Skip to main content
Top
Published in: International Journal of Plastics Technology 1/2019

23-04-2019 | Review Article

Inorganic nanomaterials in polymeric water decontamination membranes

Author: Ayesha Kausar

Published in: International Journal of Plastics Technology | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

One of the major research challenges today is the efficient treatment and desalination of seawater, brackish water, and wastewater to make it recyclable and ecofriendly. Membrane technology has offered an increasingly important role to overcome confronts associated with the water treatment. Polymeric membrane is the most common and preliminary technology used for water purification. However, solicitation of polymeric membrane is restricted due to inadequate permeability, selectivity, strength, and low fouling resistance. Consequently, polymeric nanocomposite has emerged as a promising solution to address these flouts. Nanocomposite membrane is considered as a new class of membranes prepared by combining polymeric materials with nanoparticles. Advanced nanocomposite membranes based on polymer/inorganic nanoparticle materials have been designed to meet explicit water treatment applications. This review basically summarizes scientific and technological advances toward the development of polymer/inorganic nanoparticle nanocomposite membranes for water treatment. A wide range of inorganic nanoparticles have been used to reinforce polymers such as metal and metal oxide nanoparticle, nanoclay, and zeolite. Polymer/inorganic nanoparticle nanocomposite membranes have been fabricated by fine tuning the structure and physicochemical properties such as porosity, hydrophilicity, antibacterial, thermal, and mechanical characteristics. Moreover, inorganic nanoparticle incorporated in matrix may behave as adsorbents for the removal of toxic metal ions, inorganic, organic, and biological micropollutant, and other noxious compounds from aqueous solutions. Toward the end, challenges and future research trends on high-performance polymer/inorganic nanoparticle nanocomposite membranes have been discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Who U (2012) Progress on drinking water and sanitation: update. UNICEF and World Health Organization, New York, pp 1–57 Who U (2012) Progress on drinking water and sanitation: update. UNICEF and World Health Organization, New York, pp 1–57
2.
go back to reference Weber W (2002) Distributed optimal technology networks: a concept and strategy for potable water sustainability. Water Sci Technol 46:241–246CrossRefPubMed Weber W (2002) Distributed optimal technology networks: a concept and strategy for potable water sustainability. Water Sci Technol 46:241–246CrossRefPubMed
3.
go back to reference Kausar A (2015) Nanocomposite membranes of poly (ethylene glycol) diamine cured DGEBA/poly (vinylidene fluoride) reinforced with poly (methyl methacrylate) coated gold nanoparticles. Int J Plast Technol 19:106–123CrossRef Kausar A (2015) Nanocomposite membranes of poly (ethylene glycol) diamine cured DGEBA/poly (vinylidene fluoride) reinforced with poly (methyl methacrylate) coated gold nanoparticles. Int J Plast Technol 19:106–123CrossRef
4.
go back to reference Ramesan MT (2015) Effects of magnetite nanoparticles on morphology, processability, diffusion and transport behavior of ethylene vinyl acetate nanocomposites. Int J Plast Technol 19:368–380CrossRef Ramesan MT (2015) Effects of magnetite nanoparticles on morphology, processability, diffusion and transport behavior of ethylene vinyl acetate nanocomposites. Int J Plast Technol 19:368–380CrossRef
5.
go back to reference Balasubramanian K, Yadav R, Prajith P (2015) Antibacterial nanofibers of polyoxymethylene/gold for pro-hygiene applications. Int J Plast Technol 19:363–367CrossRef Balasubramanian K, Yadav R, Prajith P (2015) Antibacterial nanofibers of polyoxymethylene/gold for pro-hygiene applications. Int J Plast Technol 19:363–367CrossRef
7.
go back to reference Breiner J, Mark J (1998) Preparation, structure, growth mechanisms and properties of siloxane composites containing silica, titania or mixed silica–titania phases. Polymer 39:5483–5493CrossRef Breiner J, Mark J (1998) Preparation, structure, growth mechanisms and properties of siloxane composites containing silica, titania or mixed silica–titania phases. Polymer 39:5483–5493CrossRef
8.
go back to reference Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Friedrich K (2001) Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polymer 42:3301–3304CrossRef Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Friedrich K (2001) Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polymer 42:3301–3304CrossRef
9.
