless, R., & Zitterbart, M. (2017). Experimental evaluation of BBR congestion control. In 2017 IEEE 25th international conference on network protocols (ICNP) (pp. 1–10), October 2017. IEEE.
7.
go back to reference Zhang, Y., Cui, L., & Tso, F. P. (2018). Modest BBR: Enabling better fairness for BBR congestion control. In 2018 IEEE symposium on computers and communications (ISCC) (pp. 00646–00651), June 2018. IEEE. Zhang, Y., Cui, L., & Tso, F. P. (2018). Modest BBR: Enabling better fairness for BBR congestion control. In 2018 IEEE symposium on computers and communications (ISCC) (pp. 00646–00651), June 2018. IEEE.
8.
go back to reference Atxutegi, E., Liberal, F., Haile, H. K., Grinnemo, K. J., Brunstrom, A., & Arvidsson, A. (2018). On the use of TCP BBR in cellular networks. IEEE Communications Magazine, 56(3), 172–179.CrossRef Atxutegi, E., Liberal, F., Haile, H. K., Grinnemo, K. J., Brunstrom, A., & Arvidsson, A. (2018). On the use of TCP BBR in cellular networks. IEEE Communications Magazine, 56(3), 172–179.CrossRef
9.
go back to reference Charalambos, C. P., & Frost, V. S. (1999). Performance of TCP extensions on noisy high BDP networks. IEEE Communications Letters, 3(10), 294–296.CrossRef Charalambos, C. P., & Frost, V. S. (1999). Performance of TCP extensions on noisy high BDP networks. IEEE Communications Letters, 3(10), 294–296.CrossRef
10.
go back to reference Grazia, C. A. (2019). IEEE 802.11 n/AC wireless network efficiency under different TCP congestion controls. In 2019 international conference on wireless and mobile computing, networking and communications (WiMob) (pp. 1–6), October 2019. IEEE. Grazia, C. A. (2019). IEEE 802.11 n/AC wireless network efficiency under different TCP congestion controls. In 2019 international conference on wireless and mobile computing, networking and communications (WiMob) (pp. 1–6), October 2019. IEEE.
11.
go back to reference Pentikousis, K. (2000). TCP in wired-cum-wireless environments. IEEE Communications Surveys & Tutorials, 3(4), 2–14.CrossRef Pentikousis, K. (2000). TCP in wired-cum-wireless environments. IEEE Communications Surveys & Tutorials, 3(4), 2–14.CrossRef
12.
go back to reference Li, Y. T., Leith, D., & Shorten, R. N. (2007). Experimental evaluation of TCP protocols for high-speed networks. IEEE/ACM Transactions on networking, 15(5), 1109–1122.CrossRef Li, Y. T., Leith, D., & Shorten, R. N. (2007). Experimental evaluation of TCP protocols for high-speed networks. IEEE/ACM Transactions on networking, 15(5), 1109–1122.CrossRef
13.
go back to reference Jacobson, V. (1988). Congestion avoidance and control. ACM SIGCOMM Computer Communication Review, 18(4), 314–329.CrossRef Jacobson, V. (1988). Congestion avoidance and control. ACM SIGCOMM Computer Communication Review, 18(4), 314–329.CrossRef
14.
go back to reference Yang, P., Shao, J., Luo, W., Xu, L., Deogun, J., & Lu, Y. (2013). TCP congestion avoidance algorithm identification. IEEE/ACM Transactions on Networking, 22(4), 1311–1324.CrossRef Yang, P., Shao, J., Luo, W., Xu, L., Deogun, J., & Lu, Y. (2013). TCP congestion avoidance algorithm identification. IEEE/ACM Transactions on Networking, 22(4), 1311–1324.CrossRef
15.
go back to reference Mathis, M., Mahdavi, J., Floyd, S., & Romanow, A. (1996). RFC2018: TCP selective acknowledgement options. Mathis, M., Mahdavi, J., Floyd, S., & Romanow, A. (1996). RFC2018: TCP selective acknowledgement options.
