Skip to main content
Top

2021 | OriginalPaper | Chapter

Incremental Predictive Process Monitoring: The Next Activity Case

Authors : Stephen Pauwels, Toon Calders

Published in: Business Process Management

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Next-activity prediction methods for business processes are always introduced in a static setting, implying a single training phase followed by the application of the learned model during the test phase. Real-life processes, however, are often dynamic and prone to changes over time. Therefore, all state-of-the-art methods need regular retraining on new data to be kept up to date. It is, however, not straightforward to determine when to retrain nor what data to use; for instance, should all historic data be included or only new data? Updating models that still perform at an acceptable level wastes a potentially large amount of computational resources while postponing an update too much will deteriorate model performance. In this paper, we present incremental learning strategies for updating these existing models that do not require fully retraining them, hence reducing the number of computational resources needed while still maintaining a more consistent and correct view of the process in its current form. We introduce a basic neural network method consisting of a single dense layer. This architecture makes it easier to perform fast updates to the model and enables us to perform more experiments. We investigate the differences between our proposed incremental approaches. Experiments performed with a prototype on real-life data show that these update strategies are a promising way forward to further increase the power and usability of state-of-the-art methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Van der Aalst, W.M., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011)CrossRef Van der Aalst, W.M., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011)CrossRef
2.
go back to reference Berti, A.: Improving process mining prediction results in processes that change over time. Data Anal. 2016, 49 (2016) Berti, A.: Improving process mining prediction results in processes that change over time. Data Anal. 2016, 49 (2016)
3.
go back to reference Bifet, A., Gavalda, R.: SIAM: learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM International Conference on Data Mining (SDM), pp. 443–448. SIAM (2007) Bifet, A., Gavalda, R.: SIAM: learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM International Conference on Data Mining (SDM), pp. 443–448. SIAM (2007)
4.
go back to reference Bose, R.J.C., Van Der Aalst, W.M., Žliobaitė, I., Pechenizkiy, M.: Dealing with concept drifts in process mining. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 154–171 (2013)CrossRef Bose, R.J.C., Van Der Aalst, W.M., Žliobaitė, I., Pechenizkiy, M.: Dealing with concept drifts in process mining. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 154–171 (2013)CrossRef
9.
go back to reference Di Francescomarino, C., Ghidini, C., Maggi, F.M., Rizzi, W., Persia, C.D.: Incremental predictive process monitoring: How to deal with the variability of real environments. arXiv preprint arXiv:1804.03967 (2018) Di Francescomarino, C., Ghidini, C., Maggi, F.M., Rizzi, W., Persia, C.D.: Incremental predictive process monitoring: How to deal with the variability of real environments. arXiv preprint arXiv:​1804.​03967 (2018)
11.
go back to reference Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 71–80 (2000) Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 71–80 (2000)
15.
go back to reference Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017)CrossRef Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017)CrossRef
16.
go back to reference Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 1–37 (2014)CrossRef Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 1–37 (2014)CrossRef
17.
go back to reference Gepperth, A., Hammer, B.: Incremental learning algorithms and applications. In: European Symposium on Artificial Neural Networks (ESANN) (2016) Gepperth, A., Hammer, B.: Incremental learning algorithms and applications. In: European Symposium on Artificial Neural Networks (ESANN) (2016)
18.
go back to reference Lin, L., Wen, L., Wang, J.: MM-PRED: a deep predictive model for multi-attribute event sequence. In: Proceedings of the 2019 SIAM International Conference on Data Mining, pp. 118–126. SIAM (2019) Lin, L., Wen, L., Wang, J.: MM-PRED: a deep predictive model for multi-attribute event sequence. In: Proceedings of the 2019 SIAM International Conference on Data Mining, pp. 118–126. SIAM (2019)
