Skip to main content
Top
Published in:
Cover of the book

2021 | OriginalPaper | Chapter

1. In-Situ Strength Assessment of Concrete: Detailed Guidelines

Authors : Denys Breysse, Jean-Paul Balayssac, Maitham Alwash, Samuele Biondi, Leonardo Chiauzzi, David Corbett, Vincent Garnier, Arlindo Gonçalves, Michael Grantham, Oguz Gunes, Said Kenaï, Vincenza Anna Maria Luprano, Angelo Masi, Andrzej Moczko, Hicham Yousef Qasrawi, Xavier Romão, Zoubir Mehdi Sbartaï, André Valente Monteiro, Emilia Vasanelli

Published in: Non-Destructive In Situ Strength Assessment of Concrete

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Guidelines describe the general process of in-situ compressive strength assessment. This process is divided into three main steps, data collection (using nondestructive testing and destructive testing), model identification and strength assessment. Three estimation quality levels (EQL) are defined depending on the targeted accuracy of strength assessment, based on three parameters, mean value of strength and standard deviation of strength on a test region and local value of strength. All the necessary definitions (test location, test reading, test region, test result, …) are given and the different stages of data collection, i.e. planning, NDT methods, cores (dimensions, conservation, location, testing, etc) are described. The identification of the conversion model is detailed and a specific attention is paid to the assessment of test result precision (TRP). For the identification of the model parameters, two options are considered either the development of a specific model or the calibration of a prior model. A specific option is also proposed, namely the bi-objective approach. Finally, the quantification of the errors of model fitting and strength prediction is described. The global methodology is synthetized in a flowchart.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Recommendations of RILEM TC 249-ISC on non-destructive in situ strength assessment of concrete, D. Breysse (chair) and co-authors, Materials and Structures 52(4), 71 (2019). All references to this publication are given with the same format, i.e. “RILEM TC 249-ISC Recommendations” with the number of the figure or section.
 
2
Specified in BS 6089:2010.
 
3
Another case of «derived» values is when one is interested in structural response, which depends on the local concrete properties.
 
4
See Chap. 10 for the definition of uncertainty and variability in relation with these guidelines.
 
5
EN 1998-3:2005, Eurocode 8: Design of structures for earthquake resistance—Part 3: Assessment and retrofitting of buildings, European Committee for Standardization (CEN), Brussels, Belgium, 2005 (see also: S. Biondi, The knowledge level in existing building assessment. 14th World Conference on Earthquake Engineering, Beijing, China, 12–17 October 2008).
 
6
Conversion factors between cubes and cylinders are available in the literature, as in BS 1881–120. The Concrete Society has compared core and cube strength for a range of different mixes and types of elements. It illustrated very well the difficulties of comparing core and cube (and of course cylinder strength), see:
 
7
See for instance:
  • ASTM C823:2017, Standard practice for examination and sampling of hardened concrete in constructions, 2017.
  • RILEM, STAR 207-INR, Non-destructive assessment of concrete structures: reliability and limits of single and combined techniques, D. Breysse (chair), Springer, 2012.
  • IAEA, Guidebook on non-destructive testing of concrete structures, 2002.
 
8
This is commonly done when, in seismic retrofitting, one defines “knowledge levels” by rough indicators about the number/density of tests for a given building surface or a given number of structural components (see note 5 and S. Biondi, The knowledge level in existing building assessment. 14th World Conference on Earthquake Engineering, Beijing, China, 12–17 October 2008).
 
9
See Sect. 3.​3.​2 for the definitions.
 
10
See for instance:
  • RILEM, STAR 207-INR, Non-destructive assessment of concrete structures: reliability and limits of single and combined techniques, D. Breysse (chair), Springer, 2012.
  • J.H. Bungey, S.G. Millard, M.G. Grantham, Testing of Concrete in Structures (CRC Press, Boca Raton, Florida, 2018).
  • C. Maierhofer, H.-W. Reinhardt, G. Dobmann, Non-Destructive Evaluation of Reinforced Concrete Structures (Woodhead Publishing, 2010).
  • V.M. Malhotra, N.J. Carino (eds.), Handbook of Nondestructive Testing of Concrete (CRC Press, Boca Raton, Florida, 2003).
 
