Skip to main content
Top
Published in: Journal of Nanoparticle Research 7/2015

01-07-2015 | Research Paper

Induced shape controllability by tailored precursor design in thermal and microwave-assisted synthesis of \(\mathrm{Fe}_{3}\mathrm{O}_{4}\) nanoparticles

Authors: Alba Garzón-Manjón, Eduardo Solano, María de la Mata, Roger Guzmán, Jordi Arbiol, Teresa Puig, Xavier Obradors, Ramón Yáñez, Susagna Ricart, Josep Ros

Published in: Journal of Nanoparticle Research | Issue 7/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The shape of magnetite nanoparticles (NPs) synthesized by thermal (T) and microwave (MW) approaches was controlled by an optimized methodology, which consists of a prior and easy modification of the \(\upalpha\) terminal position belonging to the iron(III) tris(2,4-pentanedionate) precursor. Round, cuboctahedron, flower-like \(\mathrm{Fe}_{3}\mathrm{O}_{4}\) (<10 nm) and bow-like \(\mathrm{FeF}_{2}\) nanostructures have been synthesized in triethylene glycol media, producing polar dispersible NPs. The \(\upalpha\) terminal group was modified from the initial –\(\mathrm{CH}_{3}\) to –\(\mathrm{Ph},\)\(^{t}\mathrm{Bu},\) and –\(\mathrm{CF}_{3}\) respectively, inducing defined and characteristic shapes of the obtained NPs: round, cuboctahedron, flower-like \(\mathrm{Fe}_{3}\mathrm{O}_{4},\) and bow-like \(\mathrm{FeF}_{2},\) respectively. The two investigated synthetic methodologies, T and MW, produce similar results, except for the precursor containing the aromatic group (–\(\mathrm{Ph}\)), through which cuboctahedron (T) and elongated polycrystalline microwires (MW) were generated. The ensemble of modified ligands has demonstrated to influence the final shape, structure, and composition of the nanocrystals generated. The resulting NPs were studied by high-resolution transmission electron microscopy, X-ray powder diffraction, and thermogravimetric analysis. Data demonstrated a strong relation between the precursor design and the final morphology of the NPs, which could be explained by different precursor–particle interactions during nucleation and crystal growth. The final composition of all nanostructures was the expected \(\mathrm{Fe}_{3}\mathrm{O}_{4},\) except for the fluorinated precursor where \(\mathrm{FeF}_{2}\) was obtained as the main reaction product.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Arbiol J, Cirera A, Peiro F, Cornet A, Morante JR, Delgado JJ, Calvino JJ (2002) Optimization of tin dioxide nanosticks faceting for the improvement of palladium nanocluster epitaxy. Appl Phys Lett 80(2):329CrossRef Arbiol J, Cirera A, Peiro F, Cornet A, Morante JR, Delgado JJ, Calvino JJ (2002) Optimization of tin dioxide nanosticks faceting for the improvement of palladium nanocluster epitaxy. Appl Phys Lett 80(2):329CrossRef
go back to reference Bao N, Shen L, An W, Padhan P, Heath Turner C, Gupta A (2009) Formation mechanism and shape control of monodisperse magnetic \({\rm CoFe}_{2}{\rm O}_{4}\) nanocrystals. Chem Mater 21(14):3458–3468CrossRef Bao N, Shen L, An W, Padhan P, Heath Turner C, Gupta A (2009) Formation mechanism and shape control of monodisperse magnetic \({\rm CoFe}_{2}{\rm O}_{4}\) nanocrystals. Chem Mater 21(14):3458–3468CrossRef
go back to reference Bernal S, Botana FJ, Calvino JJ, Lo C, Pe JA (1998) The interpretation of HREM images of supported metal catalysts using image simulation: profile view images. Ultramicroscopy 72:135–164CrossRef Bernal S, Botana FJ, Calvino JJ, Lo C, Pe JA (1998) The interpretation of HREM images of supported metal catalysts using image simulation: profile view images. Ultramicroscopy 72:135–164CrossRef