19.
go back to reference Maisenbacher, M., Weidlich, M.: Handling concept drift in predictive process monitoring. SCC 17, 1–8 (2017) Maisenbacher, M., Weidlich, M.: Handling concept drift in predictive process monitoring. SCC 17, 1–8 (2017)
20.
go back to reference McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. In: Psychology of Learning and Motivation, vol. 24, pp. 109–165. Elsevier (1989) McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. In: Psychology of Learning and Motivation, vol. 24, pp. 109–165. Elsevier (1989)
21.
go back to reference Ostovar, A., Maaradji, A., La Rosa, M., ter Hofstede, A.H.M., van Dongen, B.F.V.: Detecting drift from event streams of unpredictable business processes. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 330–346. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_26CrossRef Ostovar, A., Maaradji, A., La Rosa, M., ter Hofstede, A.H.M., van Dongen, B.F.V.: Detecting drift from event streams of unpredictable business processes. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 330–346. Springer, Cham (2016). https://​doi.​org/​10.​1007/​978-3-319-46397-1_​26CrossRef
22.
go back to reference Pasquadibisceglie, V., Appice, A., Castellano, G., Malerba, D.: Using convolutional neural networks for predictive process analytics. In: 2019 International Conference on Process Mining (ICPM), pp. 129–136. IEEE (2019) Pasquadibisceglie, V., Appice, A., Castellano, G., Malerba, D.: Using convolutional neural networks for predictive process analytics. In: 2019 International Conference on Process Mining (ICPM), pp. 129–136. IEEE (2019)
26.
go back to reference Serrà Julià, J., Surís, D., Miron, M., Karatzoglou, A.: Overcoming catastrophic forgetting with hard attention to the task. In: Dy, J., Krause, A., (eds.) Proceedings of the 35th International Conference on Machine Learning (ICML 2018), 10–15 July 2018, Stockholmsmässan, Sweden [Massachusetts: PMLR; 2018], pp. 4548–4557. Proceedings of Machine Learning Research (2018) Serrà Julià, J., Surís, D., Miron, M., Karatzoglou, A.: Overcoming catastrophic forgetting with hard attention to the task. In: Dy, J., Krause, A., (eds.) Proceedings of the 35th International Conference on Machine Learning (ICML 2018), 10–15 July 2018, Stockholmsmässan, Sweden [Massachusetts: PMLR; 2018], pp. 4548–4557. Proceedings of Machine Learning Research (2018)
27.
go back to reference Tax, N., Teinemaa, I., van Zelst, S.J.: An interdisciplinary comparison of sequence modeling methods for next-element prediction. Softw. Syst. Model. 19(6), 1345–1365 (2020)CrossRef Tax, N., Teinemaa, I., van Zelst, S.J.: An interdisciplinary comparison of sequence modeling methods for next-element prediction. Softw. Syst. Model. 19(6), 1345–1365 (2020)CrossRef
29.
go back to reference Taymouri, F., Rosa, M.L., Erfani, S., Bozorgi, Z.D., Verenich, I.: Predictive business process monitoring via generative adversarial nets: the case of next event prediction. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 237–256. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58666-9_14CrossRef Taymouri, F., Rosa, M.L., Erfani, S., Bozorgi, Z.D., Verenich, I.: Predictive business process monitoring via generative adversarial nets: the case of next event prediction. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 237–256. Springer, Cham (2020). https://​doi.​org/​10.​1007/​978-3-030-58666-9_​14CrossRef
30.
go back to reference Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive process monitoring: review and benchmark. ACM Trans. Knowl. Discov Data (TKDD) 13(2), 1–57 (2019)CrossRef Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive process monitoring: review and benchmark. ACM Trans. Knowl. Discov Data (TKDD) 13(2), 1–57 (2019)CrossRef
31.
go back to reference Theis, J., Darabi, H.: Decay replay mining to predict next process events. IEEE Access 7, 119787–119803 (2019)CrossRef Theis, J., Darabi, H.: Decay replay mining to predict next process events. IEEE Access 7, 119787–119803 (2019)CrossRef
33.
go back to reference Weinzierl, S., et al.: An empirical comparison of deep-neural-network architectures for next activity prediction using context-enriched process event logs. arXiv preprint arXiv:2005.01194 (2020) Weinzierl, S., et al.: An empirical comparison of deep-neural-network architectures for next activity prediction using context-enriched process event logs. arXiv preprint arXiv:​2005.​01194 (2020)
Metadata
Title
Incremental Predictive Process Monitoring: The Next Activity Case
Authors
Stephen Pauwels
Toon Calders
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-85469-0_10