Skip to main content
Top
Published in: Journal of Materials Science 12/2019

21-03-2019 | Energy materials

In situ generated spinel-phase skin on layered Li-rich short nanorods as cathode materials for lithium-ion batteries

Authors: Taolin Zhao, Rixin Ji, Yu Meng, Guanglei Zhang, Huayan Si, Yuhua Wang, Minli Yang, Feng Wu, Li Li, Renjie Chen

Published in: Journal of Materials Science | Issue 12/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As main electrochemical power sources for portable electronic devices, lithium-ion batteries (LIBs) restricted by cathode materials should be further developed for the application in electric vehicles. Despite the restrictions of low Coulombic efficiency and serious voltage fading, high-capacity Li-rich layered oxides with high voltage are still attractive cathode materials for high-energy-density LIBs. Here, spinel-phase skin is in situ generated on Fe-containing Li-rich short nanorods by employing a direct hydrothermal method. The rational design of morphology and structure features is beneficial for the removal and embedding of lithium ions. Two-dimensional nanorod structure can greatly shorten the pathway length of Li-ion diffusion and electron transport, increase the interface area between the electrode and electrolyte, and provide more free space for Li-ion storage and transmission. Large porosity between short nanorods is conducive to the penetration and infiltration of the electrolyte. Moreover, the ultrathin spinel marginal nanolayer (~ 3 nm) can provide 3D diffusion channels for Li+ ions transportation due to its fast kinetics. Good electrochemical performances are exhibited by controlling the concentration of lithium source (LiOH·H2O). Owning to this unique structure and morphology design, the prepared compound delivers a high discharge specific capacity of 247.5 mAh g−1 at 20 mA g−1 and a good rate capability. The first Coulombic efficiency and voltage fading issue are also significantly improved. These Li-rich short nanorods with spinel-phase skin are considered promising as cathode materials for LIBs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Xu J, Lin F, Doeff MM, Tong W (2017) A review of Ni-based layered oxides for rechargeable Li-ion batteries. J Mater Chem A 5:874–901CrossRef Xu J, Lin F, Doeff MM, Tong W (2017) A review of Ni-based layered oxides for rechargeable Li-ion batteries. J Mater Chem A 5:874–901CrossRef
2.
go back to reference Zheng J, Myeong S, Cho W, Yan P, Xiao J, Wang C, Cho J, Zhang J-G (2017) Li- and Mn-rich cathode materials: challenges to commercialization. Adv Energy Mater 7:1601284CrossRef Zheng J, Myeong S, Cho W, Yan P, Xiao J, Wang C, Cho J, Zhang J-G (2017) Li- and Mn-rich cathode materials: challenges to commercialization. Adv Energy Mater 7:1601284CrossRef
3.
go back to reference Yu H, Zhou H (2013) High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ion batteries. J Phys Chem Lett 4:1268–1280CrossRef Yu H, Zhou H (2013) High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ion batteries. J Phys Chem Lett 4:1268–1280CrossRef
4.
go back to reference Yuge R, Toda A, Kuroshima S, Sato H, Miyazaki T, Tabuchi M, Nakahara K (2014) Remarkable charge-discharge mechanism for a large capacity in Fe-containing Li2MnO3 cathodes. J Electrochem Soc 161:A2237–A2242CrossRef Yuge R, Toda A, Kuroshima S, Sato H, Miyazaki T, Tabuchi M, Nakahara K (2014) Remarkable charge-discharge mechanism for a large capacity in Fe-containing Li2MnO3 cathodes. J Electrochem Soc 161:A2237–A2242CrossRef
5.
