Skip to main content
Top

18-04-2017

In All But Finitely Many Possible Worlds: Model-Theoretic Investigations on ‘Overwhelming Majority’ Default Conditionals

Published in: Journal of Logic, Language and Information | Issue 2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Defeasible conditionals are statements of the form ‘if A then normally B’. One plausible interpretation introduced in nonmonotonic reasoning dictates that (\(A\Rightarrow B\)) is true iff B is true in ‘mostA-worlds. In this paper, we investigate defeasible conditionals constructed upon a notion of ‘overwhelming majority’, defined as ‘truth in a cofinite subset of \(\omega \)’, the first infinite ordinal. One approach employs the modal logic of the frame \((\omega , <)\), used in the temporal logic of discrete linear time. We introduce and investigate conditionals, defined modally over \((\omega , <)\); several modal definitions of the conditional connective are examined, with an emphasis on the nonmonotonic ones. An alternative interpretation of ‘majority’ as sets cofinal (in \(\omega \)) rather than cofinite (subsets of \(\omega \)) is examined. For these modal approaches over \((\omega , <)\), a decision procedure readily emerges, as the modal logic \({\mathbf {K4DLZ}}\) of this frame is well-known and a translation of the conditional sentences can be mechanically checked for validity; this allows also for a quick proof of \(\mathsf {NP}\)-completeness of the satisfiability problem for these logics. A second approach employs the conditional version of Scott-Montague semantics, in the form of \(\omega \)-many possible worlds, endowed with neighborhoods populated by collections of cofinite subsets of \(\omega \). This approach gives rise to weak conditional logics, as expected. The relative strength of the conditionals introduced is compared to (the conditional logic ‘equivalent’ of) KLM logics and other conditional logics in the literature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
This notion is not important for our work here. For the sake of completeness it suffices to say that it is a weakening of the classical filters in Set Theory and Model Theory. Assuming a set W, a filter is a collection of subsets of W (a subset of its powerset), which is upwards closed and closed under intersection. A weak filter relaxes the second condition by just requiring that there do not exits pairwise disjoint sets in the collection.
 
Literature
go back to reference Arlo-Costa, H. (2014). The logic of conditionals. In E. N. Zalta, (eds.), The stanford encyclopedia of philosophy. Summer 2014 edition. Arlo-Costa, H. (2014). The logic of conditionals. In E. N. Zalta, (eds.), The stanford encyclopedia of philosophy. Summer 2014 edition.
go back to reference Adams, E. (1975). The logic of conditionals. Dordrecht: D. Reidel Publishing Co.CrossRef Adams, E. (1975). The logic of conditionals. Dordrecht: D. Reidel Publishing Co.CrossRef
go back to reference Allen, J. F., Fikes, R., & Sandewall, E. (Eds.). (1991). Proceedings of the 2nd international conference on principles of knowledge representation and reasoning (KR’91), Cambridge, MA, USA, April 22–25, 1991. Morgan Kaufmann. Allen, J. F., Fikes, R., & Sandewall, E. (Eds.). (1991). Proceedings of the 2nd international conference on principles of knowledge representation and reasoning (KR’91), Cambridge, MA, USA, April 22–25, 1991. Morgan Kaufmann.
go back to reference Askounis, D., Koutras, C. D., & Zikos, Y. (2016). Knowledge means ’all’, belief means ’most’. Journal of Applied Non-Classical Logics, 26(3), 173–192.CrossRef Askounis, D., Koutras, C. D., & Zikos, Y. (2016). Knowledge means ’all’, belief means ’most’. Journal of Applied Non-Classical Logics, 26(3), 173–192.CrossRef
go back to reference Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal Logic. Number 53 in Cambridge Tracts in Theoretical Computer Science. Cambridge: Cambridge University Press. Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal Logic. Number 53 in Cambridge Tracts in Theoretical Computer Science. Cambridge: Cambridge University Press.
go back to reference Bell, J. (1990). The logic of nonmonotonicity. Artificial Intelligence, 41(3), 365–374.CrossRef Bell, J. (1990). The logic of nonmonotonicity. Artificial Intelligence, 41(3), 365–374.CrossRef
go back to reference Besnard, Ph, & Hunter, A. (Eds.). (1998). Reasoning with Actual and Potential Contradictions, volume 2 of handbook of defeasible reasoning and uncertainty management systems. Dordrecht: Kluwer Academic Publishers. Besnard, Ph, & Hunter, A. (Eds.). (1998). Reasoning with Actual and Potential Contradictions, volume 2 of handbook of defeasible reasoning and uncertainty management systems. Dordrecht: Kluwer Academic Publishers.
