Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 3-4/2020

12-03-2020 | ORIGINAL ARTICLE

Information modeling for cyber-physical production system based on digital twin and AutomationML

Authors: Haijun Zhang, Qiong Yan, Zhenghua Wen

Published in: The International Journal of Advanced Manufacturing Technology | Issue 3-4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Production systems play an important role in intelligent manufacturing. A large number of manufacturing resources are designed and developed with virtual (digital) ones, which will be associated with the physical ones throughout their lifecycle. With the recent emergence of information and communications technologies (ICTs), such as internet of things, big data, virtual reality, artificial intelligence, and 5G, the interconnection and interaction between physical resources and virtual ones become possible in production systems. Digital twin (DT) shows great potential to realize the cyber-physical production system (CPPS) in the era of Industry 4.0. In this paper, we present our vision on integrating various physical resources into CPPS via DT and AutomationML. To elaborate on how to apply ICTs, this paper firstly explores a generic architecture of CPPS based on DT. DT is a virtual and authoritative representation of physical manufacturing resource, since DT includes various models and manufacturing big data of resource. The proposed architecture is illustrated in detail as follows: (1) physical layer, (2) network layer, (3) virtual layer, and (4) application layer. A case of expert fault diagnose for aircraft engine is presented using the proposed information fusion in the architecture. Secondly, this paper proposes an approach of information modeling for CPPS based on AutomationML. Various manufacturing services can be encapsulated and defined in the standardized format (AutomationML), and then the corresponding virtual manufacturing resources (DTs) will be integrated into CPPS. Finally, this paper describes a case of information modeling for blisk machining and demonstrates the modeling approach in real-life scenarios for support manufacturing resource sharing via DT. Furthermore, the conclusion and further work is briefly summarized.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Schuja A, Bartelt M, Kuhlenkotter B (2014) From conception phase up to virtual verification using AutomationML. Procedia CIRP 23:171–177 Schuja A, Bartelt M, Kuhlenkotter B (2014) From conception phase up to virtual verification using AutomationML. Procedia CIRP 23:171–177
2.
go back to reference Keller M, Rosenberg M, Brettel M, Friederichsen N (2014) How virtualization, decentralization and network building change the manufacturing landscape: an industry 4.0 perspective. Int J Mech Aerosp Ind Mechatron Manuf Eng 8:37–44 Keller M, Rosenberg M, Brettel M, Friederichsen N (2014) How virtualization, decentralization and network building change the manufacturing landscape: an industry 4.0 perspective. Int J Mech Aerosp Ind Mechatron Manuf Eng 8:37–44
3.
go back to reference Posada J, Toro C, Barandiaran I, Oyarzun D, Stricker D, De Amicis R, Pinto EB, Eisert P, Döllner J, Vallarino I (2015) Visual computing as key enabling technology for industry 4.0 and industrial internet. IEEE Comput Graph Appl 35(2):26–40 Posada J, Toro C, Barandiaran I, Oyarzun D, Stricker D, De Amicis R, Pinto EB, Eisert P, Döllner J, Vallarino I (2015) Visual computing as key enabling technology for industry 4.0 and industrial internet. IEEE Comput Graph Appl 35(2):26–40
4.
go back to reference Koren Y, Shpitalni M (2010) Design of reconfiguration manufacturing systems. J Manuf Syst 29(1):30–41 Koren Y, Shpitalni M (2010) Design of reconfiguration manufacturing systems. J Manuf Syst 29(1):30–41
5.
go back to reference Lu Y, Xu X (2018) Resource virtualization: a core technology for developing cyber-physical production systems. J Manuf Syst 47:128–140 Lu Y, Xu X (2018) Resource virtualization: a core technology for developing cyber-physical production systems. J Manuf Syst 47:128–140
6.
go back to reference Zhang Y, Qian C, Lv J, Liu Y (2016) Agent and cyber-physical system based self-organizing and self-adaptive intelligent shopfloor. IEEE Trans Ind Inf 13(2):737–747 Zhang Y, Qian C, Lv J, Liu Y (2016) Agent and cyber-physical system based self-organizing and self-adaptive intelligent shopfloor. IEEE Trans Ind Inf 13(2):737–747
7.