go back to reference Zhao Y, Wang Y, Ji C, Zhao Z, Lv Z (2016) Electrochemistry and structure of Li-rich cathode composites: Li1.26Fe0.22Mn0.52O2 in situ integrated with conductive network-graphene oxide for lithium-ion batteries. RSC Adv 6:31762–31768CrossRef Zhao Y, Wang Y, Ji C, Zhao Z, Lv Z (2016) Electrochemistry and structure of Li-rich cathode composites: Li1.26Fe0.22Mn0.52O2 in situ integrated with conductive network-graphene oxide for lithium-ion batteries. RSC Adv 6:31762–31768CrossRef
6.
go back to reference Zhou C-X, Wang P-B, Zheng J-C, Xia C-Y, Zhang B, Xi X-M, Xiao K-S, Liao D-Q, Yang L-S, Chen X-Q, Qin S-B (2017) Cyclic performance of Li-rich layered material Li1.1Ni0.35Mn0.65O2 synthesized through a two-step calcination method. Electrochim Acta 252:286–294CrossRef Zhou C-X, Wang P-B, Zheng J-C, Xia C-Y, Zhang B, Xi X-M, Xiao K-S, Liao D-Q, Yang L-S, Chen X-Q, Qin S-B (2017) Cyclic performance of Li-rich layered material Li1.1Ni0.35Mn0.65O2 synthesized through a two-step calcination method. Electrochim Acta 252:286–294CrossRef
7.
go back to reference Karthikeyan K, Amaresh S, Son J-N, Kim S-H, Kim M-C, Kim K-J, Lee S-N, Lee Y-S (2013) Adipic acid assisted sol-gel synthesis of Li1+x(Mn0.4Ni0.4Fe0.2)1-xO2(0 > x>0.3) as cathode materials for lithium ion batteries. Bull Korean Chem Soc 34:89–94CrossRef Karthikeyan K, Amaresh S, Son J-N, Kim S-H, Kim M-C, Kim K-J, Lee S-N, Lee Y-S (2013) Adipic acid assisted sol-gel synthesis of Li1+x(Mn0.4Ni0.4Fe0.2)1-xO2(0 > x>0.3) as cathode materials for lithium ion batteries. Bull Korean Chem Soc 34:89–94CrossRef
8.
go back to reference Fan J, Li G, Luo D, Fu C, Li Q, Zheng J, Li L (2015) Hydrothermal-assisted synthesis of Li-rich layered oxide microspheres with high capacity and superior rate-capability as a cathode for lithium-ion batteries. Electrochim Acta 173:7–16CrossRef Fan J, Li G, Luo D, Fu C, Li Q, Zheng J, Li L (2015) Hydrothermal-assisted synthesis of Li-rich layered oxide microspheres with high capacity and superior rate-capability as a cathode for lithium-ion batteries. Electrochim Acta 173:7–16CrossRef
9.
go back to reference Wu F, Li N, Su Y, Zhang L, Bao L, Wang J, Chen L, Zheng Y, Dai L, Peng J, Chen S (2014) Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries. Nano Lett 14:3550–3555CrossRef Wu F, Li N, Su Y, Zhang L, Bao L, Wang J, Chen L, Zheng Y, Dai L, Peng J, Chen S (2014) Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries. Nano Lett 14:3550–3555CrossRef
10.
go back to reference Zhang J, Gao R, Sun L, Li Z, Zhang H, Hu Z, Liu X (2016) Understanding the effect of an in situ generated and integrated spinel phase on a layered Li-rich cathode material using a non-stoichiometric strategy. Phys Chem Chem Phys 18:25711–25720CrossRef Zhang J, Gao R, Sun L, Li Z, Zhang H, Hu Z, Liu X (2016) Understanding the effect of an in situ generated and integrated spinel phase on a layered Li-rich cathode material using a non-stoichiometric strategy. Phys Chem Chem Phys 18:25711–25720CrossRef
11.
go back to reference Zhao T, Chen S, Chen R, Li L, Zhang X, Xie M, Wu F (2014) The positive roles of integrated layered-spinel structures combined with nanocoating in low-cost Li-rich cathode Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 for lithium-ion batteries. ACS Appl Mater Interfaces 6:21711–21720CrossRef Zhao T, Chen S, Chen R, Li L, Zhang X, Xie M, Wu F (2014) The positive roles of integrated layered-spinel structures combined with nanocoating in low-cost Li-rich cathode Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 for lithium-ion batteries. ACS Appl Mater Interfaces 6:21711–21720CrossRef
12.