go back to reference Biacchi AJ, Schaak RE (2011) The solvent matters: kinetic versus thermodynamic shape control in the polyol synthesis of rhodium nanoparticles. ACS Nano 5(10):8089–8099CrossRef Biacchi AJ, Schaak RE (2011) The solvent matters: kinetic versus thermodynamic shape control in the polyol synthesis of rhodium nanoparticles. ACS Nano 5(10):8089–8099CrossRef
go back to reference Cai W, Wan J (2007) Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J Colloid Interface Sci 305(2):366–370CrossRef Cai W, Wan J (2007) Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J Colloid Interface Sci 305(2):366–370CrossRef
go back to reference Cao M, Li Z, Wang J, Ge W, Yue T, Li R, Colvin VL, Yu WW (2012) Food related applications of magnetic iron oxide nanoparticles: enzyme immobilization, protein purification, and food analysis. Trends Food Sci Technol 27(1):47–56CrossRef Cao M, Li Z, Wang J, Ge W, Yue T, Li R, Colvin VL, Yu WW (2012) Food related applications of magnetic iron oxide nanoparticles: enzyme immobilization, protein purification, and food analysis. Trends Food Sci Technol 27(1):47–56CrossRef
go back to reference Chen X-Z, Qiu Z-C, Zhou J-P, Zhu G, Bian X-B, Liu P (2011) Large-scale growth and shape evolution of bismuth ferrite particles with a hydrothermal method. Mater Chem Phys 126(3):560–567CrossRef Chen X-Z, Qiu Z-C, Zhou J-P, Zhu G, Bian X-B, Liu P (2011) Large-scale growth and shape evolution of bismuth ferrite particles with a hydrothermal method. Mater Chem Phys 126(3):560–567CrossRef
go back to reference Cheon J, Kang N-J, Lee S-M, Lee J-H, Yoon J-H, Oh SJ (2004) Shape evolution of single-crystalline iron oxide nanocrystals. J Am Chem Soc 126(7):1950–1951CrossRef Cheon J, Kang N-J, Lee S-M, Lee J-H, Yoon J-H, Oh SJ (2004) Shape evolution of single-crystalline iron oxide nanocrystals. J Am Chem Soc 126(7):1950–1951CrossRef
go back to reference de la Hoz A, Díaz-Ortiz A, Moreno A (2005) Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34(2):164–178CrossRef de la Hoz A, Díaz-Ortiz A, Moreno A (2005) Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34(2):164–178CrossRef
go back to reference de Montferrand C, Hu L, Milosevic I, Russier V, Bonnin D, Motte L, Brioude A, Lalatonne Y (2013) Iron oxide nanoparticles with sizes, shapes and compositions resulting in different magnetization signatures as potential labels for multiparametric detection. Acta Biomater 9(4):6150–6157CrossRef de Montferrand C, Hu L, Milosevic I, Russier V, Bonnin D, Motte L, Brioude A, Lalatonne Y (2013) Iron oxide nanoparticles with sizes, shapes and compositions resulting in different magnetization signatures as potential labels for multiparametric detection. Acta Biomater 9(4):6150–6157CrossRef
go back to reference Feng W, Sun L-D, Zhang Y-W, Yan C-H (2010) Synthesis and assembly of rare earth nanostructures directed by the principle of coordination chemistry in solution-based process. Coord Chem Rev 254(9–10):1038–1053CrossRef Feng W, Sun L-D, Zhang Y-W, Yan C-H (2010) Synthesis and assembly of rare earth nanostructures directed by the principle of coordination chemistry in solution-based process. Coord Chem Rev 254(9–10):1038–1053CrossRef
go back to reference Feng W, Sun L-D, Yan C-H (2011) Role of surface ligands in the nanoparticle assemblies: a case study of regularly shaped colloidal crystals composed of sodium rare earth fluoride. Langmuir 27(7):3343–3347CrossRef Feng W, Sun L-D, Yan C-H (2011) Role of surface ligands in the nanoparticle assemblies: a case study of regularly shaped colloidal crystals composed of sodium rare earth fluoride. Langmuir 27(7):3343–3347CrossRef