go back to reference Bochman, A. (2001). A logical theory of nonmonotonic inference and belief change. Berlin: Springer.CrossRef Bochman, A. (2001). A logical theory of nonmonotonic inference and belief change. Berlin: Springer.CrossRef
go back to reference Boutilier, C. (1992). Conditional logics for default reasoning and belief revision. PhD thesis, University of Toronto. Boutilier, C. (1992). Conditional logics for default reasoning and belief revision. PhD thesis, University of Toronto.
go back to reference Balbiani, Ph., Suzuki, N., Wolter, F., & Zakharyaschev, M. (Eds.). (2003). Advances in modal logic 4, papers from the fourth conference on “advances in modal logic”, held in Toulouse (France) in October 2002. King’s College Publications. Balbiani, Ph., Suzuki, N., Wolter, F., & Zakharyaschev, M. (Eds.). (2003). Advances in modal logic 4, papers from the fourth conference on “advances in modal logic”, held in Toulouse (France) in October 2002. King’s College Publications.
go back to reference Burgess, J. P. (1981). Quick completeness proofs for some logics of conditionals. Notre Dame Journal of Formal Logic, 22(1), 76–84.CrossRef Burgess, J. P. (1981). Quick completeness proofs for some logics of conditionals. Notre Dame Journal of Formal Logic, 22(1), 76–84.CrossRef
go back to reference Crocco, G., Fariñas del Cerro, L., & Herzig, A. (Eds.). (1996). Conditionals: From philosophy to computer science. Studies in logic and computation. Oxford: Oxford University Press. Crocco, G., Fariñas del Cerro, L., & Herzig, A. (Eds.). (1996). Conditionals: From philosophy to computer science. Studies in logic and computation. Oxford: Oxford University Press.
go back to reference Chellas, B. (1975). Basic conditional logic. Journal of Philosophical Logic, 4, 133–153.CrossRef Chellas, B. (1975). Basic conditional logic. Journal of Philosophical Logic, 4, 133–153.CrossRef
go back to reference Chellas, B. (1980). Modal logic, an introduction. Cambridge: Cambridge University Press.CrossRef Chellas, B. (1980). Modal logic, an introduction. Cambridge: Cambridge University Press.CrossRef
go back to reference Chagrov, A. V., & Rybakov, M. N. (2003) How many variables does one need to prove PSPACE-hardness of modal logics. In Balbiani et al. (2003), pp. 71–82. Chagrov, A. V., & Rybakov, M. N. (2003) How many variables does one need to prove PSPACE-hardness of modal logics. In Balbiani et al. (2003), pp. 71–82.
go back to reference Destercke, S., & Denoeux, Th. (Eds.). (2015). Proceedings of symbolic and quantitative approaches to reasoning with uncertainty—13th European conference, ECSQARU 2015, Compiègne, France, July 15-17, 2015, volume 9161 of lecture notes in computer science. Springer. Destercke, S., & Denoeux, Th. (Eds.). (2015). Proceedings of symbolic and quantitative approaches to reasoning with uncertainty—13th European conference, ECSQARU 2015, Compiègne, France, July 15-17, 2015, volume 9161 of lecture notes in computer science. Springer.
go back to reference Delgrande, J. P. (1987). A first-order conditional logic for prototypical properties. Artificial Intelligence, 33(1), 105–130.CrossRef Delgrande, J. P. (1987). A first-order conditional logic for prototypical properties. Artificial Intelligence, 33(1), 105–130.CrossRef
go back to reference Delgrande, J. P. (1988). An approach to default reasoning based on a first-order conditional logic: Revised report. Artificial Intelligence, 36(1), 63–90.CrossRef Delgrande, J. P. (1988). An approach to default reasoning based on a first-order conditional logic: Revised report. Artificial Intelligence, 36(1), 63–90.CrossRef
go back to reference Delgrande, J. P. (1998). Conditional logics for defeasible reasoning, pp. 135–173, Volume 2 of Besnard and Hunter (1998) . Delgrande, J. P. (1998). Conditional logics for defeasible reasoning, pp. 135–173, Volume 2 of Besnard and Hunter (1998) .
go back to reference Delgrande, J. P. (2003). Weak conditional logics of normality. In Gottlob and Walsh (2003), pp. 873–878. Delgrande, J. P. (2003). Weak conditional logics of normality. In Gottlob and Walsh (2003), pp. 873–878.