go back to reference Skaff H, Emrick T (2004) Reversible addition fragmentation chain transfer (RAFT) polymerization from unprotected cadmium selenide nanoparticles. Angew Chem Int Ed 43:5383–5386CrossRef Skaff H, Emrick T (2004) Reversible addition fragmentation chain transfer (RAFT) polymerization from unprotected cadmium selenide nanoparticles. Angew Chem Int Ed 43:5383–5386CrossRef
10.
go back to reference Peng Q, Lai DM, Kang E, Neoh K (2006) Preparation of polymer–silicon (100) hybrids via interface-initiated reversible addition-fragmentation chain-transfer (RAFT) polymerization. Macromolecules 39:5577–5582CrossRef Peng Q, Lai DM, Kang E, Neoh K (2006) Preparation of polymer–silicon (100) hybrids via interface-initiated reversible addition-fragmentation chain-transfer (RAFT) polymerization. Macromolecules 39:5577–5582CrossRef
11.
go back to reference Yang H, Zhang Q, Guo M, Wang C, Du R, Fu Q (2006) Study on the phase structures and toughening mechanism in PP/EPDM/SiO2 ternary composites. Polymer 47:2106–2115CrossRef Yang H, Zhang Q, Guo M, Wang C, Du R, Fu Q (2006) Study on the phase structures and toughening mechanism in PP/EPDM/SiO2 ternary composites. Polymer 47:2106–2115CrossRef
12.
go back to reference Kruenate J, Tongpool R, Panyathanmaporn T, Kongrat P (2004) Optical and mechanical properties of polypropylene modified by metal oxides. Surf Interface Anal 36:1044–1047CrossRef Kruenate J, Tongpool R, Panyathanmaporn T, Kongrat P (2004) Optical and mechanical properties of polypropylene modified by metal oxides. Surf Interface Anal 36:1044–1047CrossRef
13.
go back to reference Caseri W (2008) Inorganic nanoparticles as optically effective additives for polymers. Chem Eng Commun 196:549–572CrossRef Caseri W (2008) Inorganic nanoparticles as optically effective additives for polymers. Chem Eng Commun 196:549–572CrossRef
14.
go back to reference Okada A, Usuki A (2006) Twenty years of polymer-clay nanocomposites. Macromol Mater Eng 291:1449–1476CrossRef Okada A, Usuki A (2006) Twenty years of polymer-clay nanocomposites. Macromol Mater Eng 291:1449–1476CrossRef
15.
go back to reference Allemann E, Gurny R, Doelker E (1993) Drug-loaded nanoparticles: preparation methods and drug targeting issues. Eur J Pharm Biopharm 39:173–191 Allemann E, Gurny R, Doelker E (1993) Drug-loaded nanoparticles: preparation methods and drug targeting issues. Eur J Pharm Biopharm 39:173–191
16.
go back to reference Gölander C-G, Herron JN, Lim K, Claesson P, Stenius P, Andrade J (1992) Properties of immobilized PEG films and the interaction with proteins. In: Milton Harris J (ed) Poly (ethylene glycol) chemistry. Springer, Boston, MA, pp 221–245CrossRef Gölander C-G, Herron JN, Lim K, Claesson P, Stenius P, Andrade J (1992) Properties of immobilized PEG films and the interaction with proteins. In: Milton Harris J (ed) Poly (ethylene glycol) chemistry. Springer, Boston, MA, pp 221–245CrossRef
17.
go back to reference Li Y-H, Ding J, Luan Z, Di Z, Zhu Y, Xu C (2003) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41:2787–2792CrossRef Li Y-H, Ding J, Luan Z, Di Z, Zhu Y, Xu C (2003) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41:2787–2792CrossRef
18.
go back to reference Qi L, Xu Z (2004) Lead sorption from aqueous solutions on chitosan nanoparticles. Colloid Surf A Physicochem Eng Asp 251:183–190CrossRef Qi L, Xu Z (2004) Lead sorption from aqueous solutions on chitosan nanoparticles. Colloid Surf A Physicochem Eng Asp 251:183–190CrossRef
19.
go back to reference Peng X, Luan Z, Ding J, Di Z, Li Y, Tian B (2005) Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water. Mater Lett 59:399–403CrossRef Peng X, Luan Z, Ding J, Di Z, Li Y, Tian B (2005) Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water. Mater Lett 59:399–403CrossRef
20.