go back to reference Danny Anandan P, Ferreira P, Lohse N, Guedes M (2017) An AutomationML model for plug-and-produce assembly systems. In: IEEE Int Conf Ind Inf, Emden, Germany, pp 849–854 Danny Anandan P, Ferreira P, Lohse N, Guedes M (2017) An AutomationML model for plug-and-produce assembly systems. In: IEEE Int Conf Ind Inf, Emden, Germany, pp 849–854
8.
go back to reference Haag S, Anderl R (2018) Digital twin-proof of concept. Manuf Let 15(Part B):64–66 Haag S, Anderl R (2018) Digital twin-proof of concept. Manuf Let 15(Part B):64–66
9.
go back to reference Buckholtz B, Ragai I, Wang L (2015) Cloud manufacturing: current trends and future implementations. J Manuf Sci Eng 137(4):1–46 Buckholtz B, Ragai I, Wang L (2015) Cloud manufacturing: current trends and future implementations. J Manuf Sci Eng 137(4):1–46
10.
go back to reference Colombo AW, Karnouskos S, Bangemann T (2014) IMC-AESOP outcomes: paving the way to collaborative manufacturing systems. In: IEEE Int Conf Ind Inform, Porto Alegre, RS, Brazil, pp 255–260 Colombo AW, Karnouskos S, Bangemann T (2014) IMC-AESOP outcomes: paving the way to collaborative manufacturing systems. In: IEEE Int Conf Ind Inform, Porto Alegre, RS, Brazil, pp 255–260
11.
go back to reference Morgan J, O’Donnel GE (2015) The cyber physical implementation of cloud manufacturing monitoring systems. Procedia CIRP 33:29–34 Morgan J, O’Donnel GE (2015) The cyber physical implementation of cloud manufacturing monitoring systems. Procedia CIRP 33:29–34
12.
go back to reference Wang XV, Wang L (2017) A cloud-based production system for information and service integration: an internet of things case study on waste electronics. Enterp Inf Syst 11(7):952–968 Wang XV, Wang L (2017) A cloud-based production system for information and service integration: an internet of things case study on waste electronics. Enterp Inf Syst 11(7):952–968
13.
go back to reference Tao F, Cheng Y, Xu L, Zhang L, Li BH (2014) CCIoT-CMfg: cloud computing and internet of things-based cloud manufacturing service system. IEEE Trans Ind Inf 10(2):1435–1442 Tao F, Cheng Y, Xu L, Zhang L, Li BH (2014) CCIoT-CMfg: cloud computing and internet of things-based cloud manufacturing service system. IEEE Trans Ind Inf 10(2):1435–1442
14.
go back to reference Ashton K (2009) That ‘internet of things’ thing. RFiD J 22:97–114 Ashton K (2009) That ‘internet of things’ thing. RFiD J 22:97–114
15.
go back to reference Wang S, Zhang G, Shen B, Xie X (2011) An integrated scheme for cyber-physical building energy management system. Procedia Eng 15:3616–3620 Wang S, Zhang G, Shen B, Xie X (2011) An integrated scheme for cyber-physical building energy management system. Procedia Eng 15:3616–3620
16.
go back to reference Rudtsch V, Gausemeier J, Gesing J, Mittag T, Peter S (2014) Pattern-based business model development for cyber-physical production systems. Procedia CIRP 25:313–319 Rudtsch V, Gausemeier J, Gesing J, Mittag T, Peter S (2014) Pattern-based business model development for cyber-physical production systems. Procedia CIRP 25:313–319
17.
go back to reference Cardin O (2019) Classification of cyber-physical production systems applications: proposition of an analysis framework. Comput Ind 104:11–21 Cardin O (2019) Classification of cyber-physical production systems applications: proposition of an analysis framework. Comput Ind 104:11–21
18.
go back to reference Monostori L (2014) Cyber-physical production systems: roots expectations and R&D challenges. Procedia CIRP 17:9–13 Monostori L (2014) Cyber-physical production systems: roots expectations and R&D challenges. Procedia CIRP 17:9–13
19.