go back to reference Delgrande, J. P. (2006). On a rule-based interpretation of default conditionals. Annals of Mathematics and Artificial Intelligence, 48(3–4), 135–167. Delgrande, J. P. (2006). On a rule-based interpretation of default conditionals. Annals of Mathematics and Artificial Intelligence, 48(3–4), 135–167.
go back to reference D’Agostino, M., Gabbay, D., Haehnle, R., & Posegga, J. (Eds.). (1999). Handbook of tableau methods. Dordrecht: Kluwer Academic Publishers. D’Agostino, M., Gabbay, D., Haehnle, R., & Posegga, J. (Eds.). (1999). Handbook of tableau methods. Dordrecht: Kluwer Academic Publishers.
go back to reference Doyle, J., Sandewall, E., & Torasso, P. (Eds.). (1994). Proceedings of the 4th international conference on principles of knowledge representation and reasoning (KR’94), Bonn, Germany, May 24–27, 1994. Morgan Kaufmann. Doyle, J., Sandewall, E., & Torasso, P. (Eds.). (1994). Proceedings of the 4th international conference on principles of knowledge representation and reasoning (KR’94), Bonn, Germany, May 24–27, 1994. Morgan Kaufmann.
go back to reference Eiter, Th, & Lukasiewicz, Th. (2000). Default reasoning from conditional knowledge bases: Complexity and tractable cases. Artificial Intelligence, 124(2), 169–241.CrossRef Eiter, Th, & Lukasiewicz, Th. (2000). Default reasoning from conditional knowledge bases: Complexity and tractable cases. Artificial Intelligence, 124(2), 169–241.CrossRef
go back to reference Friedman, N., & Halpern, J. Y. (1994). On the complexity of conditional logics. In Doyle et al. (1994), pp. 202–213. Friedman, N., & Halpern, J. Y. (1994). On the complexity of conditional logics. In Doyle et al. (1994), pp. 202–213.
go back to reference Giordano, L., Gliozzi, V., Olivetti, N., & Pozzato, G. L. (2009). Analytic tableaux calculi for KLM logics of nonmonotonic reasoning. ACM Transactions on Computational Logic, 10(3), 1–47. Giordano, L., Gliozzi, V., Olivetti, N., & Pozzato, G. L. (2009). Analytic tableaux calculi for KLM logics of nonmonotonic reasoning. ACM Transactions on Computational Logic, 10(3), 1–47.
go back to reference Ginsberg, M. L. (1986). Counterfactuals. Artificial Intelligence, 30(1), 35–79.CrossRef Ginsberg, M. L. (1986). Counterfactuals. Artificial Intelligence, 30(1), 35–79.CrossRef
go back to reference Goldblatt, R. (1992). Logics of time and computation. Number 7 in CSLI lecture notes (2nd ed.). Center for the Study of Language and Information, Stanford University. Goldblatt, R. (1992). Logics of time and computation. Number 7 in CSLI lecture notes (2nd ed.). Center for the Study of Language and Information, Stanford University.
go back to reference Goré, R. (1999). Tableau methods for modal and temporal logics, pp 297–396. In D’Agostino et al. (1999). Goré, R. (1999). Tableau methods for modal and temporal logics, pp 297–396. In D’Agostino et al. (1999).
go back to reference Geffner, H., & Pearl, J. (1992). Conditional entailment: Bridging two approaches to default reasoning. Artificial Intelligence, 53(2–3), 209–244.CrossRef Geffner, H., & Pearl, J. (1992). Conditional entailment: Bridging two approaches to default reasoning. Artificial Intelligence, 53(2–3), 209–244.CrossRef
go back to reference Goldszmidt, M., & Pearl, J. (1992). On the consistency of defeasible databases. Artificial Intelligence, 52(2), 121–149.CrossRef Goldszmidt, M., & Pearl, J. (1992). On the consistency of defeasible databases. Artificial Intelligence, 52(2), 121–149.CrossRef
go back to reference Gottlob, G., & Walsh, T. (Eds.). (2003). IJCAI-03, Proceedings of the eighteenth international joint conference on artificial intelligence, Acapulco, Mexico, August 9–15, 2003. Morgan Kaufmann. Gottlob, G., & Walsh, T. (Eds.). (2003). IJCAI-03, Proceedings of the eighteenth international joint conference on artificial intelligence, Acapulco, Mexico, August 9–15, 2003. Morgan Kaufmann.