go back to reference Lazaridis N, Bakoyannakis D, Deliyanni E (2005) Chromium (VI) sorptive removal from aqueous solutions by nanocrystalline akaganeite. Chemosphere 58:65–73CrossRefPubMed Lazaridis N, Bakoyannakis D, Deliyanni E (2005) Chromium (VI) sorptive removal from aqueous solutions by nanocrystalline akaganeite. Chemosphere 58:65–73CrossRefPubMed
21.
go back to reference Moreno N, Querol X, Ayora C, Pereira CF, Janssen-Jurkovicová M (2001) Utilization of zeolites synthesized from coal fly ash for the purification of acid mine waters. Environ Sci Technol 35:3526–3534CrossRefPubMed Moreno N, Querol X, Ayora C, Pereira CF, Janssen-Jurkovicová M (2001) Utilization of zeolites synthesized from coal fly ash for the purification of acid mine waters. Environ Sci Technol 35:3526–3534CrossRefPubMed
22.
go back to reference Yantasee W, Lin Y, Fryxell GE, Busche BJ, Birnbaum JC (2003) Removal of heavy metals from aqueous solution using novel nanoengineered sorbents: self-assembled carbamoylphosphonic acids on mesoporous silica. Sep Sci Technol 38:3809–3825CrossRef Yantasee W, Lin Y, Fryxell GE, Busche BJ, Birnbaum JC (2003) Removal of heavy metals from aqueous solution using novel nanoengineered sorbents: self-assembled carbamoylphosphonic acids on mesoporous silica. Sep Sci Technol 38:3809–3825CrossRef
23.
go back to reference Mangun CL, Yue Z, Economy J, Maloney S, Kemme P, Cropek D (2001) Adsorption of organic contaminants from water using tailored ACFs. Chem Mater 13:2356–2360CrossRef Mangun CL, Yue Z, Economy J, Maloney S, Kemme P, Cropek D (2001) Adsorption of organic contaminants from water using tailored ACFs. Chem Mater 13:2356–2360CrossRef
24.
go back to reference Tungittiplakorn W, Cohen C, Lion LW (2005) Engineered polymeric nanoparticles for bioremediation of hydrophobic contaminants. Environ Sci Technol 39:1354–1358CrossRefPubMed Tungittiplakorn W, Cohen C, Lion LW (2005) Engineered polymeric nanoparticles for bioremediation of hydrophobic contaminants. Environ Sci Technol 39:1354–1358CrossRefPubMed
25.
go back to reference Adesina A (2004) Industrial exploitation of photocatalysis: progress, perspectives and prospects. Catal Surv Asia 8:265–273CrossRef Adesina A (2004) Industrial exploitation of photocatalysis: progress, perspectives and prospects. Catal Surv Asia 8:265–273CrossRef
26.
go back to reference Kabra K, Chaudhary R, Sawhney RL (2004) Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review. Ind Eng Chem Res 43:7683–7696CrossRef Kabra K, Chaudhary R, Sawhney RL (2004) Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review. Ind Eng Chem Res 43:7683–7696CrossRef
27.
go back to reference Pan F, Cheng Q, Jia H, Jiang Z (2010) Facile approach to polymer-inorganic nanocomposite membrane through a biomineralization-inspired process. J Membr Sci 357:171–177CrossRef Pan F, Cheng Q, Jia H, Jiang Z (2010) Facile approach to polymer-inorganic nanocomposite membrane through a biomineralization-inspired process. J Membr Sci 357:171–177CrossRef
28.
go back to reference Ng LY, Mohammad AW, Leo CP, Hilal N (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308:15–33CrossRef Ng LY, Mohammad AW, Leo CP, Hilal N (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308:15–33CrossRef
29.
go back to reference Balan L, Burget D (2006) Synthesis of metal/polymer nanocomposite by UV-radiation curing. Eur Polym J 42:3180–3189CrossRef Balan L, Burget D (2006) Synthesis of metal/polymer nanocomposite by UV-radiation curing. Eur Polym J 42:3180–3189CrossRef
30.
go back to reference Eisa WH, Abdel-Moneam YK, Shabaka A, Hosam AEM (2012) In situ approach induced growth of highly monodispersed Ag nanoparticles within free standing PVA/PVP films. Spectrochim Acta Part A Mol Biomol Spectrosc 95:341–346CrossRef Eisa WH, Abdel-Moneam YK, Shabaka A, Hosam AEM (2012) In situ approach induced growth of highly monodispersed Ag nanoparticles within free standing PVA/PVP films. Spectrochim Acta Part A Mol Biomol Spectrosc 95:341–346CrossRef
31.