go back to reference Jiang M, Key B, Meng YS, Grey CP (2009) Electrochemical and structural study of the layered, “Li-excess” lithium-ion battery electrode material Li[Li1/9Ni1/3Mn5/9]O2. Chem Mater 21:2733–2745CrossRef Jiang M, Key B, Meng YS, Grey CP (2009) Electrochemical and structural study of the layered, “Li-excess” lithium-ion battery electrode material Li[Li1/9Ni1/3Mn5/9]O2. Chem Mater 21:2733–2745CrossRef
13.
go back to reference Lu Z, Beaulieu LY, Donaberger RA, Thomas CL, Dahn JR (2002) Synthesis, structure, and electrochemical behavior of Li[NixLi1/3−2x/3Mn2/3−x/3]O2. J Electrochem Soc 149:A778–A791CrossRef Lu Z, Beaulieu LY, Donaberger RA, Thomas CL, Dahn JR (2002) Synthesis, structure, and electrochemical behavior of Li[NixLi1/3−2x/3Mn2/3−x/3]O2. J Electrochem Soc 149:A778–A791CrossRef
14.
go back to reference Yang F, Zhang Q, Hu X, Peng T, Liu J (2017) Preparation of Li-rich layered-layered type xLi2MnO3·(1 − x)LiMnO2 nanorods and its electrochemical performance as cathode material for Li-ion battery. J Power Sources 353:323–332CrossRef Yang F, Zhang Q, Hu X, Peng T, Liu J (2017) Preparation of Li-rich layered-layered type xLi2MnO3·(1 − x)LiMnO2 nanorods and its electrochemical performance as cathode material for Li-ion battery. J Power Sources 353:323–332CrossRef
15.
go back to reference Morales J, Pérez-Vicente C, Tirado JL (1990) Cation distribution and chemical deintercalation of Li1-xNi1+xO2. Mater Res Bull 25:623–630CrossRef Morales J, Pérez-Vicente C, Tirado JL (1990) Cation distribution and chemical deintercalation of Li1-xNi1+xO2. Mater Res Bull 25:623–630CrossRef
16.
go back to reference Gong Z-L, Liu H-S, Guo X-J, Zhang Z-R, Yang Y (2004) Effects of preparation methods of LiNi0.8Co0.2O2 cathode materials on their morphology and electrochemical performance. J Power Sources 136:139–144CrossRef Gong Z-L, Liu H-S, Guo X-J, Zhang Z-R, Yang Y (2004) Effects of preparation methods of LiNi0.8Co0.2O2 cathode materials on their morphology and electrochemical performance. J Power Sources 136:139–144CrossRef
17.
go back to reference Yu F-D, Que L-F, Wang Z-B, Zhang Y, Xue Y, Liu B-S, Gu D-M (2016) Layered-spinel capped nanotube assembled 3D Li-rich hierarchitectures for high performance Li-ion battery cathodes. J Mater Chem A 4:18416–18425CrossRef Yu F-D, Que L-F, Wang Z-B, Zhang Y, Xue Y, Liu B-S, Gu D-M (2016) Layered-spinel capped nanotube assembled 3D Li-rich hierarchitectures for high performance Li-ion battery cathodes. J Mater Chem A 4:18416–18425CrossRef
18.
go back to reference Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254:2441–2449CrossRef Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254:2441–2449CrossRef
19.
go back to reference Tran N, Croguennec L, Labrugère C, Jordy C, Biensan P, Delmas C (2006) Layered Li1 + x(Ni0.425Mn0.425Co0.15)1 − xO2 positive electrode materials for lithium-ion batteries. J Electrochem Soc 153:A261–A269CrossRef Tran N, Croguennec L, Labrugère C, Jordy C, Biensan P, Delmas C (2006) Layered Li1 + x(Ni0.425Mn0.425Co0.15)1 − xO2 positive electrode materials for lithium-ion batteries. J Electrochem Soc 153:A261–A269CrossRef
20.
go back to reference Mansour AN, Melendres CA (1994) Characterization of Ni2O3·6H2O by XPS. Surf Sci Spectra 3:263–270CrossRef Mansour AN, Melendres CA (1994) Characterization of Ni2O3·6H2O by XPS. Surf Sci Spectra 3:263–270CrossRef
21.
go back to reference Liu J, Hou M, Yi J, Guo S, Wang C, Xia Y (2014) Improving the electrochemical performance of layered lithium-rich transition-metal oxides by controlling the structural defects. Energy Environ Sci 7:705–714CrossRef Liu J, Hou M, Yi J, Guo S, Wang C, Xia Y (2014) Improving the electrochemical performance of layered lithium-rich transition-metal oxides by controlling the structural defects. Energy Environ Sci 7:705–714CrossRef
22.