go back to reference Halpern, J. Y. (1995). The effect of bounding the number of primitive propositions and the depth of nesting on the complexity of modal logic. Artificial Intelligence, 75(2), 361–372.CrossRef Halpern, J. Y. (1995). The effect of bounding the number of primitive propositions and the depth of nesting on the complexity of modal logic. Artificial Intelligence, 75(2), 361–372.CrossRef
go back to reference Jauregui, V. (2008). Modalities, conditionals and nonmonotonic reasoning. PhD thesis, Department of Computer Science and Engineering, University of New South Wales. Jauregui, V. (2008). Modalities, conditionals and nonmonotonic reasoning. PhD thesis, Department of Computer Science and Engineering, University of New South Wales.
go back to reference Kraus, S., Lehmann, D. J., & Magidor, M. (1990). Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence, 44(1–2), 167–207.CrossRef Kraus, S., Lehmann, D. J., & Magidor, M. (1990). Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence, 44(1–2), 167–207.CrossRef
go back to reference Koutras, C.D., & Rantsoudis, Ch. (2015). In all, but finitely many, possible worlds: Model-theoretic investigations on ’overwhelming majority’ default conditionals. In Destercke and Denoeux (2015), pp 117–126. Koutras, C.D., & Rantsoudis, Ch. (2015). In all, but finitely many, possible worlds: Model-theoretic investigations on ’overwhelming majority’ default conditionals. In Destercke and Denoeux (2015), pp 117–126.
go back to reference Lamarre, Ph. (1991) S4 as the conditional logic of nonmonotonicity. In Allen et al. (1991), pp. 357–367. Lamarre, Ph. (1991) S4 as the conditional logic of nonmonotonicity. In Allen et al. (1991), pp. 357–367.
go back to reference Lewis, D. (1973). Counterfactuals. Oxford: Blackwell. Lewis, D. (1973). Counterfactuals. Oxford: Blackwell.
go back to reference Lewis, D. (1981). Ordering semantics and premise semantics for counterfactuals. Journal of Philosophical Logic, 10(2), 217–234.CrossRef Lewis, D. (1981). Ordering semantics and premise semantics for counterfactuals. Journal of Philosophical Logic, 10(2), 217–234.CrossRef
go back to reference Lehmann, D. J., & Magidor, M. (1992). What does a conditional knowledge base entail? Artificial Intelligence, 55(1), 1–60.CrossRef Lehmann, D. J., & Magidor, M. (1992). What does a conditional knowledge base entail? Artificial Intelligence, 55(1), 1–60.CrossRef
go back to reference Pacuit, E. (2007) Neighborhood semantics for modal logic: an introduction. Course Notes for ESSLLI 2007. Pacuit, E. (2007) Neighborhood semantics for modal logic: an introduction. Course Notes for ESSLLI 2007.
go back to reference Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. Burlington: Morgan Kaufmann. Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. Burlington: Morgan Kaufmann.
go back to reference Pozzato, G. L. (2010). Conditional and preferential logics: Proof methods and theorem proving. Frontiers in artificial intelligence and applications. Amsterdam: IOS Press. Pozzato, G. L. (2010). Conditional and preferential logics: Proof methods and theorem proving. Frontiers in artificial intelligence and applications. Amsterdam: IOS Press.
go back to reference Schlechta, K. (1995). Defaults as generalized quantifiers. Journal of Logic and Computation, 5(4), 473–494.CrossRef Schlechta, K. (1995). Defaults as generalized quantifiers. Journal of Logic and Computation, 5(4), 473–494.CrossRef
go back to reference Schlechta, K. (1997). Filters and partial orders. Logic Journal of the IGPL, 5(5), 753–772.CrossRef Schlechta, K. (1997). Filters and partial orders. Logic Journal of the IGPL, 5(5), 753–772.CrossRef
go back to reference Segerberg, K. (1970). Modal logics with linear alternative relations. Theoria, 36, 301–322.CrossRef Segerberg, K. (1970). Modal logics with linear alternative relations. Theoria, 36, 301–322.CrossRef
go back to reference Segerberg, K. (1971). An essay in classical modal logic. Uppsala: Filosofiska Studies. Segerberg, K. (1971). An essay in classical modal logic. Uppsala: Filosofiska Studies.
go back to reference Veltman, F. (1985). Logics for conditionals. PhD thesis, University of Amsterdam. Veltman, F. (1985). Logics for conditionals. PhD thesis, University of Amsterdam.
Metadata
Title
In All But Finitely Many Possible Worlds: Model-Theoretic Investigations on ‘Overwhelming Majority’ Default Conditionals
Publication date
18-04-2017
Published in
Journal of Logic, Language and Information / Issue 2/2017
Print ISSN: 0925-8531
Electronic ISSN: 1572-9583
DOI
https://doi.org/10.1007/s10849-017-9251-5

Premium Partner