Skip to main content
Top
Published in: Neural Processing Letters 3/2016

01-12-2016

Improving Neuroevolution with Complementarity-Based Selection Operators

Author: Tomás H. Maul

Published in: Neural Processing Letters | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper is concerned with the problem of improving the convergence properties of evolutionary neural networks, particularly in the context of hybrid neural networks that adopt a diversity of transfer functions at their nodes, i.e.: neural diversity machines. The paper explores the potential of solution complementarity, in the context of pattern recognition problems, and focuses on its incorporation in the selection process of recombination heuristics. In a pattern recognition context, complementarity is defined as the ability of different solutions to correctly classify complementary subsets of patterns. A broad set of experiments was conducted demonstrating that solution selection based on complementarity is statistically significantly better than random selection, in a wide range of conditions, e.g.: different datasets, recombination heuristics and architectural constraints. Although the experiments demonstrated the statistical significance and robustness of the effect, they also indicated that more work is required to increase the degree of the effect and to scale-up to larger and more complex datasets.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ackley DH (1987) A connectionist machine for genetic hillclimbing, vol 28. Kluwer Academic Publishers, Boston Ackley DH (1987) A connectionist machine for genetic hillclimbing, vol 28. Kluwer Academic Publishers, Boston
2.
go back to reference Belew RK, McInerney J, Schraudolph NN (1991) Evolving networks: using the genetic algorithm with connectionist learning. Technical report CS90-174. Computer Science Engineering Department, University of California, San Diego (revised) Belew RK, McInerney J, Schraudolph NN (1991) Evolving networks: using the genetic algorithm with connectionist learning. Technical report CS90-174. Computer Science Engineering Department, University of California, San Diego (revised)
3.
go back to reference Cao J, Lin Z, Huang GB (2012) Self-adaptive evolutionary extreme learning machine. Neural Process Lett 36(3):285–305CrossRef Cao J, Lin Z, Huang GB (2012) Self-adaptive evolutionary extreme learning machine. Neural Process Lett 36(3):285–305CrossRef
4.
go back to reference Chicano F, Whitley D, Alba E (2014) Exact computation of the expectation surfaces for uniform crossover along with bit-flip mutation. Theor Comput Sci 545:76–93 Chicano F, Whitley D, Alba E (2014) Exact computation of the expectation surfaces for uniform crossover along with bit-flip mutation. Theor Comput Sci 545:76–93
5.
go back to reference Ding S, Li H, Su C, Yu J, Jin F (2013) Evolutionary artificial neural networks: a review. Artif Intell Rev 39(3):251–260CrossRef Ding S, Li H, Su C, Yu J, Jin F (2013) Evolutionary artificial neural networks: a review. Artif Intell Rev 39(3):251–260CrossRef
6.
go back to reference Duarte-Mermoud M, Beltrán N, Salah S (2013) Probabilistic adaptive crossover applied to Chilean wine classification. Math Probl Eng 2013:10. doi:10.1155/2013/734151 Duarte-Mermoud M, Beltrán N, Salah S (2013) Probabilistic adaptive crossover applied to Chilean wine classification. Math Probl Eng 2013:10. doi:10.​1155/​2013/​734151
7.
go back to reference Duch W, Jankowski N (2001) Transfer functions: hidden possibilities for better neural networks. In: ESANN. Citeseer, Bruges, pp 81–94 Duch W, Jankowski N (2001) Transfer functions: hidden possibilities for better neural networks. In: ESANN. Citeseer, Bruges, pp 81–94
8.
go back to reference Evans IK (1997) Enhancing recombination with the complementary surrogate genetic algorithm. In: IEEE international conference on evolutionary computation. IEEE, Indianapolis, pp 97–102 Evans IK (1997) Enhancing recombination with the complementary surrogate genetic algorithm. In: IEEE international conference on evolutionary computation. IEEE, Indianapolis, pp 97–102
9.
go back to reference Fahlman SE, Lebiere C (1989) The cascade-correlation learning architecture. In: Touretzky DS, Hinton G, Sejnowski T (eds) Advances in neural information processing systems II. Morgan Kaufmann, San Mateo Fahlman SE, Lebiere C (1989) The cascade-correlation learning architecture. In: Touretzky DS, Hinton G, Sejnowski T (eds) Advances in neural information processing systems II. Morgan Kaufmann, San Mateo
10.
go back to reference Floreano D, Dürr P, Mattiussi C (2008) Neuroevolution: from architectures to learning. Evol Intell 1(1):47–62CrossRef Floreano D, Dürr P, Mattiussi C (2008) Neuroevolution: from architectures to learning. Evol Intell 1(1):47–62CrossRef
11.