go back to reference Um J, Weyer S, Quint F (2017) Plug and simulate within modular assembly line enabled by digital twins and the use of Automationml. IFAC Proc 50(1):15904–15909 Um J, Weyer S, Quint F (2017) Plug and simulate within modular assembly line enabled by digital twins and the use of Automationml. IFAC Proc 50(1):15904–15909
20.
go back to reference Talkhestania BA, Jazdib N, Schloeglc W, Weyrichb M (2018) Consistency check to synchronize the digital twin of manufacturing automation based on anchor points. Procedia CIRP 72:159–164 Talkhestania BA, Jazdib N, Schloeglc W, Weyrichb M (2018) Consistency check to synchronize the digital twin of manufacturing automation based on anchor points. Procedia CIRP 72:159–164
21.
go back to reference Uhlemann TH, Lehmann C, Steinhilper R (2017) The digital twin realizing the cyber physical production system for industry 4.0. Procedia CIRP 61:335–340 Uhlemann TH, Lehmann C, Steinhilper R (2017) The digital twin realizing the cyber physical production system for industry 4.0. Procedia CIRP 61:335–340
22.
go back to reference Terkaj W, Urgo M(2014)Ontology-based modeling of production systems for design and performance evaluation. In: IEEE Int Conf Ind Informatics, Porto Alegre, Brazil, pp 748–753 Terkaj W, Urgo M(2014)Ontology-based modeling of production systems for design and performance evaluation. In: IEEE Int Conf Ind Informatics, Porto Alegre, Brazil, pp 748–753
23.
go back to reference Zhang HJ, Yan Q, Liu YP, Jiang ZQ (2016) An integer-coded differential evolution algorithm for simple assembly line balancing problem of type 2. Assem Autom 36(3):246–261 Zhang HJ, Yan Q, Liu YP, Jiang ZQ (2016) An integer-coded differential evolution algorithm for simple assembly line balancing problem of type 2. Assem Autom 36(3):246–261
25.
go back to reference Hatvany J, Nemes L (1978) Intelligent manufacturing systems-a tentative forecast. IFAC Proc 11(1):895–899 Hatvany J, Nemes L (1978) Intelligent manufacturing systems-a tentative forecast. IFAC Proc 11(1):895–899
26.
go back to reference Ueda K, Vaario J (1998) The biological manufacturing system: adaptation to growing complexity and dynamics in manufacturing environment. CIRP J Manuf Syst 27(1):41–46 Ueda K, Vaario J (1998) The biological manufacturing system: adaptation to growing complexity and dynamics in manufacturing environment. CIRP J Manuf Syst 27(1):41–46
27.
go back to reference Ueda K, Vaario J, Ohkura K (1997) Modeling of biological manufacturing systems for dynamic reconfiguration. CIRP Ann Manuf Technol 46(1):343–346 Ueda K, Vaario J, Ohkura K (1997) Modeling of biological manufacturing systems for dynamic reconfiguration. CIRP Ann Manuf Technol 46(1):343–346
28.
go back to reference Koren Y, Heisel Z, Jovane F, Moriwaki T, Pritschow G, Ulsoy G, Van Brussel H (1999) Reconfigurable manufacturing systems. CIRP Ann Manuf Technol 48(2):527–540 Koren Y, Heisel Z, Jovane F, Moriwaki T, Pritschow G, Ulsoy G, Van Brussel H (1999) Reconfigurable manufacturing systems. CIRP Ann Manuf Technol 48(2):527–540
29.
go back to reference Kádár B, Lengyel A, Monostori L, Suginishi Y, Pfeiffer A, Nonaka Y (2010) Enhanced control of complex production structures by tight coupling of the digital and the physical worlds. CIRP Ann Manuf Technol 59(1):437–440 Kádár B, Lengyel A, Monostori L, Suginishi Y, Pfeiffer A, Nonaka Y (2010) Enhanced control of complex production structures by tight coupling of the digital and the physical worlds. CIRP Ann Manuf Technol 59(1):437–440
30.
go back to reference Kádár B, Terkaj W, Sacco M (2013) Semantic virtual factory supporting interoperable modeling and evaluation of production systems. CIRP Ann Manuf Technol 52(1):443–446 Kádár B, Terkaj W, Sacco M (2013) Semantic virtual factory supporting interoperable modeling and evaluation of production systems. CIRP Ann Manuf Technol 52(1):443–446
31.
