Skip to main content
Top
Published in: Topics in Catalysis 15-17/2013

01-11-2013 | Original Paper

In-Situ Vibrational Spectroscopic Studies on Model Catalyst Surfaces at Elevated Pressures

Authors: Emrah Ozensoy, Evgeny I. Vovk

Published in: Topics in Catalysis | Issue 15-17/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Elucidation of complex heterogeneous catalytic mechanisms at the molecular level is a challenging task due to the complex electronic structure and the topology of catalyst surfaces. Heterogeneous catalyst surfaces are often quite dynamic and readily undergo significant alterations under working conditions. Thus, monitoring the surface chemistry of heterogeneous catalysts under industrially relevant conditions such as elevated temperatures and pressures requires dedicated in situ spectroscopy methods. Due to their photons-in, photons-out nature, vibrational spectroscopic techniques offer a very powerful and a versatile experimental tool box, allowing real-time investigation of working catalyst surfaces at elevated pressures. Infrared reflection absorption spectroscopy (IRAS or IRRAS), polarization modulation-IRAS and sum frequency generation techniques reveal valuable surface chemical information at the molecular level, particularly when they are applied to atomically well-defined planar model catalyst surfaces such as single crystals or ultrathin films. In this review article, recent state of the art applications of in situ surface vibrational spectroscopy will be presented with a particular focus on elevated pressure adsorption of probe molecules (e.g. CO, NO, O2, H2, CH3OH) on monometallic and bimetallic transition metal surfaces (e.g. Pt, Pd, Rh, Ru, Au, Co, PdZn, AuPd, CuPt, etc.). Furthermore, case studies involving elevated pressure carbon monoxide oxidation, CO hydrogenation, Fischer–Tropsch, methanol decomposition/partial oxidation and methanol steam reforming reactions on single crystal platinum group metal surfaces will be provided. These examples will be exploited in order to demonstrate the capabilities, opportunities and the existing challenges associated with the in situ vibrational spectroscopic analysis of heterogeneous catalytic reactions on model catalyst surfaces at elevated pressures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Niemantsverdriet JW (2007) Spectroscopy in catalysis. VCH Verlagsgesellschaft mbH, WeinheimCrossRef Niemantsverdriet JW (2007) Spectroscopy in catalysis. VCH Verlagsgesellschaft mbH, WeinheimCrossRef
2.
go back to reference Ruppender HJ, Grunze M, Kong CW, Wilmers M (1990) Surf Interface Anal 15:245–253CrossRef Ruppender HJ, Grunze M, Kong CW, Wilmers M (1990) Surf Interface Anal 15:245–253CrossRef
3.
go back to reference Ogletree DF, Bluhm H, Lebedev G, Fadley CS, Hussain Z, Salmeron M (2002) Rev Sci Instrum 73:3872–3877CrossRef Ogletree DF, Bluhm H, Lebedev G, Fadley CS, Hussain Z, Salmeron M (2002) Rev Sci Instrum 73:3872–3877CrossRef
4.
go back to reference Pantforder J, Pollmann S, Zhu JF, Borgmann D, Denecke R, Steinruck HP (2005) Rev Sci Instrum 76:014102/1-014102/9 Pantforder J, Pollmann S, Zhu JF, Borgmann D, Denecke R, Steinruck HP (2005) Rev Sci Instrum 76:014102/1-014102/9
5.
go back to reference Laegsgaard E, Osterlund L, Thostrup P, Rasmussen PB, Stensgaard I, Besenbacher F (2001) Rev Sci Instrum 72:3537–3542CrossRef Laegsgaard E, Osterlund L, Thostrup P, Rasmussen PB, Stensgaard I, Besenbacher F (2001) Rev Sci Instrum 72:3537–3542CrossRef
6.
go back to reference Jensen JA, Rider KB, Chen Y, Salmeron M, Somorjai GA (1999) J Vac Sci Technol B 17:1080–1084CrossRef Jensen JA, Rider KB, Chen Y, Salmeron M, Somorjai GA (1999) J Vac Sci Technol B 17:1080–1084CrossRef