go back to reference Freire AL, Barreto GA (2014) A new model selection approach for the ELM network using metaheuristic optimization. In: ESANN 2014 proceedings, European symposium on artificial neural networks, computational intelligence and machine learning, pp 619–624 Freire AL, Barreto GA (2014) A new model selection approach for the ELM network using metaheuristic optimization. In: ESANN 2014 proceedings, European symposium on artificial neural networks, computational intelligence and machine learning, pp 619–624
12.
go back to reference Gomez F, Miikkulainen R (1997) Incremental evolution of complex general behavior. Adapt Behav 5(3–4):317–342CrossRef Gomez F, Miikkulainen R (1997) Incremental evolution of complex general behavior. Adapt Behav 5(3–4):317–342CrossRef
13.
go back to reference Gomez F, Schmidhuber J, Miikkulainen R (2008) Accelerated neural evolution through cooperatively coevolved synapses. J Mach Learn Res 9:937–965MathSciNetMATH Gomez F, Schmidhuber J, Miikkulainen R (2008) Accelerated neural evolution through cooperatively coevolved synapses. J Mach Learn Res 9:937–965MathSciNetMATH
14.
go back to reference Gutiérrez PA, Hervás-Martínez C (2011) Hybrid artificial neural networks: models, algorithms and data. In: Advances in computational intelligence. Springer, Berlin,pp 177–184 Gutiérrez PA, Hervás-Martínez C (2011) Hybrid artificial neural networks: models, algorithms and data. In: Advances in computational intelligence. Springer, Berlin,pp 177–184
15.
go back to reference Gutiérrez PA, Hervás-Martínez C, Carbonero M, Fernández JC (2009) Combined projection and kernel basis functions for classification in evolutionary neural networks. Neurocomputing 72(13):2731–2742CrossRef Gutiérrez PA, Hervás-Martínez C, Carbonero M, Fernández JC (2009) Combined projection and kernel basis functions for classification in evolutionary neural networks. Neurocomputing 72(13):2731–2742CrossRef
16.
go back to reference Gutiérrez P, Segovia-Vargas M, Salcedo-Sanz S, Hervás-Martínez C, Sanchis A, Portilla-Figueras J, Fernández-Navarro F (2010) Hybridizing logistic regression with product unit and RBF networks for accurate detection and prediction of banking crises. Omega 38(5):333–344CrossRef Gutiérrez P, Segovia-Vargas M, Salcedo-Sanz S, Hervás-Martínez C, Sanchis A, Portilla-Figueras J, Fernández-Navarro F (2010) Hybridizing logistic regression with product unit and RBF networks for accurate detection and prediction of banking crises. Omega 38(5):333–344CrossRef
17.
go back to reference Hancock PJB (1992) Genetic algorithms and permutation problems: a comparison of recombination operators for neural net structure specification. In: International workshop on combinations of genetic algorithms and neural networks, 1992, COGANN-92. IEEE, pp 108–122 Hancock PJB (1992) Genetic algorithms and permutation problems: a comparison of recombination operators for neural net structure specification. In: International workshop on combinations of genetic algorithms and neural networks, 1992, COGANN-92. IEEE, pp 108–122
19.
go back to reference Howard G, Bull L, de Lacy Costello B, Gale E, Adamatzky A (2014) Evolving spiking networks with variable resistive memories. Evol Comput 22(1):79–103CrossRef Howard G, Bull L, de Lacy Costello B, Gale E, Adamatzky A (2014) Evolving spiking networks with variable resistive memories. Evol Comput 22(1):79–103CrossRef
20.
go back to reference Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501CrossRef Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501CrossRef
21.
go back to reference Jaeger H, Haas H (2004) Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667):78–80CrossRef Jaeger H, Haas H (2004) Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667):78–80CrossRef
22.
go back to reference Kuncheva LI, Whitaker CJ (2003) Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach Learn 51(2):181–207CrossRefMATH Kuncheva LI, Whitaker CJ (2003) Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach Learn 51(2):181–207CrossRefMATH
23.
go back to reference Masland RH (2001) Neuronal diversity in the retina. Curr Opin Neurobiol 11(4):431–436CrossRef Masland RH (2001) Neuronal diversity in the retina. Curr Opin Neurobiol 11(4):431–436CrossRef
24.
go back to reference Maul T (2013) Early experiments with neural diversity machines. Neurocomputing 113:36–48CrossRef Maul T (2013) Early experiments with neural diversity machines. Neurocomputing 113:36–48CrossRef
25.
go back to reference Maul T, Baba S (2011) Unsupervised learning in second-order neural networks for motion analysis. Neurocomputing 74(6):884–895CrossRef Maul T, Baba S (2011) Unsupervised learning in second-order neural networks for motion analysis. Neurocomputing 74(6):884–895CrossRef
26.
27.
go back to reference Miikkulainen R (2014) Evolving neural networks. In: Proceedings of the 2014 conference companion on genetic and evolutionary computation companion. ACM, New York,pp 487–512 Miikkulainen R (2014) Evolving neural networks. In: Proceedings of the 2014 conference companion on genetic and evolutionary computation companion. ACM, New York,pp 487–512
28.