go back to reference Maropoulos PG (2002) Digital enterprise technology-defining perspectives and research priorities. Int J Comput Integr Manuf 16(7–8):467–478 Maropoulos PG (2002) Digital enterprise technology-defining perspectives and research priorities. Int J Comput Integr Manuf 16(7–8):467–478
32.
go back to reference Westkämper E, Von Briel R (2001) Continuous improvement and participative factory planning by computer systems. CIRP Ann Manuf Technol 50(1):347–352 Westkämper E, Von Briel R (2001) Continuous improvement and participative factory planning by computer systems. CIRP Ann Manuf Technol 50(1):347–352
33.
go back to reference Bongaerts L, Monostori L, McFarlane D, Kádár B (2000) Hierarchy in distributed shop floor control. Comput Ind 43(2):123–137 Bongaerts L, Monostori L, McFarlane D, Kádár B (2000) Hierarchy in distributed shop floor control. Comput Ind 43(2):123–137
34.
go back to reference Márkus A, Kis T, Váncza J, Monostori L (1996) A market approach to holonic manufacturing. CIRP Ann Manuf Technol 45(1):433–436 Márkus A, Kis T, Váncza J, Monostori L (1996) A market approach to holonic manufacturing. CIRP Ann Manuf Technol 45(1):433–436
35.
go back to reference Monostori L, Váncza J, Kumara SRT (2006) Agent-based systems for manufacturing. CIRP Ann Manuf Technol 55(2):697–720 Monostori L, Váncza J, Kumara SRT (2006) Agent-based systems for manufacturing. CIRP Ann Manuf Technol 55(2):697–720
36.
go back to reference Valckenaers P, Brussel HV (2015) Design for the unexpected from holonic manufacturing systems towards a humane mechatronics society. Elsevier, Amsterdam Valckenaers P, Brussel HV (2015) Design for the unexpected from holonic manufacturing systems towards a humane mechatronics society. Elsevier, Amsterdam
37.
go back to reference Valckenaers P, Van Brussel H (2005) Holonic manufacturing execution systems. CIRP Ann Manuf Technol 54(1):427–432 Valckenaers P, Van Brussel H (2005) Holonic manufacturing execution systems. CIRP Ann Manuf Technol 54(1):427–432
38.
go back to reference Van Brussel H, Wyns J, Valckenaers P, Bongaerts L, Peeters P (1998) Reference architecture for holonic manufacturing systems: PROSA. Comput Ind 37:255–274 Van Brussel H, Wyns J, Valckenaers P, Bongaerts L, Peeters P (1998) Reference architecture for holonic manufacturing systems: PROSA. Comput Ind 37:255–274
39.
go back to reference Vogel-Heuser B, Lee J, Leitão P (2015) Agents enabling cyber-physical production systems. Automatisierungstechnik 63(10):777–789 Vogel-Heuser B, Lee J, Leitão P (2015) Agents enabling cyber-physical production systems. Automatisierungstechnik 63(10):777–789
40.
go back to reference Givehchi O, Jasperneite J (2013) Industrial automation services as part of the cloud: first experiences. In: Proceedings of the Jahreskolloquium Kommunikation in der Automation, KommA Magdeburg, Germany, pp 1–10 Givehchi O, Jasperneite J (2013) Industrial automation services as part of the cloud: first experiences. In: Proceedings of the Jahreskolloquium Kommunikation in der Automation, KommA Magdeburg, Germany, pp 1–10
41.
go back to reference Gupta A, Kumar M, Hansel S, Saini A (2013) Future of all technologies-the cloud and cyber physical systems. Int J Enhanced Res Sci Tech Eng 2(2):1–6 Gupta A, Kumar M, Hansel S, Saini A (2013) Future of all technologies-the cloud and cyber physical systems. Int J Enhanced Res Sci Tech Eng 2(2):1–6
42.
go back to reference Mezgár I, Rauschecker U (2014) The challenge of networked enterprises for cloud computing interoperability. Comput Ind 65(4):657–674 Mezgár I, Rauschecker U (2014) The challenge of networked enterprises for cloud computing interoperability. Comput Ind 65(4):657–674
43.