go back to reference Suh SK, Yuet K, Hwang DK, Bong KW, Doyle PS, Hatton TA (2012) Synthesis of nonspherical superparamagnetic particles: in situ coprecipitation of magnetic nanoparticles in microgels prepared by stop-flow lithography. J Am Chem Soc 134:7337–7343CrossRefPubMed Suh SK, Yuet K, Hwang DK, Bong KW, Doyle PS, Hatton TA (2012) Synthesis of nonspherical superparamagnetic particles: in situ coprecipitation of magnetic nanoparticles in microgels prepared by stop-flow lithography. J Am Chem Soc 134:7337–7343CrossRefPubMed
32.
go back to reference Porel S, Venkatram N, Narayana Rao D, Radhakrishnan T (2007) In situ synthesis of metal nanoparticles in polymer matrix and their optical limiting applications. J Nanosci Nanotechnol 7:1887–1892CrossRefPubMed Porel S, Venkatram N, Narayana Rao D, Radhakrishnan T (2007) In situ synthesis of metal nanoparticles in polymer matrix and their optical limiting applications. J Nanosci Nanotechnol 7:1887–1892CrossRefPubMed
34.
go back to reference Zhao J, Milanova M, Warmoeskerken MM, Dutschk V (2012) Surface modification of TiO2 nanoparticles with silane coupling agents. Colloid Surf A Physicochem Eng Asp 413:273–279CrossRef Zhao J, Milanova M, Warmoeskerken MM, Dutschk V (2012) Surface modification of TiO2 nanoparticles with silane coupling agents. Colloid Surf A Physicochem Eng Asp 413:273–279CrossRef
35.
go back to reference Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Walter R, Friedrich K (2001) Structure-property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites. Polymer 42:167–183CrossRef Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Walter R, Friedrich K (2001) Structure-property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites. Polymer 42:167–183CrossRef
36.
go back to reference Luo M-L, Zhao J-Q, Tang W, Pu C-S (2005) Hydrophilic modification of poly (ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles. Appl Surf Sci 249:76–84CrossRef Luo M-L, Zhao J-Q, Tang W, Pu C-S (2005) Hydrophilic modification of poly (ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles. Appl Surf Sci 249:76–84CrossRef
37.
go back to reference Shah M, McCarthy MC, Sachdeva S, Lee AK, Jeong H-K (2012) Current status of metal-organic framework membranes for gas separations: promises and challenges. Ind Eng Chem Res 51:2179–2199CrossRef Shah M, McCarthy MC, Sachdeva S, Lee AK, Jeong H-K (2012) Current status of metal-organic framework membranes for gas separations: promises and challenges. Ind Eng Chem Res 51:2179–2199CrossRef
38.
go back to reference Morris W, Doonan CJ, Furukawa H, Banerjee R, Yaghi OM (2008) Crystals as molecules: postsynthesis covalent functionalization of zeolitic imidazolate frameworks. J Am Chem Soc 130:12626–12627CrossRefPubMed Morris W, Doonan CJ, Furukawa H, Banerjee R, Yaghi OM (2008) Crystals as molecules: postsynthesis covalent functionalization of zeolitic imidazolate frameworks. J Am Chem Soc 130:12626–12627CrossRefPubMed
39.
go back to reference Aguado S, Nicolas C-H, Moizan-Baslé V, Nieto C, Amrouche H, Bats N (2011) Facile synthesis of an ultramicroporous MOF tubular membrane with selectivity towards CO2. New J Chem 35:41–44CrossRef Aguado S, Nicolas C-H, Moizan-Baslé V, Nieto C, Amrouche H, Bats N (2011) Facile synthesis of an ultramicroporous MOF tubular membrane with selectivity towards CO2. New J Chem 35:41–44CrossRef
40.
go back to reference Bux H, Feldhoff A, Cravillon J, Wiebcke M, Li Y-S, Caro J (2011) Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation. Chem Mater 23:2262–2269CrossRef Bux H, Feldhoff A, Cravillon J, Wiebcke M, Li Y-S, Caro J (2011) Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation. Chem Mater 23:2262–2269CrossRef
41.