11
Based on the same type of device, the rebound energy can be measured and a Q value derived.
 
12
The principle of the Lok test is similar but uses a cast-in test piece when the fresh concrete is placed. It is thus not commonly used in existing structures. See for instance: A.T. Moczko, N.J. Carino, C.G. Petersen, CAPO-TEST to estimate concrete strength in bridges. ACI Mater J 113(6), 827–836 (2016).
 
13
The test is standardized (ASTM C803:2010, Standard test method for penetration resistance of hardened concrete, 2010), and the concrete strength can be derived after the processing of test results.
 
14
R. Felicetti, The drilling resistance test for the assessment of fire damaged concrete. Cem Concr Compos 28(4), 321–329 (2006).
 
15
The combination of rebound hammer and velocity measurements had been initially promoted by RILEM (RILEM TC 43-CND, I. Facaoaru (chair), Draft recommendation for in situ concrete strength determination by combined non-destructive methods. Mater Struct 26, 43–49 (1993). An extensive review has been published which explains what are the main factors governing the efficiency of combination (D. Breysse, Nondestructive evaluation of concrete strength: an historical review and a new perspective by combining NDT methods. Constr Build Mater 33, 139–163, 2012).
 
16
This table is based very closely on that provided by the British Standard 6089:2010, a complementary guidance document to BS EN 13791 [BS 6089:2010, Assessment of in-situ compressive strength in structures and precast concrete components - Complementary guidance to that given in BS EN 13791, British Standard, 2010] and to that published by Soutsos et al. [in RILEM, STAR 207-INR, Non-Destructive Aassessment of Concrete Structures: Reliability and Limits of Single and Combined Techniques, D. Breysse (chair), Springer, 2012]. Some differences may however appear depending on the context of measurements (see f.i. G. Pascale, A. Di Leo, R. Carli, V. Bonora, Evaluation of actual compressive strength of high strength concrete by NDT. 15th World Conference on NDT, Rome, Italy, 15–21 October 2000, and M.D. Machado, L.C.D. Shehata, I.A.E.M. Shehata, Correlation curves to characterize concretes used in Rio de Janeiro by means of non-destructive tests. Rev IBRACON Estrut Mater 2(2), 100–123, 2009).
 
17
ASTM C805 recommends: “do not conduct Rebound Hammer tests directly over reinforcing bars with cover less than 20 mm”.
 
18
EN 12504–2 recommends avoiding measurements close to rebar.
 
19
A. Masi, L. Chiauzzi, An experimental study on the within-member variability of in situ concrete strength in RC building structures. Constr Build Mater 47, 951–961 (2013).
 
20
This issue has been discussed into detail by J. Brozovsky, J. Zach, Influence of surface preparation method on the concrete rebound number obtained from impact hammer. 5th Pan American Conference for NDT, Cancun, Mexico, 2–6 October 2011.
 
21
The variability of concrete strength in vertical members has been documented (see for instance, H.Y. Qasrawi, Effect of the position of core on the strength of concrete of columns in existing structures. J Build Eng 25, 2019. In such a case, the investigator must choose between addressing the concrete variability or estimating the concrete strength at test locations that he considers to provide a reference for the component.
 
22
Or “observed value” according to ISO 5725.
 
23
As in EN-12504-3.
 
24
A good example of what can be done in practice is given by A. Masi, L. Chiauzzi, V. Manfredi, Criteria for identifying concrete homogeneous areas for the estimation of in-situ strength in RC buildings. Constr Build Mater 121, 576–587 (2016).
 
25
EN 13791.
 
26
BS EN 12504–1.
 
27
EN 12504–1.
 
28
EN 13791.
 
29
BS and ASTM C42 propose an equation for correcting the variation of height to diameter ratio. EN13791 uses a correction factor of 0.80 to convert a 1:1 core to a 2:1 core.
 