go back to reference Grüttner C, Müller K, Teller J, Westphal F (2013) Synthesis and functionalisation of magnetic nanoparticles for hyperthermia applications. Int J Hyperth 29(8):777–789CrossRef Grüttner C, Müller K, Teller J, Westphal F (2013) Synthesis and functionalisation of magnetic nanoparticles for hyperthermia applications. Int J Hyperth 29(8):777–789CrossRef
go back to reference Guardia P, Batlle-Brugal B, Roca A, Iglesias O, Morales M, Serna C, Labarta A, Batlle X (2007) Surfactant effects in magnetite nanoparticles of controlled size. J Magn Magn Mater 316(2):e756–e759CrossRef Guardia P, Batlle-Brugal B, Roca A, Iglesias O, Morales M, Serna C, Labarta A, Batlle X (2007) Surfactant effects in magnetite nanoparticles of controlled size. J Magn Magn Mater 316(2):e756–e759CrossRef
go back to reference Guardia P, Pérez N, Labarta A, Batlle X (2010a) Controlled synthesis of iron oxide nanoparticles over a wide size range. Langmuir 26(8):5843–5847CrossRef Guardia P, Pérez N, Labarta A, Batlle X (2010a) Controlled synthesis of iron oxide nanoparticles over a wide size range. Langmuir 26(8):5843–5847CrossRef
go back to reference Guardia P, Pérez-Juste J, Labarta A, Batlle X, Liz-Marzán LM (2010b) Heating rate influence on the synthesis of iron oxide nanoparticles: the case of decanoic acid. Chem Commun 46(33):6108–6110CrossRef Guardia P, Pérez-Juste J, Labarta A, Batlle X, Liz-Marzán LM (2010b) Heating rate influence on the synthesis of iron oxide nanoparticles: the case of decanoic acid. Chem Commun 46(33):6108–6110CrossRef
go back to reference Hao BR, Xing R, Xu Z, Hou Y, Gao S, Sun S (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22:2729–2742CrossRef Hao BR, Xing R, Xu Z, Hou Y, Gao S, Sun S (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22:2729–2742CrossRef
go back to reference Hofmeister H (2009) Shape variations and anisotropic growth of multiply twinned nanoparticles. Z Krist 224(11):528–538CrossRef Hofmeister H (2009) Shape variations and anisotropic growth of multiply twinned nanoparticles. Z Krist 224(11):528–538CrossRef
go back to reference Jun Y-W, Choi J-S, Cheon J (2006) Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew Chem 45(21):3414–3439CrossRef Jun Y-W, Choi J-S, Cheon J (2006) Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew Chem 45(21):3414–3439CrossRef
go back to reference Kim J-E, Shin J-Y, Cho M-H (2012) Magnetic nanoparticles: an update of application for drug delivery and possible toxic effects. Arch Toxicol 86(5):685–700CrossRef Kim J-E, Shin J-Y, Cho M-H (2012) Magnetic nanoparticles: an update of application for drug delivery and possible toxic effects. Arch Toxicol 86(5):685–700CrossRef
go back to reference Niederberger M, Garnweitner G (2006) Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles. Chemistry (Easton) 12(28):7282–7302 Niederberger M, Garnweitner G (2006) Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles. Chemistry (Easton) 12(28):7282–7302
go back to reference Personick ML, Langille MR, Zhang J, Mirkin CA (2011) Shape control of gold nanoparticles by silver underpotential deposition. Nano Lett 11(8):3394–3398CrossRef Personick ML, Langille MR, Zhang J, Mirkin CA (2011) Shape control of gold nanoparticles by silver underpotential deposition. Nano Lett 11(8):3394–3398CrossRef