7.
8.
go back to reference Rasmussen PB, Hendriksen BLM, Zeijlemaker H, Ficke HG, Frenken JWM (1998) Rev Sci Instrum 69:3879–3884CrossRef Rasmussen PB, Hendriksen BLM, Zeijlemaker H, Ficke HG, Frenken JWM (1998) Rev Sci Instrum 69:3879–3884CrossRef
12.
13.
14.
15.
go back to reference Blaudez D, Buffeteau T, Cornut JC, Desbat B, Escafre N, Pezolet M, Turlet JM (1993) Appl Spectrosc 47:869–874CrossRef Blaudez D, Buffeteau T, Cornut JC, Desbat B, Escafre N, Pezolet M, Turlet JM (1993) Appl Spectrosc 47:869–874CrossRef
16.
go back to reference Faguy PW, Richmond WN, Jackson RS, Weibel SC, Ball G, Payer JH (1998) Appl Spectrosc 52:557–564CrossRef Faguy PW, Richmond WN, Jackson RS, Weibel SC, Ball G, Payer JH (1998) Appl Spectrosc 52:557–564CrossRef
17.
go back to reference Ozensoy E (2004) Ph.D. Thesis. Texas A&M University Ozensoy E (2004) Ph.D. Thesis. Texas A&M University
19.
20.
21.
go back to reference Ozensoy E, Goodman DW (2004) Phys Chem Chem Phys 6:3765–3778 and references therein Ozensoy E, Goodman DW (2004) Phys Chem Chem Phys 6:3765–3778 and references therein
22.
go back to reference Ozensoy E, Hess C, Loffreda D, Sautet S, Goodman DW (2005) J Phys Chem B 109:5414–5417CrossRef Ozensoy E, Hess C, Loffreda D, Sautet S, Goodman DW (2005) J Phys Chem B 109:5414–5417CrossRef
23.
24.
go back to reference Ozensoy E, Hess C, Goodman DW (2002) J Am Chem Soc 124:8524–8525 and references therein Ozensoy E, Hess C, Goodman DW (2002) J Am Chem Soc 124:8524–8525 and references therein
25.
26.
29.
go back to reference Rupprechter G (2007) Adv Catal 51:133–263 Rupprechter G (2007) Adv Catal 51:133–263
31.
33.
34.
go back to reference Cremer PS, Su XC, Shen YR, Somorjai GA (1996) J Am Chem Soc 118:2942–2949CrossRef Cremer PS, Su XC, Shen YR, Somorjai GA (1996) J Am Chem Soc 118:2942–2949CrossRef
37.
go back to reference Stacchiola D, Thompson AW, Kaltchev M, Tysoe WT (2002) J Vac Sci Technol B 20:2101–2105CrossRef Stacchiola D, Thompson AW, Kaltchev M, Tysoe WT (2002) J Vac Sci Technol B 20:2101–2105CrossRef
38.
go back to reference Rose MK, Mitsui T, Dunphy J, Borg A, Ogletree DF, Salmeron M, Sautet P (2002) Surf Sci 512:48–60CrossRef Rose MK, Mitsui T, Dunphy J, Borg A, Ogletree DF, Salmeron M, Sautet P (2002) Surf Sci 512:48–60CrossRef
39.
40.
go back to reference Rupprechter G, Unterhalt H, Morkel M, Galletto P, Hu LJ, Freund HJ (2002) Surf Sci 502:109–122CrossRef Rupprechter G, Unterhalt H, Morkel M, Galletto P, Hu LJ, Freund HJ (2002) Surf Sci 502:109–122CrossRef
41.
go back to reference Kaichev VV, Prosvirin IP, Bukhtiyarov VI, Unterhalt H, Rupprechter G, Freund HJ (2003) J Phys Chem B 107:3522–3527CrossRef Kaichev VV, Prosvirin IP, Bukhtiyarov VI, Unterhalt H, Rupprechter G, Freund HJ (2003) J Phys Chem B 107:3522–3527CrossRef
42.
go back to reference Rupprechter G, Kaichev VV, Unterhalt H, Morkel A, Bukhtiyarov VI (2004) Appl Surf Sci 235:26–31CrossRef Rupprechter G, Kaichev VV, Unterhalt H, Morkel A, Bukhtiyarov VI (2004) Appl Surf Sci 235:26–31CrossRef
43.
46.
go back to reference Bowker M, Holroyd R, Perkins N, Bhantoo J, Counsell J, Carley A, Morgan C (2007) Surf Sci 601:3651–3660CrossRef Bowker M, Holroyd R, Perkins N, Bhantoo J, Counsell J, Carley A, Morgan C (2007) Surf Sci 601:3651–3660CrossRef
47.
49.
go back to reference Yudanov IV, Sahnoun R, Neyman KM, Rosch N, Hoffmann J, Schauermann S, Johanek V, Unterhalt H, Rupprechter G, Libuda J, Freund HJ (2003) J Phys Chem B 107:255–264CrossRef Yudanov IV, Sahnoun R, Neyman KM, Rosch N, Hoffmann J, Schauermann S, Johanek V, Unterhalt H, Rupprechter G, Libuda J, Freund HJ (2003) J Phys Chem B 107:255–264CrossRef