30
In the case of partial coring, the core can be removed by a shear effort (inserting a screwdriver or small chisel and tapping smartly with a hammer will usually be sufficient to snap the core at its base).
 
31
F.M. Bartlett, J.G. MacGregor, Effect of moisture condition on concrete core strengths. ACI Mater J 91(3), 227–236 (1994).
 
32
EN 12504–1 recommends to measure core diameter within 1%, from pairs of measurements taken at right angles, at the half and quarter points of the length of the core. It is also underlined that the length must also be assessed within 1%.
 
33
The extensive procedure is described in European standards (EN 12504–1:2012, Testing concrete in structures—Part 1: Cored specimens—Taking, examining and testing in compression, European Committee for Standardization (CEN), Brussels, Belgium, 2012—EN 12390–3:2019, Testing hardened concrete - Part 3: Compressive strength of test specimens, European Committee for Standardization (CEN), Brussels, Belgium, 2019).
 
34
For rebound hammer for instance, it is the case in European standards (EN 12504–2:2012, Testing concrete in structures—Part 2: Non-destructive testing—Determination of rebound number, European Committee for Standardization (CEN), Brussels, Belgium, 2012) and in North-American standards (ASTM C805:2013, Standard test method for rebound number of hardened concrete, 2013where it is said to discard readings differing from the average of ten readings by more than six units and determine the average of the remaining readings. If more than two readings differ from the average by six units, the entire set of readings must be discarded.
 
35
One must point out that the whole measurement process is repeated, which requires a total number of test readings equal to Nread x Nrep where Nread is the number of individual readings that are repeated for obtaining a test result.
 
36
Robust statistics corresponds to a set of statistical methods whose efficiency is not strongly affected by outliers or any deviation from common assumptions, like those regarding the normal distribution of the variables.
 
37
RILEM TC 43-CND, I. Facaoaru (chair), Draft recommendation for in situ concrete strength determination by combined non-destructive methods. Mater Struct 26, 43–49 (1993).
 
38
The identification process with the three model shapes respectively leads to: (a) fc = 0.632 R + 17.78 (r2 = 0.543) for the linear model, (b) fc = 7.672 R0.460 (r2 = 0.480) for the power model, (c) fc = 22.09 exp (0.0167 R) (r2 = 0.532) for the exponential model. While the three models are very close in the interval corresponding to the identification set, they disagree when they are used for extrapolation.
 
39
M. Alwash, Z.M. Sbartaï, D. Breysse, Non-destructive assessment of both mean strength and variability of concrete: a new bi-objective approach. Constr Build Mater 113, 880–889 (2016).
 
40
Relevant information is available in:
  • F. Mosteller, J.W. Tukey, Data analysis, including statistics, in G. Lindzey, E. Aronson (eds.), Handbook of Social Psychology, Vol. 2. Res. Methods (Addison-Wesley, Reading, Massachusetts, 1968), pp. 80–203;
  • M. Stone, Asymptotics for and against cross-validation. Biometrika 64, 29–35 (1977). doi:10.1093/biomet/64.1.29;
  • S. Geisser, A predictive approach to the random effect model. Biometrika 61, 101–107 (1974). doi:10.1093/biomet/61.1.101;
  • S. Arlot, A. Celisse, A survey of cross-validation procedures for model selection. Stat Surv 4, 40–79 (2010). doi:10.1214/09-SS054.
 