16.
go back to reference Cui, L., Cui, X., & Lee, W. J. (2011). A segment-based SACK scheme for TCP over the error-prone links. Wireless Personal Communications, 61(2), 383–402.CrossRef Cui, L., Cui, X., & Lee, W. J. (2011). A segment-based SACK scheme for TCP over the error-prone links. Wireless Personal Communications, 61(2), 383–402.CrossRef
17.
go back to reference Ha, S., Rhee, I., & Xu, L. (2008). CUBIC: A new TCP-friendly high-speed TCP variant. ACM SIGOPS Operating Systems Review, 42(5), 64–74.CrossRef Ha, S., Rhee, I., & Xu, L. (2008). CUBIC: A new TCP-friendly high-speed TCP variant. ACM SIGOPS Operating Systems Review, 42(5), 64–74.CrossRef
18.
go back to reference Jude, M. J. A., Diniesh, V. C., Shivaranjani, M., & Shanju, R. (2018). A feedback aware reliable transport protocol with improved window increment mechanism for inter vehicular wireless network. Wireless Personal Communications, 98(1), 1119–1134.CrossRef Jude, M. J. A., Diniesh, V. C., Shivaranjani, M., & Shanju, R. (2018). A feedback aware reliable transport protocol with improved window increment mechanism for inter vehicular wireless network. Wireless Personal Communications, 98(1), 1119–1134.CrossRef
19.
go back to reference Chaturvedi, R. K., & Chand, S. (2020). Optimal load balancing linked increased algorithm for multipath TCP. Wireless Personal Communications, 111(3), 1505–1524.CrossRef Chaturvedi, R. K., & Chand, S. (2020). Optimal load balancing linked increased algorithm for multipath TCP. Wireless Personal Communications, 111(3), 1505–1524.CrossRef
20.
go back to reference Brakmo, L. S., & Peterson, L. L. (1995). TCP Vegas: End to end congestion avoidance on a global Internet. IEEE Journal on Selected Areas in Communications, 13(8), 1465–1480.CrossRef Brakmo, L. S., & Peterson, L. L. (1995). TCP Vegas: End to end congestion avoidance on a global Internet. IEEE Journal on Selected Areas in Communications, 13(8), 1465–1480.CrossRef
21.
go back to reference Claypool, M., Chung, J. W., & Li, F. (2018). BBR' an implementation of bottleneck bandwidth and round-trip time congestion control for ns-3. In Proceedings of the 10th workshop on ns-3 (pp. 1–8), June 2018. Claypool, M., Chung, J. W., & Li, F. (2018). BBR' an implementation of bottleneck bandwidth and round-trip time congestion control for ns-3. In Proceedings of the 10th workshop on ns-3 (pp. 1–8), June 2018.
22.
go back to reference Kim, G. H., & Cho, Y. Z. (2019). Delay-aware BBR congestion control algorithm for RTT fairness improvement. IEEE Access, 8, 4099–4109.CrossRef Kim, G. H., & Cho, Y. Z. (2019). Delay-aware BBR congestion control algorithm for RTT fairness improvement. IEEE Access, 8, 4099–4109.CrossRef
24.
go back to reference Miyazawa, K., Sasaki, K., Oda, N., & Yamaguchi, S. (2018). Cycle and divergence of performance on TCP BBR. In 2018 IEEE 7th international conference on cloud networking (CloudNet) (pp. 1–6), October 2018. IEEE. Miyazawa, K., Sasaki, K., Oda, N., & Yamaguchi, S. (2018). Cycle and divergence of performance on TCP BBR. In 2018 IEEE 7th international conference on cloud networking (CloudNet) (pp. 1–6), October 2018. IEEE.
25.
go back to reference Sasaki, K., Hanai, M., Miyazawa, K., Kobayashi, A., Oda, N., & Yamaguchi, S. (2018). TCP fairness among modern TCP congestion control algorithms including TCP BBR. In 2018 IEEE 7th international conference on cloud networking (CloudNet) (pp. 1–4), October 2018. IEEE. Sasaki, K., Hanai, M., Miyazawa, K., Kobayashi, A., Oda, N., & Yamaguchi, S. (2018). TCP fairness among modern TCP congestion control algorithms including TCP BBR. In 2018 IEEE 7th international conference on cloud networking (CloudNet) (pp. 1–4), October 2018. IEEE.