50.
go back to reference Dellwig T, Rupprechter G, Unterhalt H, Freund H-J (2000) Phys Rev Lett 85:776–779CrossRef Dellwig T, Rupprechter G, Unterhalt H, Freund H-J (2000) Phys Rev Lett 85:776–779CrossRef
52.
go back to reference Pedersen MO, Bocquet ML, Sautet P, Lægsgaard E, Stensgaard I, Besenbacher F (1999) Chem Phys Lett 299:403–409CrossRef Pedersen MO, Bocquet ML, Sautet P, Lægsgaard E, Stensgaard I, Besenbacher F (1999) Chem Phys Lett 299:403–409CrossRef
53.
go back to reference Carrasco E, Aumer A, Brown MA, Dowler R, Palacio I, Song S, Sterrer M (2010) Surf Sci 604:1320–1325CrossRef Carrasco E, Aumer A, Brown MA, Dowler R, Palacio I, Song S, Sterrer M (2010) Surf Sci 604:1320–1325CrossRef
54.
57.
60.
go back to reference Gong J (2012) Chem Rev 112: 2987–3054 and references therein Gong J (2012) Chem Rev 112: 2987–3054 and references therein
61.
go back to reference Piccolo L, Loffreda D, Cadete Santos Aires FJ, Deranlot C, Jugnet Y, Sautet P, Bertolini JC (2004) Surf Sci 566–568:995–1000CrossRef Piccolo L, Loffreda D, Cadete Santos Aires FJ, Deranlot C, Jugnet Y, Sautet P, Bertolini JC (2004) Surf Sci 566–568:995–1000CrossRef
62.
63.
go back to reference Artiglia L, Diemant T, Hartmann H, Bansmann J, Behm RJ, Gavioli G, Cavaliere E, Granozzi G (2010) Phys Chem Chem Phys 12:6864–6874CrossRef Artiglia L, Diemant T, Hartmann H, Bansmann J, Behm RJ, Gavioli G, Cavaliere E, Granozzi G (2010) Phys Chem Chem Phys 12:6864–6874CrossRef
65.
go back to reference Paszti Z, Hakkel O, Keszthelyi T, Berko A, Balazs N, Bako I, Guczi L (2010) Langmuir 26:16312–16324CrossRef Paszti Z, Hakkel O, Keszthelyi T, Berko A, Balazs N, Bako I, Guczi L (2010) Langmuir 26:16312–16324CrossRef
66.
68.
69.
go back to reference Gao F, Wang Y, Goodman DW (2009) J Catal 268:115–121 and references therein Gao F, Wang Y, Goodman DW (2009) J Catal 268:115–121 and references therein
71.
go back to reference Jugnet Y, Aires FJCS, Deranlot C, Piccolo L, Bertolini JC (2002) Surf Sci 521:L639–L644CrossRef Jugnet Y, Aires FJCS, Deranlot C, Piccolo L, Bertolini JC (2002) Surf Sci 521:L639–L644CrossRef
73.
75.
76.
78.
go back to reference Beitel GA, de Groot CPM, Oosterbeek H, Wilson JH (1997) J Phys Chem B 101:4035–4043CrossRef Beitel GA, de Groot CPM, Oosterbeek H, Wilson JH (1997) J Phys Chem B 101:4035–4043CrossRef
79.
go back to reference Beitel GA, Laskov A, Oosterbeek H, Kuipers EW (1996) J Phys Chem 100:12494–12502CrossRef Beitel GA, Laskov A, Oosterbeek H, Kuipers EW (1996) J Phys Chem 100:12494–12502CrossRef
80.
go back to reference Morkel M, Rupprechter G, Hans-Joachim Freund HJ (2005) Surf Sci 588:L209–L219CrossRef Morkel M, Rupprechter G, Hans-Joachim Freund HJ (2005) Surf Sci 588:L209–L219CrossRef
81.
go back to reference Morkel M, Rupprechter G, Hans-Joachim Freund HJ (2003) J Chem Phys 119:10853–10866CrossRef Morkel M, Rupprechter G, Hans-Joachim Freund HJ (2003) J Chem Phys 119:10853–10866CrossRef
82.
go back to reference Gao F, Cai Y, Gath K, Wang Y, Chen MS, Guo QL, Goodman DW (2009) J Phys Chem C 113:182–192CrossRef Gao F, Cai Y, Gath K, Wang Y, Chen MS, Guo QL, Goodman DW (2009) J Phys Chem C 113:182–192CrossRef
83.
go back to reference Gao F, Goodman DW (2012) Phys Chem Chem Phys 14:6688–6697 and references therein Gao F, Goodman DW (2012) Phys Chem Chem Phys 14:6688–6697 and references therein
84.
go back to reference Gao F, McClure S, Chen M, Goodman DW (2010) J Phys Chem C114:22369–22371 Gao F, McClure S, Chen M, Goodman DW (2010) J Phys Chem C114:22369–22371
86.