Literature
1.
go back to reference ACI228.1R-19, Report on methods for estimating in-place concrete strength, Reported by ACI Committee 228, A.J. Boyd (chair) (2019) ACI228.1R-19, Report on methods for estimating in-place concrete strength, Reported by ACI Committee 228, A.J. Boyd (chair) (2019)
2.
go back to reference ASTM C42:2016, Standard test method for obtaining and testing drilled cores and sawed beams of concrete (2016) ASTM C42:2016, Standard test method for obtaining and testing drilled cores and sawed beams of concrete (2016)
3.
go back to reference ASTM C803:2010, Standard test method for penetration resistance of hardened concrete (2010) ASTM C803:2010, Standard test method for penetration resistance of hardened concrete (2010)
4.
go back to reference ASTM C805:2013, Standard test method for rebound number of hardened concrete (2013) ASTM C805:2013, Standard test method for rebound number of hardened concrete (2013)
5.
go back to reference ASTM C823:2017, Standard practice for examination and sampling of hardened concrete in constructions (2017) ASTM C823:2017, Standard practice for examination and sampling of hardened concrete in constructions (2017)
6.
go back to reference BS 6089:2010, Assessment of in-situ compressive strength in structures and precast concrete components—Complementary guidance to that given in BS EN 13791, British Standard (2010). ISBN: 978 0 580 67274 3 BS 6089:2010, Assessment of in-situ compressive strength in structures and precast concrete components—Complementary guidance to that given in BS EN 13791, British Standard (2010). ISBN: 978 0 580 67274 3
7.
go back to reference EN 12504–1:2012, Testing concrete in structures - Part 1: Cored specimens—Taking, examining and testing in compression, European Committee for Standardization (CEN), Brussels, Belgium (2012) EN 12504–1:2012, Testing concrete in structures - Part 1: Cored specimens—Taking, examining and testing in compression, European Committee for Standardization (CEN), Brussels, Belgium (2012)
8.
go back to reference EN 12504–2:2012, Testing concrete in structures—Part 2: Non-destructive testing - Determination of rebound number, European Committee for Standardization (CEN), Brussels, Belgium (2012) EN 12504–2:2012, Testing concrete in structures—Part 2: Non-destructive testing - Determination of rebound number, European Committee for Standardization (CEN), Brussels, Belgium (2012)
9.
go back to reference EN 12504–3:2005, Testing concrete in structures—Part 3: Determination of pull-out force, European Committee for Standardization (CEN), Brussels, Belgium (2005) EN 12504–3:2005, Testing concrete in structures—Part 3: Determination of pull-out force, European Committee for Standardization (CEN), Brussels, Belgium (2005)
10.
go back to reference EN 12504–4:2004, Testing concrete—Part 4: Determination of ultrasonic pulse velocity, European Committee for Standardization (CEN), Brussels, Belgium (2004) EN 12504–4:2004, Testing concrete—Part 4: Determination of ultrasonic pulse velocity, European Committee for Standardization (CEN), Brussels, Belgium (2004)
11.
go back to reference EN 13791:2007, Assessment of in-situ compressive strength in structures or in precast concrete products, European Committee for Standardization (CEN), Brussels, Belgium (2007) EN 13791:2007, Assessment of in-situ compressive strength in structures or in precast concrete products, European Committee for Standardization (CEN), Brussels, Belgium (2007)
12.
go back to reference EN 1998–3:2005, Eurocode 8: Design of structures for earthquake resistance—Part 3: Assessment and retrofitting of buildings, European Committee for Standardization (CEN), Brussels, Belgium, (2005) EN 1998–3:2005, Eurocode 8: Design of structures for earthquake resistance—Part 3: Assessment and retrofitting of buildings, European Committee for Standardization (CEN), Brussels, Belgium, (2005)
14.