26.
go back to reference Tao, Y., Jiang, J., Ma, S., Wang, L., Wang, W., & Li, B. (2018). Unraveling the RTT-fairness problem for BBR: A queueing model. In 2018 IEEE global communications conference (GLOBECOM) (pp. 1–6), December 2018. IEEE. Tao, Y., Jiang, J., Ma, S., Wang, L., Wang, W., & Li, B. (2018). Unraveling the RTT-fairness problem for BBR: A queueing model. In 2018 IEEE global communications conference (GLOBECOM) (pp. 1–6), December 2018. IEEE.
27.
go back to reference Ware, R., Mukerjee, M. K., Seshan, S., & Sherry, J. (2019). Modeling bbr's interactions with loss-based congestion control. In Proceedings of the internet measurement conference (pp. 137–143), October 2019. Ware, R., Mukerjee, M. K., Seshan, S., & Sherry, J. (2019). Modeling bbr's interactions with loss-based congestion control. In Proceedings of the internet measurement conference (pp. 137–143), October 2019.
29.
go back to reference Na, W., Bae, B., Cho, S., & Kim, N. (2019). DL-TCP: Deep learning-based transmission control protocol for disaster 5G mmwave networks. IEEE Access, 7, 145134–145144.CrossRef Na, W., Bae, B., Cho, S., & Kim, N. (2019). DL-TCP: Deep learning-based transmission control protocol for disaster 5G mmwave networks. IEEE Access, 7, 145134–145144.CrossRef
30.
go back to reference Jaeger, B., Scholz, D., Raumer, D., Geyer, F., & Carle, G. (2019). Reproducible measurements of TCP BBR congestion control. Computer Communications, 144, 31–43.CrossRef Jaeger, B., Scholz, D., Raumer, D., Geyer, F., & Carle, G. (2019). Reproducible measurements of TCP BBR congestion control. Computer Communications, 144, 31–43.CrossRef
31.
go back to reference Kim, G. H., Song, Y. J., Mahmud, I., & Cho, Y. Z. (2019). Enhanced BBR congestion control algorithm for improving RTT fairness. In 2019 eleventh international conference on ubiquitous and future networks (ICUFN) (pp. 358–360), July 2019. IEEE. Kim, G. H., Song, Y. J., Mahmud, I., & Cho, Y. Z. (2019). Enhanced BBR congestion control algorithm for improving RTT fairness. In 2019 eleventh international conference on ubiquitous and future networks (ICUFN) (pp. 358–360), July 2019. IEEE.
32.
go back to reference Grazia, C. A., Klapez, M., & Casoni, M. (2020). BBRp: Improving TCP BBR performance over WLAN. IEEE Access, 8, 43344–43354.CrossRef Grazia, C. A., Klapez, M., & Casoni, M. (2020). BBRp: Improving TCP BBR performance over WLAN. IEEE Access, 8, 43344–43354.CrossRef
33.
go back to reference Taruk, M., Budiman, E., & Setyadi, H. J. (2017). Comparison of TCP variants in long term evolution (LTE). In 2017 5th international conference on electrical, electronics and information engineering (ICEEIE) (pp. 131–134), October 2017. IEEE. Taruk, M., Budiman, E., & Setyadi, H. J. (2017). Comparison of TCP variants in long term evolution (LTE). In 2017 5th international conference on electrical, electronics and information engineering (ICEEIE) (pp. 131–134), October 2017. IEEE.
Metadata
Title
Improvement of Transmission Control Protocol for High Bandwidth Applications
Authors
Jansi Rani Sella Veluswami
Karthikeyan Chinnusamy
Kailash Kumar
Villalba-Condori Klinge
Suryakanth Mohankumar
Publication date
26-01-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08074-2

Other articles of this Issue 4/2021

Wireless Personal Communications 4/2021 Go to the issue