go back to reference Moriarty DE (1997) Symbiotic evolution of neural networks in sequential decision tasks. PhD Thesis, University of Texas at Austin Moriarty DE (1997) Symbiotic evolution of neural networks in sequential decision tasks. PhD Thesis, University of Texas at Austin
29.
go back to reference Prechelt L (1994) Proben1a set of neural network benchmark problems and benchmarking rules. Technical report 21/94. Fakultät für Informatik, University of Karlsruhe, Karlsruhe Prechelt L (1994) Proben1a set of neural network benchmark problems and benchmarking rules. Technical report 21/94. Fakultät für Informatik, University of Karlsruhe, Karlsruhe
30.
go back to reference Rempis C, Pasemann F (2012) An interactively constrained neuro-evolution approach for behavior control of complex robots. In: Variants of evolutionary algorithms for real-world applications. Springer, Berlin, pp 305–341 Rempis C, Pasemann F (2012) An interactively constrained neuro-evolution approach for behavior control of complex robots. In: Variants of evolutionary algorithms for real-world applications. Springer, Berlin, pp 305–341
31.
go back to reference Schaffer JD, Whitley D, Eshelman LJ (1992) Combinations of genetic algorithms and neural networks: a survey of the state of the art. In: International workshop on combinations of genetic algorithms and neural networks, 1992, COGANN-92. IEEE, Baltimore, pp 1–37 Schaffer JD, Whitley D, Eshelman LJ (1992) Combinations of genetic algorithms and neural networks: a survey of the state of the art. In: International workshop on combinations of genetic algorithms and neural networks, 1992, COGANN-92. IEEE, Baltimore, pp 1–37
32.
go back to reference Schapire RE, Freund Y (2012) Boosting: foundations and algorithms. MIT Press, CambridgeMATH Schapire RE, Freund Y (2012) Boosting: foundations and algorithms. MIT Press, CambridgeMATH
33.
go back to reference Semenkin E, Semenkina M (2012) Self-configuring genetic programming algorithm with modified uniform crossover. In: 2012 IEEE congress on evolutionary computation (CEC). IEEE, pp 1–6 Semenkin E, Semenkina M (2012) Self-configuring genetic programming algorithm with modified uniform crossover. In: 2012 IEEE congress on evolutionary computation (CEC). IEEE, pp 1–6
34.
go back to reference Soltesz I (2006) Diversity in the neuronal machine: order and variability in interneuronal microcircuits. Oxford University Press, New YorkCrossRef Soltesz I (2006) Diversity in the neuronal machine: order and variability in interneuronal microcircuits. Oxford University Press, New YorkCrossRef
35.
go back to reference Stanley KO, Miikkulainen R (2002) Evolving neural networks through augmenting topologies. Evol Comput 10(2):99–127CrossRef Stanley KO, Miikkulainen R (2002) Evolving neural networks through augmenting topologies. Evol Comput 10(2):99–127CrossRef
36.
go back to reference Stanley KO, D’Ambrosio DB, Gauci J (2009) A hypercube-based encoding for evolving large-scale neural networks. Artif Life 15(2):185–212CrossRef Stanley KO, D’Ambrosio DB, Gauci J (2009) A hypercube-based encoding for evolving large-scale neural networks. Artif Life 15(2):185–212CrossRef
37.
go back to reference Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359MathSciNetCrossRefMATH Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359MathSciNetCrossRefMATH
38.
go back to reference Whitley D, Starkweather T, Bogart C (1990) Genetic algorithms and neural networks: optimizing connections and connectivity. Parallel Comput 14(3):347–361CrossRef Whitley D, Starkweather T, Bogart C (1990) Genetic algorithms and neural networks: optimizing connections and connectivity. Parallel Comput 14(3):347–361CrossRef
39.
go back to reference Xiao J, Zhou J, Li C, Xiao H, Zhang W, Zhu W (2013) Multi-fault classification based on the two-stage evolutionary extreme learning machine and improved artificial bee colony algorithm. Proc Inst Mech Eng C 228:1797–1807 Xiao J, Zhou J, Li C, Xiao H, Zhang W, Zhu W (2013) Multi-fault classification based on the two-stage evolutionary extreme learning machine and improved artificial bee colony algorithm. Proc Inst Mech Eng C 228:1797–1807
40.
go back to reference Yao X (1999) Evolving artificial neural networks. Proc IEEE 87(9):1423–1447CrossRef Yao X (1999) Evolving artificial neural networks. Proc IEEE 87(9):1423–1447CrossRef
41.
go back to reference Zhu QY, Qin AK, Suganthan PN, Huang GB (2005) Evolutionary extreme learning machine. Pattern Recognit 38(10):1759–1763CrossRefMATH Zhu QY, Qin AK, Suganthan PN, Huang GB (2005) Evolutionary extreme learning machine. Pattern Recognit 38(10):1759–1763CrossRefMATH
Metadata
Title
Improving Neuroevolution with Complementarity-Based Selection Operators
Author
Tomás H. Maul
Publication date
01-12-2016
Publisher
Springer US
Published in
Neural Processing Letters / Issue 3/2016
Print ISSN: 1370-4621
Electronic ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-016-9501-6

Other articles of this Issue 3/2016

Neural Processing Letters 3/2016 Go to the issue