go back to reference Amrouche H, Aguado S, Pérez-Pellitero J, Chizallet C, Siperstein F, Farrusseng D (2011) Experimental and computational study of functionality impact on sodalite–zeolitic imidazolate frameworks for CO2 separation. J Phys Chem C 115:16425–16432CrossRef Amrouche H, Aguado S, Pérez-Pellitero J, Chizallet C, Siperstein F, Farrusseng D (2011) Experimental and computational study of functionality impact on sodalite–zeolitic imidazolate frameworks for CO2 separation. J Phys Chem C 115:16425–16432CrossRef
42.
go back to reference Kong C, Shintani T, Tsuru T (2010) “Pre-seeding”-assisted synthesis of a high performance polyamide-zeolite nanocomposite membrane for water purification. New J Chem 34:2101–2104CrossRef Kong C, Shintani T, Tsuru T (2010) “Pre-seeding”-assisted synthesis of a high performance polyamide-zeolite nanocomposite membrane for water purification. New J Chem 34:2101–2104CrossRef
43.
go back to reference Brown AJ, Johnson J, Lydon ME, Koros WJ, Jones CW, Nair S (2012) Continuous polycrystalline zeolitic imidazolate framework-90 membranes on polymeric hollow fibers. Angew Chem Int Ed 51:10615–10618CrossRef Brown AJ, Johnson J, Lydon ME, Koros WJ, Jones CW, Nair S (2012) Continuous polycrystalline zeolitic imidazolate framework-90 membranes on polymeric hollow fibers. Angew Chem Int Ed 51:10615–10618CrossRef
44.
go back to reference Zadaka-Amir D, Nasser A, Nir S, Mishael YG (2012) Removal of methyl tertiary-butyl ether (MTBE) from water by polymer–zeolite composites. Micropor Mesopor Mater 151:216–222CrossRef Zadaka-Amir D, Nasser A, Nir S, Mishael YG (2012) Removal of methyl tertiary-butyl ether (MTBE) from water by polymer–zeolite composites. Micropor Mesopor Mater 151:216–222CrossRef
45.
go back to reference Shih T, Wangpaichitr M, Suffet M (2005) Performance and cost evaluations of synthetic resin technology for the removal of methyl tert-butyl ether from drinking water. J Environ Eng 131:450–460CrossRef Shih T, Wangpaichitr M, Suffet M (2005) Performance and cost evaluations of synthetic resin technology for the removal of methyl tert-butyl ether from drinking water. J Environ Eng 131:450–460CrossRef
46.
go back to reference Jeong B-H, Hoek EM, Yan Y, Subramani A, Huang X, Hurwitz G (2007) Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J Membr Sci 294:1–7CrossRef Jeong B-H, Hoek EM, Yan Y, Subramani A, Huang X, Hurwitz G (2007) Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J Membr Sci 294:1–7CrossRef
47.
go back to reference Patel HA, Somani RS, Bajaj HC, Jasra RV (2006) Nanoclays for polymer nanocomposites, paints, inks, greases and cosmetics formulations, drug delivery vehicle and waste water treatment. Bull Mater Sci 29:133–145CrossRef Patel HA, Somani RS, Bajaj HC, Jasra RV (2006) Nanoclays for polymer nanocomposites, paints, inks, greases and cosmetics formulations, drug delivery vehicle and waste water treatment. Bull Mater Sci 29:133–145CrossRef
48.
go back to reference Vaia RA, Price G, Ruth PN, Nguyen HT, Lichtenhan J (1999) Polymer/layered silicate nanocomposites as high performance ablative materials. Appl Clay Sci 15:67–92CrossRef Vaia RA, Price G, Ruth PN, Nguyen HT, Lichtenhan J (1999) Polymer/layered silicate nanocomposites as high performance ablative materials. Appl Clay Sci 15:67–92CrossRef
49.
go back to reference Okada A, Usuki A (1995) The chemistry of polymer-clay hybrids. Mater Sci Eng C 3:109–115CrossRef Okada A, Usuki A (1995) The chemistry of polymer-clay hybrids. Mater Sci Eng C 3:109–115CrossRef
50.
go back to reference Giannelis EP, Krishnamoorti R, Manias E (1999) Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. In: Granick S, Binder K, de Gennes P-G, Giannelis EP, Grest GS, Hervet H, Krishnamoorti R, Léger L, Manias E, Raphaël E, Wang S-Q (eds) Polymers in confined environments. Springer, Berlin, Heidelberg, pp 107–147CrossRef Giannelis EP, Krishnamoorti R, Manias E (1999) Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. In: Granick S, Binder K, de Gennes P-G, Giannelis EP, Grest GS, Hervet H, Krishnamoorti R, Léger L, Manias E, Raphaël E, Wang S-Q (eds) Polymers in confined environments. Springer, Berlin, Heidelberg, pp 107–147CrossRef
51.