go back to reference Schlechtendahl J, Kretschmer F, Lechler A, Verl A (2014) Communication mechanisms for cloud based machine controls. Procedia CIRP 17:830–834 Schlechtendahl J, Kretschmer F, Lechler A, Verl A (2014) Communication mechanisms for cloud based machine controls. Procedia CIRP 17:830–834
44.
go back to reference Schlechtendahl J, Kretschmer F, Sang Z, Lechler A, Xu X (2017) Extend study of network capability for cloud based control systems. Robot Comput Integr Manuf 43:89–95 Schlechtendahl J, Kretschmer F, Sang Z, Lechler A, Xu X (2017) Extend study of network capability for cloud based control systems. Robot Comput Integr Manuf 43:89–95
45.
go back to reference Wang LH, Törngren M, Onori M (2015) Current status and advancement of cyber-physical systems in manufacturing. J Manuf Syst 37:517–527 Wang LH, Törngren M, Onori M (2015) Current status and advancement of cyber-physical systems in manufacturing. J Manuf Syst 37:517–527
46.
go back to reference Lee EA (2006) Cyber-physical systems-are computing foundations adequate? In: NSF Shop floor on Cyber-Phys Syst: Research Motivation, Techniques and Roadmap, Austin, TX, pp 1–9 Lee EA (2006) Cyber-physical systems-are computing foundations adequate? In: NSF Shop floor on Cyber-Phys Syst: Research Motivation, Techniques and Roadmap, Austin, TX, pp 1–9
47.
go back to reference Rojas RA, Rauch E (2019) From a literature review to a conceptual framework of enablers for intelligent manufacturing control. Int J Adv Manuf Technol 104(1–4):517–533 Rojas RA, Rauch E (2019) From a literature review to a conceptual framework of enablers for intelligent manufacturing control. Int J Adv Manuf Technol 104(1–4):517–533
48.
go back to reference Woo J, Shin SJ, Seo W, Meilanitasari P (2018) Developing a big data analytics platform for manufacturing systems: architecture, method, and implementation. Int J Adv Manuf Technol 99(9–12):2193–2217 Woo J, Shin SJ, Seo W, Meilanitasari P (2018) Developing a big data analytics platform for manufacturing systems: architecture, method, and implementation. Int J Adv Manuf Technol 99(9–12):2193–2217
49.
go back to reference Zhuang CB, Liu JH, Xiong H (2018) Digital twin-based smart production management and control framework for the complex product assembly shop-floor. Int J Adv Manuf Technol 96(1–4):1149–1163 Zhuang CB, Liu JH, Xiong H (2018) Digital twin-based smart production management and control framework for the complex product assembly shop-floor. Int J Adv Manuf Technol 96(1–4):1149–1163
50.
go back to reference Schlechtendahl J, Keinert M, Kretschmer F, Lechler A, Verl A (2014) Making existing production systems industry 4.0-ready: holistic approach to the integration of existing production systems in industry 4.0 environments. Prod Eng 9(1):143–148 Schlechtendahl J, Keinert M, Kretschmer F, Lechler A, Verl A (2014) Making existing production systems industry 4.0-ready: holistic approach to the integration of existing production systems in industry 4.0 environments. Prod Eng 9(1):143–148
51.
go back to reference Lee J, Bagheri B, Kao H-A (2015) A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf Let 3:18–23 Lee J, Bagheri B, Kao H-A (2015) A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf Let 3:18–23
52.
go back to reference Monostori L, Kádár B, Bauernhanslcd T, Kondoh S, Kumara S, Reinhart G, Sauer O, Schuh G, Sihn W, Ueda K (2016) Cyber-physical systems in manufacturing. CIRP Ann 65(2):621–641 Monostori L, Kádár B, Bauernhanslcd T, Kondoh S, Kumara S, Reinhart G, Sauer O, Schuh G, Sihn W, Ueda K (2016) Cyber-physical systems in manufacturing. CIRP Ann 65(2):621–641
53.
