Skip to main content
Top
Published in: International Journal of Machine Learning and Cybernetics 1/2016

01-02-2016 | Original Article

Incremental extreme learning machine based on deep feature embedded

Authors: Jian Zhang, Shifei Ding, Nan Zhang, Zhongzhi Shi

Published in: International Journal of Machine Learning and Cybernetics | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Extreme learning machine (ELM) algorithm is used to train Single-hidden Layer Feed forward Neural Networks. And Deep Belief Network (DBN) is based on Restricted Boltzmann Machine (RBM). The conventional DBN algorithm has some insufficiencies, i.e., Contrastive Divergence (CD) Algorithm is not an ideal approximation method to Maximum Likelihood Estimation. And bad parameters selected in RBM algorithm will produce a bad initialization in DBN model so that we will spend more training time and get a low classification accuracy. To solve the problems above, we summarize the features of extreme learning machine and deep belief networks, and then propose Incremental extreme learning machine based on Deep Feature Embedded algorithm which combines the deep feature extracting ability of Deep Learning Networks with the feature mapping ability of extreme learning machine. Firstly, we introduce Manifold Regularization to our model to attenuate the complexity of probability distribution. Secondly, we introduce the semi-restricted Boltzmann machine (SRBM) to our algorithm, and build a deep belief network based on SRBM. Thirdly, we introduce the thought of incremental feature mapping in ELM to the classifier of DBN model. Finally, we show validity of the algorithm by experiments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
1.
go back to reference Erhan D, Bengio Y, Courville A et al (2010) Why does unsupervised pre-training help deep learning. J Mach Learn Res 11:625–660MATHMathSciNet Erhan D, Bengio Y, Courville A et al (2010) Why does unsupervised pre-training help deep learning. J Mach Learn Res 11:625–660MATHMathSciNet
2.
go back to reference Hinton GE, Sejnowski TJ (1983) Optimal perceptual inference. In Proc. CVPR1983. Washington DC, pp 448–453 Hinton GE, Sejnowski TJ (1983) Optimal perceptual inference. In Proc. CVPR1983. Washington DC, pp 448–453
3.
go back to reference Hinton GE (2002) Training products of experts by minimizing contrastive divergence. Neural Comput 14(8):1711–1800MathSciNetCrossRef Hinton GE (2002) Training products of experts by minimizing contrastive divergence. Neural Comput 14(8):1711–1800MathSciNetCrossRef
5.
go back to reference Lv Q, Dou Y, Niu X et al (2014) Remote Sensing Image Classification Based on DBN Model. J Comput Res Dev 51(9):1911–1918 Lv Q, Dou Y, Niu X et al (2014) Remote Sensing Image Classification Based on DBN Model. J Comput Res Dev 51(9):1911–1918
6.
go back to reference Honglak L, Rajesh R, Andrew YN (2011) Unsupervised learning of hierarchical representations with convolutional deep belief networks. Commun ACM 54(10):95–103CrossRef Honglak L, Rajesh R, Andrew YN (2011) Unsupervised learning of hierarchical representations with convolutional deep belief networks. Commun ACM 54(10):95–103CrossRef
7.
go back to reference Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501CrossRef Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501CrossRef
8.
go back to reference Ding SF, Ma G, Shi ZZ (2014) A novel self-adaptive extreme learning machine based on affinity propagation for radial basis function neural network. Neural Comput Appl 24(7–8):1487–1495CrossRef Ding SF, Ma G, Shi ZZ (2014) A novel self-adaptive extreme learning machine based on affinity propagation for radial basis function neural network. Neural Comput Appl 24(7–8):1487–1495CrossRef
9.
go back to reference Wang XZ, Shao QY, Qing M et al (2013) Architecture selection for networks trained with extreme learning machine using localized generalization error model. Neurocomputing 102(2):3–9 Wang XZ, Shao QY, Qing M et al (2013) Architecture selection for networks trained with extreme learning machine using localized generalization error model. Neurocomputing 102(2):3–9
10.
go back to reference Huang G, Song S, Gupta JND et al (2014) Semi-supervised and unsupervised extreme learning machines. IEEE Trans Cybern 44(12):2405–2417CrossRef Huang G, Song S, Gupta JND et al (2014) Semi-supervised and unsupervised extreme learning machines. IEEE Trans Cybern 44(12):2405–2417CrossRef