go back to reference Armstrong AR, Holzapfel M, Novák P, Johnson CS, Kang S-H, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc 128:8694–8698CrossRef Armstrong AR, Holzapfel M, Novák P, Johnson CS, Kang S-H, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc 128:8694–8698CrossRef
23.
go back to reference Zhao T, Chen S, Li L, Zhang X, Wu H, Wu T, Sun CJ, Chen R, Wu F, Lu J, Amine K (2014) Organic-acid-assisted fabrication of low-cost Li-rich cathode material (Li[Li1/6Fe1/6Ni1/6Mn1/2]O2) for lithium-ion battery. ACS Appl Mater Interfaces 6:22305–22315CrossRef Zhao T, Chen S, Li L, Zhang X, Wu H, Wu T, Sun CJ, Chen R, Wu F, Lu J, Amine K (2014) Organic-acid-assisted fabrication of low-cost Li-rich cathode material (Li[Li1/6Fe1/6Ni1/6Mn1/2]O2) for lithium-ion battery. ACS Appl Mater Interfaces 6:22305–22315CrossRef
24.
go back to reference Zhao T, Zhou N, Zhang X, Xue Q, Wang Y, Yang M, Li L, Chen R (2017) Constructing heterostructured Li-Fe-Ni-Mn-O cathodes for lithium-ion batteries: effective improvement of ultrafast lithium storage. Phys Chem Chem Phys 19:22494–22501CrossRef Zhao T, Zhou N, Zhang X, Xue Q, Wang Y, Yang M, Li L, Chen R (2017) Constructing heterostructured Li-Fe-Ni-Mn-O cathodes for lithium-ion batteries: effective improvement of ultrafast lithium storage. Phys Chem Chem Phys 19:22494–22501CrossRef
25.
go back to reference Zhao Y, Lv Z, Wang Y, Xu T (2017) Combination of Fe-Mn based Li-rich cathode materials and conducting-polymer polypyrrole nanowires with high rate capability. Ionics 24:51–60CrossRef Zhao Y, Lv Z, Wang Y, Xu T (2017) Combination of Fe-Mn based Li-rich cathode materials and conducting-polymer polypyrrole nanowires with high rate capability. Ionics 24:51–60CrossRef
26.
go back to reference Yu R, Zhang X, Liu T, Yang L, Liu L, Wang Y, Wang X, Shu H, Yang X (2017) Spinel/layered heterostructured lithium-rich oxide nanowires as cathode material for high-energy lithium-ion batteries. ACS Appl Mater Interfaces 9:41210–41223CrossRef Yu R, Zhang X, Liu T, Yang L, Liu L, Wang Y, Wang X, Shu H, Yang X (2017) Spinel/layered heterostructured lithium-rich oxide nanowires as cathode material for high-energy lithium-ion batteries. ACS Appl Mater Interfaces 9:41210–41223CrossRef
27.
go back to reference Zhang X, Yu R, Huang Y, Wang X, Wang Y, Wu B, Liu Z, Chen J (2018) The influences of surface coating layers on the properties of layered/spinel heterostructured Li-rich cathode material. ACS Sustain Chem Eng 6:12969–12979CrossRef Zhang X, Yu R, Huang Y, Wang X, Wang Y, Wu B, Liu Z, Chen J (2018) The influences of surface coating layers on the properties of layered/spinel heterostructured Li-rich cathode material. ACS Sustain Chem Eng 6:12969–12979CrossRef
28.
go back to reference Wang D, Wang X, Yang X, Yu R, Ge L, Shu H (2015) Polyaniline modification and performance enhancement of lithium-rich cathode material based on layered-spinel hybrid structure. J Power Sources 293:89–94CrossRef Wang D, Wang X, Yang X, Yu R, Ge L, Shu H (2015) Polyaniline modification and performance enhancement of lithium-rich cathode material based on layered-spinel hybrid structure. J Power Sources 293:89–94CrossRef
Metadata
Title
In situ generated spinel-phase skin on layered Li-rich short nanorods as cathode materials for lithium-ion batteries
Authors
Taolin Zhao
Rixin Ji
Yu Meng
Guanglei Zhang
Huayan Si
Yuhua Wang
Minli Yang
Feng Wu
Li Li
Renjie Chen
Publication date
21-03-2019
Publisher
Springer US
Published in
Journal of Materials Science / Issue 12/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03425-8

Other articles of this Issue 12/2019

Journal of Materials Science 12/2019 Go to the issue

Premium Partners