go back to reference Botond K, Terkaj W, Sacco M (2013) Semantic virtual factory supporting interoperable modeling and evaluation of production systems. CIRP Ann Manuf Technol 62(1):443–446 Botond K, Terkaj W, Sacco M (2013) Semantic virtual factory supporting interoperable modeling and evaluation of production systems. CIRP Ann Manuf Technol 62(1):443–446
54.
go back to reference Usländer T, Epple U (2015) Reference model of industrie 4.0 service architectures. Automatisierungstechnik 63(10):858–866 Usländer T, Epple U (2015) Reference model of industrie 4.0 service architectures. Automatisierungstechnik 63(10):858–866
55.
go back to reference Ma SY, Zhang YF, Lv JX, Yang HD, Wu JZ (2019) Energy-cyber-physical system enabled management for energy-intensive manufacturing industries. J Clean Prod 226:892–903 Ma SY, Zhang YF, Lv JX, Yang HD, Wu JZ (2019) Energy-cyber-physical system enabled management for energy-intensive manufacturing industries. J Clean Prod 226:892–903
56.
go back to reference Domingues P, Carreira P, Vieira R, Kastner W (2016) Building automation systems: concepts and technology review. Comput Stand Interfaces 45:1–12 Domingues P, Carreira P, Vieira R, Kastner W (2016) Building automation systems: concepts and technology review. Comput Stand Interfaces 45:1–12
57.
go back to reference Morariu C, Morariu O, Borangiu T, Raileanu S (2012) Manufacturing service bus integration model for highly flexible and scalable manufacturing systems. IFAC Proc 14(1):1850–1855 Morariu C, Morariu O, Borangiu T, Raileanu S (2012) Manufacturing service bus integration model for highly flexible and scalable manufacturing systems. IFAC Proc 14(1):1850–1855
58.
go back to reference Zhang YF, Guo ZG, Lv JX, Liu Y (2018) A framework for smart production-logistics systems based on CPS and industrial IoT. IEEE Trans Ind Inf 14(9):4019–4031 Zhang YF, Guo ZG, Lv JX, Liu Y (2018) A framework for smart production-logistics systems based on CPS and industrial IoT. IEEE Trans Ind Inf 14(9):4019–4031
59.
go back to reference Ye X, Hong SH (2018) An AutomationML/OPC UA-based industry 4.0 solution for a manufacturing system. In: IEEE Int Conf Emerging Technol Factory Autom, Torino, Italy, pp 543–550 Ye X, Hong SH (2018) An AutomationML/OPC UA-based industry 4.0 solution for a manufacturing system. In: IEEE Int Conf Emerging Technol Factory Autom, Torino, Italy, pp 543–550
60.
go back to reference Coronado PDU, Lynn R, Louhichi W, Parto M, Wescoat E, Kurfess T (2018) Part data integration in the shop floor digital twin: mobile and cloud technologies to enable a manufacturing execution system. J Manuf Syst 48:25–33 Coronado PDU, Lynn R, Louhichi W, Parto M, Wescoat E, Kurfess T (2018) Part data integration in the shop floor digital twin: mobile and cloud technologies to enable a manufacturing execution system. J Manuf Syst 48:25–33
61.
go back to reference Negri E, Fumagalli L, Macchi M (2017) A review of the roles of digital twin in cps-based production systems. Procedia Manuf 11:939–948 Negri E, Fumagalli L, Macchi M (2017) A review of the roles of digital twin in cps-based production systems. Procedia Manuf 11:939–948
62.
go back to reference Rosen R, Wichert G, Lo G, Bettenhausen KD (2015) About the importance of autonomy and digital twins for the future of manufacturing. IFAC Proc 48(3):67–72 Rosen R, Wichert G, Lo G, Bettenhausen KD (2015) About the importance of autonomy and digital twins for the future of manufacturing. IFAC Proc 48(3):67–72
63.
go back to reference Wang J, Ma Y, Zhang L, Gao R, Wu D (2018) Deep learning for smart manufacturing: methods and applications. J Manuf Syst 48:144–156 Wang J, Ma Y, Zhang L, Gao R, Wu D (2018) Deep learning for smart manufacturing: methods and applications. J Manuf Syst 48:144–156
64.