11.
go back to reference He Q, Jin X, Du CY et al (2014) Clustering in extreme learning machine feature space. Neurocomputing 128:88–95CrossRef He Q, Jin X, Du CY et al (2014) Clustering in extreme learning machine feature space. Neurocomputing 128:88–95CrossRef
12.
go back to reference Fu AM, Wang XZ, He YL et al (2014) A study on residence error of training an extreme learning machine and its application to evolutionary algorithms. Neurocomputing 146(1):75–82CrossRef Fu AM, Wang XZ, He YL et al (2014) A study on residence error of training an extreme learning machine and its application to evolutionary algorithms. Neurocomputing 146(1):75–82CrossRef
13.
go back to reference Wang XZ, Chen AX, Feng HM (2011) Upper integral network with extreme learning mechanism. Neurocomputing 74(16):2520–2525CrossRef Wang XZ, Chen AX, Feng HM (2011) Upper integral network with extreme learning mechanism. Neurocomputing 74(16):2520–2525CrossRef
14.
go back to reference Zhang N, Ding SF, Shi ZZ Denoising Laplacian multi-layer extreme learning machine. Neurocomputing (to be published) Zhang N, Ding SF, Shi ZZ Denoising Laplacian multi-layer extreme learning machine. Neurocomputing (to be published)
15.
go back to reference Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feed-forward neural networks. In: Proc. IJCNN2004, Budapest, pp 25–29 Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feed-forward neural networks. In: Proc. IJCNN2004, Budapest, pp 25–29
16.
go back to reference Osindero S, Hinton GE (2008) Modeling image patches with a directed hierarchy of Markov random fields. Adv Neural Inf Process Syst, pp 1121–1128 Osindero S, Hinton GE (2008) Modeling image patches with a directed hierarchy of Markov random fields. Adv Neural Inf Process Syst, pp 1121–1128
17.
go back to reference Salakhutdinov R (2009) Learning deep generative models. Topics Cogn Sci 3(1):74–91 Salakhutdinov R (2009) Learning deep generative models. Topics Cogn Sci 3(1):74–91
18.
go back to reference Salakhutdinov R (2008) Learning and evaluating Boltzmann machines. In: Technical Report UTML TR, Department of Computer Science, University of Toronto Salakhutdinov R (2008) Learning and evaluating Boltzmann machines. In: Technical Report UTML TR, Department of Computer Science, University of Toronto
19.
go back to reference Tieleman T (2008) Training restricted Boltzmann machines using approximations to the likelihood gradient. In: Proc. ICML’08. New York, pp 1064–1071 Tieleman T (2008) Training restricted Boltzmann machines using approximations to the likelihood gradient. In: Proc. ICML’08. New York, pp 1064–1071
20.
go back to reference Tieleman T, Hinton GE (2009) Using fast weights to improve persistent contrastive divergence. In: Proc. ICML’09. New York, pp 1033–1040 Tieleman T, Hinton GE (2009) Using fast weights to improve persistent contrastive divergence. In: Proc. ICML’09. New York, pp 1033–1040
21.
go back to reference Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7(3):2399–2434MATHMathSciNet Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7(3):2399–2434MATHMathSciNet
22.
go back to reference Huang GB, Chen L, Siew CK (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. Neural Netw IEEE Trans 17(4):879–892CrossRef Huang GB, Chen L, Siew CK (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. Neural Netw IEEE Trans 17(4):879–892CrossRef
23.
go back to reference Norouzi M, Ranjbar M, Mori G (2009) Stacks of convolutional restricted Boltzmann machines for shift-invariant feature learning. In: Proc. CVPR2009, Miami, FL, pp 2735–2742 Norouzi M, Ranjbar M, Mori G (2009) Stacks of convolutional restricted Boltzmann machines for shift-invariant feature learning. In: Proc. CVPR2009, Miami, FL, pp 2735–2742
Metadata
Title
Incremental extreme learning machine based on deep feature embedded
Authors
Jian Zhang
Shifei Ding
Nan Zhang
Zhongzhi Shi
Publication date
01-02-2016
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Machine Learning and Cybernetics / Issue 1/2016
Print ISSN: 1868-8071
Electronic ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-015-0419-5

Other articles of this Issue 1/2016

International Journal of Machine Learning and Cybernetics 1/2016 Go to the issue