go back to reference McClure SM, Lundwall M, Yang F, Zhou Z, Goodman DW (2009) J Phys Chem C113:9688–9697 McClure SM, Lundwall M, Yang F, Zhou Z, Goodman DW (2009) J Phys Chem C113:9688–9697
87.
88.
go back to reference McClure SM, Goodman DW (2009) Chem Phys Lett 469:1–13 and references therein McClure SM, Goodman DW (2009) Chem Phys Lett 469:1–13 and references therein
89.
go back to reference Gao F, McClure SM, Cai Y, Gath KK, Wang Y, Chen MS, Guo QL, Goodman DW (2009) Surf Sci 603:65–70CrossRef Gao F, McClure SM, Cai Y, Gath KK, Wang Y, Chen MS, Guo QL, Goodman DW (2009) Surf Sci 603:65–70CrossRef
90.
91.
go back to reference Gustafson J, Westerstrom R, Balmes O, Resta A, van Rijn R, Torrelles X, Herbschleb CT, Frenken JWM, Lundgren E (2010) J Phys Chem C114:4580–4583 Gustafson J, Westerstrom R, Balmes O, Resta A, van Rijn R, Torrelles X, Herbschleb CT, Frenken JWM, Lundgren E (2010) J Phys Chem C114:4580–4583
92.
go back to reference Gustafson J, Westerstrom R, Balmes O, Resta A, van Rijn R, Torrelles X, Herbschleb CT, Frenken JWM, Lundgren E (2010) J Phys Chem C 114:22372–22373CrossRef Gustafson J, Westerstrom R, Balmes O, Resta A, van Rijn R, Torrelles X, Herbschleb CT, Frenken JWM, Lundgren E (2010) J Phys Chem C 114:22372–22373CrossRef
93.
go back to reference Rijn R, Balmes O, Felici R, Gustafson J, Wermeille D, Westerstrom R, Lundgren E, Frenken JWM (2010) J Phys Chem C 114:6875–6876CrossRef Rijn R, Balmes O, Felici R, Gustafson J, Wermeille D, Westerstrom R, Lundgren E, Frenken JWM (2010) J Phys Chem C 114:6875–6876CrossRef
94.
go back to reference Dupont C, Loffreda D, Delbecq F, Aires FJCS, Ehret E, Jugnet Y (2008) J Phys Chem C 112:10862–19867CrossRef Dupont C, Loffreda D, Delbecq F, Aires FJCS, Ehret E, Jugnet Y (2008) J Phys Chem C 112:10862–19867CrossRef
95.
98.
go back to reference Freund HJ, Meijer G, Scheffler M, Schlogl R, Wolf M (2011) Angew Chem Int Ed 50:10064–10094CrossRef Freund HJ, Meijer G, Scheffler M, Schlogl R, Wolf M (2011) Angew Chem Int Ed 50:10064–10094CrossRef
99.
go back to reference Zorn K, Giorgio S, Halwax E, Henry CR, Gronbeck H, Rupprechter G (2011) J Phys Chem C 115:1103–1111CrossRef Zorn K, Giorgio S, Halwax E, Henry CR, Gronbeck H, Rupprechter G (2011) J Phys Chem C 115:1103–1111CrossRef
101.
go back to reference Baumer M, Libuda J, Neyman KM, Rosch N, Rupprechter G, Freund HJ (2007) Phys Chem Chem Phys 9:3541–3558CrossRef Baumer M, Libuda J, Neyman KM, Rosch N, Rupprechter G, Freund HJ (2007) Phys Chem Chem Phys 9:3541–3558CrossRef
102.
103.
105.
go back to reference Borasio M, Fuente OR, Rupprechter G, Freund HJ (2005) J Phys Chem B 109:17791–17794CrossRef Borasio M, Fuente OR, Rupprechter G, Freund HJ (2005) J Phys Chem B 109:17791–17794CrossRef
106.
go back to reference Rameshan C, Stadlmayr W, Weilach C, Penner S, Lorenz H, Havecker M, Blume R, Rocha T, Teschner D, Knop-Gericke A, Schlogl R, Memmel N, Zemlyanov D, Rupprechter G, Klotzer B (2010) Angew Chem Int Ed 49:3224–3227 and references therein Rameshan C, Stadlmayr W, Weilach C, Penner S, Lorenz H, Havecker M, Blume R, Rocha T, Teschner D, Knop-Gericke A, Schlogl R, Memmel N, Zemlyanov D, Rupprechter G, Klotzer B (2010) Angew Chem Int Ed 49:3224–3227 and references therein
Metadata
Title
In-Situ Vibrational Spectroscopic Studies on Model Catalyst Surfaces at Elevated Pressures
Authors
Emrah Ozensoy
Evgeny I. Vovk
Publication date
01-11-2013
Publisher
Springer US
Published in
Topics in Catalysis / Issue 15-17/2013
Print ISSN: 1022-5528
Electronic ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-013-0151-x

Other articles of this Issue 15-17/2013

Topics in Catalysis 15-17/2013 Go to the issue

Premium Partners