go back to reference Ali-Benyahia, K., Sbartaï, Z.M., Breysse, D., Kenai, S., Ghrici, M.: Analysis of the single and combined non-destructive test approaches for on-site concrete strength assessment: general statements based on a real case-study. Case Study Constr. Mater. 6, 109–119 (2017) Ali-Benyahia, K., Sbartaï, Z.M., Breysse, D., Kenai, S., Ghrici, M.: Analysis of the single and combined non-destructive test approaches for on-site concrete strength assessment: general statements based on a real case-study. Case Study Constr. Mater. 6, 109–119 (2017)
15.
go back to reference Alwash, M., Breysse, D., Sbartaï, Z.M.: Non destructive strength evaluation of concrete: analysis of some key factors using synthetic simulations. Constr. Build. Mater. 99, 235–245 (2015)CrossRef Alwash, M., Breysse, D., Sbartaï, Z.M.: Non destructive strength evaluation of concrete: analysis of some key factors using synthetic simulations. Constr. Build. Mater. 99, 235–245 (2015)CrossRef
16.
go back to reference Alwash, M., Sbartaï, Z.M., Breysse, D.: Non-destructive assessment of both mean strength and variability of concrete: a new bi-objective approach. Constr. Build. Mater. 113, 880–889 (2016)CrossRef Alwash, M., Sbartaï, Z.M., Breysse, D.: Non-destructive assessment of both mean strength and variability of concrete: a new bi-objective approach. Constr. Build. Mater. 113, 880–889 (2016)CrossRef
18.
go back to reference Bartlett, F.M., MacGregor, J.G.: Effect of moisture condition on concrete core strengths. ACI Mater. J. 91(3), 227–236 (1994) Bartlett, F.M., MacGregor, J.G.: Effect of moisture condition on concrete core strengths. ACI Mater. J. 91(3), 227–236 (1994)
19.
go back to reference Biondi, S.: The knowledge level in existing building assessment. In: 14th World Conference on Earthquake Engineering, Beijing, China, 12–17 October 2008 Biondi, S.: The knowledge level in existing building assessment. In: 14th World Conference on Earthquake Engineering, Beijing, China, 12–17 October 2008
20.
go back to reference Breysse, D.: Nondestructive evaluation of concrete strength: an historical review and a new perspective by combining NDT methods. Constr. Build. Mater. 33, 139–163 (2012)CrossRef Breysse, D.: Nondestructive evaluation of concrete strength: an historical review and a new perspective by combining NDT methods. Constr. Build. Mater. 33, 139–163 (2012)CrossRef
21.
go back to reference Brozovsky, J., Zach, J.: Influence of surface preparation method on the concrete rebound number obtained from impact hammer. In: 5th Pan American Conference for NDT, Cancun, Mexico, 2–6 Oct. 2011 Brozovsky, J., Zach, J.: Influence of surface preparation method on the concrete rebound number obtained from impact hammer. In: 5th Pan American Conference for NDT, Cancun, Mexico, 2–6 Oct. 2011
22.
go back to reference Bungey, J.H., Millard, S.G., Grantham, M.G.: Testing of Concrete in Structures. CRC Press, Boca Raton (2018) Bungey, J.H., Millard, S.G., Grantham, M.G.: Testing of Concrete in Structures. CRC Press, Boca Raton (2018)
23.
go back to reference Celik, A.O., Kilinc, K., Tuncan, M., Tuncan, A.: Distributions of compressive strength obtained from various diameter cores. ACI Mater. J. 109(6), 597–606 (2012) Celik, A.O., Kilinc, K., Tuncan, M., Tuncan, A.: Distributions of compressive strength obtained from various diameter cores. ACI Mater. J. 109(6), 597–606 (2012)
24.
go back to reference Felicetti, R.: The drilling resistance test for the assessment of fire damaged concrete. Cem. Concr. Compos. 28(4), 321–329 (2006)CrossRef Felicetti, R.: The drilling resistance test for the assessment of fire damaged concrete. Cem. Concr. Compos. 28(4), 321–329 (2006)CrossRef
26.
go back to reference Machado, M.D., Shehata, L.C.D., Shehata, I.A.E.M.: Correlation curves to characterize concretes used in Rio de Janeiro by means of non-destructive tests. Rev IBRACON Estrut. Mater. 2(2), 100–123 (2009)CrossRef Machado, M.D., Shehata, L.C.D., Shehata, I.A.E.M.: Correlation curves to characterize concretes used in Rio de Janeiro by means of non-destructive tests. Rev IBRACON Estrut. Mater. 2(2), 100–123 (2009)CrossRef