go back to reference Lee J, Lapira E, Bagheri B, Kao H-A (2013) Recent advances and trends in predictive manufacturing systems in big data environment. Manuf Lett 1(1):38–41 Lee J, Lapira E, Bagheri B, Kao H-A (2013) Recent advances and trends in predictive manufacturing systems in big data environment. Manuf Lett 1(1):38–41
65.
go back to reference Uhlemann THJ, Schock C, Lehmann C, Freiberger S, Steinhilper R (2017) The digital twin: demonstrating the potential of real time data acquisition in production systems. Procedia Manuf 9:113–120 Uhlemann THJ, Schock C, Lehmann C, Freiberger S, Steinhilper R (2017) The digital twin: demonstrating the potential of real time data acquisition in production systems. Procedia Manuf 9:113–120
67.
go back to reference Lightfoot H, Baines T, Smart P (2013) The servitization of manufacturing: a systematic literature review of interdependent trends. Int J Oper Prod Managt 33(11/12):1408–1434 Lightfoot H, Baines T, Smart P (2013) The servitization of manufacturing: a systematic literature review of interdependent trends. Int J Oper Prod Managt 33(11/12):1408–1434
68.
go back to reference Xu X (2012) From cloud computing to cloud manufacturing, robotics and computer-integrated manufacturing. Robot Comput Integr Manuf 28(1):75–86 Xu X (2012) From cloud computing to cloud manufacturing, robotics and computer-integrated manufacturing. Robot Comput Integr Manuf 28(1):75–86
69.
go back to reference Qi Q, Tao F, Zuo Y, Zhao D (2018) Digital twin service towards smart manufacturing. Procedia CIRP 72:237–242 Qi Q, Tao F, Zuo Y, Zhao D (2018) Digital twin service towards smart manufacturing. Procedia CIRP 72:237–242
70.
go back to reference Pennington A, Alison McKay A, Susan Bloor MS (1996) A framework for product data, knowledge and data engineering. IEEE Trans Knowl Data Eng 8(5):825–838 Pennington A, Alison McKay A, Susan Bloor MS (1996) A framework for product data, knowledge and data engineering. IEEE Trans Knowl Data Eng 8(5):825–838
71.
go back to reference Schroeder GN, Steinmetz C, Pereira CE, Espindola DB (2016) Digital twin data modeling with AutomationML and a communication methodology for data exchange. IFAC Proc 49(30):12–17 Schroeder GN, Steinmetz C, Pereira CE, Espindola DB (2016) Digital twin data modeling with AutomationML and a communication methodology for data exchange. IFAC Proc 49(30):12–17
72.
go back to reference Choi S, Jung K, Kulvatunyou B, Morris KC (2016) An analysis of technologies and standards for designing smart manufacturing systems. J Res Natl Inst Stand Technol 121:422–433 Choi S, Jung K, Kulvatunyou B, Morris KC (2016) An analysis of technologies and standards for designing smart manufacturing systems. J Res Natl Inst Stand Technol 121:422–433
73.
go back to reference Luder A, Schmidt N, Rosendahl R, John M (2014) Integrating different information types within AutomationML. In: IEEE Int Conf Emer Technol Fact Autom, Barcelona, Spain, pp 1–5 Luder A, Schmidt N, Rosendahl R, John M (2014) Integrating different information types within AutomationML. In: IEEE Int Conf Emer Technol Fact Autom, Barcelona, Spain, pp 1–5
74.
go back to reference Drath R, Luder A, Peschke J, Hundt L (2008) AutomationML-the glue for seamless automation engineering. In: IEEE Int Conf Emerg Technol Fact Autom, Hamburg, Germany, pp 616–623 Drath R, Luder A, Peschke J, Hundt L (2008) AutomationML-the glue for seamless automation engineering. In: IEEE Int Conf Emerg Technol Fact Autom, Hamburg, Germany, pp 616–623
Metadata
Title
Information modeling for cyber-physical production system based on digital twin and AutomationML
Authors
Haijun Zhang
Qiong Yan
Zhenghua Wen
Publication date
12-03-2020
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 3-4/2020
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-05056-9

Other articles of this Issue 3-4/2020

The International Journal of Advanced Manufacturing Technology 3-4/2020 Go to the issue

Premium Partners