go back to reference Rodriguez A, Amiens C, Chaudret B, Lecante P, Bradley JS, Mu D (1996) Synthesis and Isolation of cuboctahedral and Icosahedral platinum nanoparticles. Ligand-dependent structures. Chem Mater 4756(8):1978–1986CrossRef Rodriguez A, Amiens C, Chaudret B, Lecante P, Bradley JS, Mu D (1996) Synthesis and Isolation of cuboctahedral and Icosahedral platinum nanoparticles. Ligand-dependent structures. Chem Mater 4756(8):1978–1986CrossRef
go back to reference Shao H, Min C, Issadore D, Liong M, Yoon T-J, Weissleder R, Lee H (2012) Magnetic nanoparticles and microNMR for diagnostic applications. Theranostics 2(1):55–65CrossRef Shao H, Min C, Issadore D, Liong M, Yoon T-J, Weissleder R, Lee H (2012) Magnetic nanoparticles and microNMR for diagnostic applications. Theranostics 2(1):55–65CrossRef
go back to reference Solano E, Perez-Mirabet L, Martinez-Julian F, Guzmán R, Arbiol J, Puig T, Obradors X, Yañez R, Pomar A, Ricart S, Ros J (2012) Facile and efficient one-pot solvothermal and microwave-assisted synthesis of stable colloidal solutions of \({\rm MFe}_{2}{\rm O}_{4}\) spinel magnetic nanoparticles. J Nanopart Res 14(8):1034–1049CrossRef Solano E, Perez-Mirabet L, Martinez-Julian F, Guzmán R, Arbiol J, Puig T, Obradors X, Yañez R, Pomar A, Ricart S, Ros J (2012) Facile and efficient one-pot solvothermal and microwave-assisted synthesis of stable colloidal solutions of \({\rm MFe}_{2}{\rm O}_{4}\) spinel magnetic nanoparticles. J Nanopart Res 14(8):1034–1049CrossRef
go back to reference Solano E, Frontera C, Puig T, Obradors X, Ricart S, Ros J (2014) Neutron and X-ray diffraction study of ferrite nanocrystals obtained by microwave-assisted growth. A structural comparison with the thermal synthetic route. J Appl Crystallogr 47(1):414–420CrossRef Solano E, Frontera C, Puig T, Obradors X, Ricart S, Ros J (2014) Neutron and X-ray diffraction study of ferrite nanocrystals obtained by microwave-assisted growth. A structural comparison with the thermal synthetic route. J Appl Crystallogr 47(1):414–420CrossRef
go back to reference Solano E, Yáñez R, Ricart S, Ros J (2015) New approach towards the polyol route to fabricate MFe\({_2}\)O\({_4}\) magnetic nanoparticles: the use of MCl2 and Fe(acac)\(_{3}\) as chemical precursors. J Magn Magn Mater 382:380–385CrossRef Solano E, Yáñez R, Ricart S, Ros J (2015) New approach towards the polyol route to fabricate MFe\({_2}\)O\({_4}\) magnetic nanoparticles: the use of MCl2 and Fe(acac)\(_{3}\) as chemical precursors. J Magn Magn Mater 382:380–385CrossRef
go back to reference Wang F, Yu H-C, Chen M-H, Wu L, Pereira N, Thornton K, Van der Ven A, Zhu Y, Amatucci GG, Graetz J (2012) Tracking lithium transport and electrochemical reactions in nanoparticles. Nat Commun 3:1201CrossRef Wang F, Yu H-C, Chen M-H, Wu L, Pereira N, Thornton K, Van der Ven A, Zhu Y, Amatucci GG, Graetz J (2012) Tracking lithium transport and electrochemical reactions in nanoparticles. Nat Commun 3:1201CrossRef
go back to reference Zhang L, Dou Y-H, Gu H-C (2006) Sterically induced shape control of magnetite nanoparticles. J Cryst Growth 296(2):221–226CrossRef Zhang L, Dou Y-H, Gu H-C (2006) Sterically induced shape control of magnetite nanoparticles. J Cryst Growth 296(2):221–226CrossRef
Metadata
Title
Induced shape controllability by tailored precursor design in thermal and microwave-assisted synthesis of nanoparticles
Authors
Alba Garzón-Manjón
Eduardo Solano
María de la Mata
Roger Guzmán
Jordi Arbiol
Teresa Puig
Xavier Obradors
Ramón Yáñez
Susagna Ricart
Josep Ros
Publication date
01-07-2015
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 7/2015
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-015-3070-x

Other articles of this Issue 7/2015

Journal of Nanoparticle Research 7/2015 Go to the issue

Premium Partners