27.
go back to reference Maierhofer, C., Reinhardt, H.-W., Dobmann, G.: Non-Destructive Evaluation of Reinforced Concrete Structures. Woodhead Publishing (2010) Maierhofer, C., Reinhardt, H.-W., Dobmann, G.: Non-Destructive Evaluation of Reinforced Concrete Structures. Woodhead Publishing (2010)
28.
go back to reference Malhotra, V.M., Carino, N.J. (eds.): Handbook of Nondestructive Testing of Concrete. CRC Press, Boca Raton, Florida (2003) Malhotra, V.M., Carino, N.J. (eds.): Handbook of Nondestructive Testing of Concrete. CRC Press, Boca Raton, Florida (2003)
29.
go back to reference Masi, A., Chiauzzi, L.: An experimental study on the within-member variability of in situ concrete strength in RC building structures. Constr. Build. Mater. 47, 951–961 (2013)CrossRef Masi, A., Chiauzzi, L.: An experimental study on the within-member variability of in situ concrete strength in RC building structures. Constr. Build. Mater. 47, 951–961 (2013)CrossRef
30.
go back to reference Masi, A., Chiauzzi, L., Manfredi, V.: Criteria for identifying concrete homogeneous areas for the estimation of in-situ strength in RC buildings. Constr. Build. Mater. 121, 576–587 (2016)CrossRef Masi, A., Chiauzzi, L., Manfredi, V.: Criteria for identifying concrete homogeneous areas for the estimation of in-situ strength in RC buildings. Constr. Build. Mater. 121, 576–587 (2016)CrossRef
31.
go back to reference Moczko, A.T., Carino, N.J., Petersen, C.G.: CAPO-TEST to estimate concrete strength in bridges. ACI Mater. J. 113(6), 827–836 (2016) Moczko, A.T., Carino, N.J., Petersen, C.G.: CAPO-TEST to estimate concrete strength in bridges. ACI Mater. J. 113(6), 827–836 (2016)
32.
go back to reference Mosteller, F., Tukey, J.W.: Data analysis, including statistics. In: Lindzey, G., Aronson E. (eds.), Handbook of Social Psychology, Vol. 2. Res. Methods, pp. 80–203. Addison-Wesley, Reading, Massachusetts (1968) Mosteller, F., Tukey, J.W.: Data analysis, including statistics. In: Lindzey, G., Aronson E. (eds.), Handbook of Social Psychology, Vol. 2. Res. Methods, pp. 80–203. Addison-Wesley, Reading, Massachusetts (1968)
33.
go back to reference Nguyen, N.T., Sbartaï, Z.M., Lataste, J.F., Breysse, D., Bos, F.: Assessing the spatial variability of concrete structures using NDT techniques—laboratory tests and case study. Constr. Build. Mater.s 49, 240–250 (2013)CrossRef Nguyen, N.T., Sbartaï, Z.M., Lataste, J.F., Breysse, D., Bos, F.: Assessing the spatial variability of concrete structures using NDT techniques—laboratory tests and case study. Constr. Build. Mater.s 49, 240–250 (2013)CrossRef
34.
go back to reference Pascale, G., Di Leo, A., Carli, R., Bonora, V.: Evaluation of actual compressive strength of high strength concrete by NDT. In: 15th World Conference on NDT, Rome, Italy, 15–21 Oct. 2000, idn527 Pascale, G., Di Leo, A., Carli, R., Bonora, V.: Evaluation of actual compressive strength of high strength concrete by NDT. In: 15th World Conference on NDT, Rome, Italy, 15–21 Oct. 2000, idn527
36.
go back to reference RILEMTC 43-CND, I. Facaoaru (chair), Draft recommendation for in situ concrete strength determination by combined non-destructive methods. Mater. Struct. 26, 43–49 (1993) RILEMTC 43-CND, I. Facaoaru (chair), Draft recommendation for in situ concrete strength determination by combined non-destructive methods. Mater. Struct. 26, 43–49 (1993)
Metadata
Title
In-Situ Strength Assessment of Concrete: Detailed Guidelines
Authors
Denys Breysse
Jean-Paul Balayssac
Maitham Alwash
Samuele Biondi
Leonardo Chiauzzi
David Corbett
Vincent Garnier
Arlindo Gonçalves
Michael Grantham
Oguz Gunes
Said Kenaï
Vincenza Anna Maria Luprano
Angelo Masi
Andrzej Moczko
Hicham Yousef Qasrawi
Xavier Romão
Zoubir Mehdi Sbartaï
André Valente Monteiro
Emilia Vasanelli
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-64900-5_1