go back to reference Fukushima Y, Inagaki S (1987) Synthesis of an intercalated compound of montmorillonite and 6-polyamide. J Inc Phenom Macrocycl Chem 5:473–482CrossRef Fukushima Y, Inagaki S (1987) Synthesis of an intercalated compound of montmorillonite and 6-polyamide. J Inc Phenom Macrocycl Chem 5:473–482CrossRef
52.
go back to reference Sun Q, Schork FJ, Deng Y (2007) Water-based polymer/clay nanocomposite suspension for improving water and moisture barrier in coating. Compos Sci Technol 67:1823–1829CrossRef Sun Q, Schork FJ, Deng Y (2007) Water-based polymer/clay nanocomposite suspension for improving water and moisture barrier in coating. Compos Sci Technol 67:1823–1829CrossRef
53.
go back to reference Lai CY, Groth A, Gray S, Duke M (2014) Enhanced abrasion resistant PVDF/nanoclay hollow fibre composite membranes for water treatment. J Membr Sci 449:146–157CrossRef Lai CY, Groth A, Gray S, Duke M (2014) Enhanced abrasion resistant PVDF/nanoclay hollow fibre composite membranes for water treatment. J Membr Sci 449:146–157CrossRef
54.
go back to reference Helin H, Na L, Linlin W, Zhong H, Guangxia W, Zonghuan Y (2008) Anti-fouling ultrafiltration membrane prepared from polysulfone-graft-methyl acrylate copolymers by UV-induced grafting method. J Environ Sci 20:565–570CrossRef Helin H, Na L, Linlin W, Zhong H, Guangxia W, Zonghuan Y (2008) Anti-fouling ultrafiltration membrane prepared from polysulfone-graft-methyl acrylate copolymers by UV-induced grafting method. J Environ Sci 20:565–570CrossRef
55.
go back to reference Su Y-L, Cheng W, Li C, Jiang Z (2009) Preparation of antifouling ultrafiltration membranes with poly (ethylene glycol)-graft-polyacrylonitrile copolymers. J Membr Sci 329:246–252CrossRef Su Y-L, Cheng W, Li C, Jiang Z (2009) Preparation of antifouling ultrafiltration membranes with poly (ethylene glycol)-graft-polyacrylonitrile copolymers. J Membr Sci 329:246–252CrossRef
56.
go back to reference Meng F, Chae S-R, Drews A, Kraume M, Shin H-S, Yang F (2009) Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material. Water Res 43:1489–1512CrossRefPubMed Meng F, Chae S-R, Drews A, Kraume M, Shin H-S, Yang F (2009) Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material. Water Res 43:1489–1512CrossRefPubMed
57.
go back to reference Taurozzi JS, Arul H, Bosak VZ, Burban AF, Voice TC, Bruening ML (2008) Effect of filler incorporation route on the properties of polysulfone–silver nanocomposite membranes of different porosities. J Membr Sci 325:58–68CrossRef Taurozzi JS, Arul H, Bosak VZ, Burban AF, Voice TC, Bruening ML (2008) Effect of filler incorporation route on the properties of polysulfone–silver nanocomposite membranes of different porosities. J Membr Sci 325:58–68CrossRef
58.
go back to reference Bottino A, Capannelli G, Comite A (2002) Preparation and characterization of novel porous PVDF-ZrO2 composite membranes. Desalination 146:35–40CrossRef Bottino A, Capannelli G, Comite A (2002) Preparation and characterization of novel porous PVDF-ZrO2 composite membranes. Desalination 146:35–40CrossRef
59.
go back to reference Kim J, Van der Bruggen B (2010) The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ Pollut 158:2335–2349CrossRefPubMed Kim J, Van der Bruggen B (2010) The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ Pollut 158:2335–2349CrossRefPubMed
60.
go back to reference Karnik BS, Davies SH, Baumann MJ, Masten SJ (2005) Fabrication of catalytic membranes for the treatment of drinking water using combined ozonation and ultrafiltration. Environ Sci Technol 39:7656–7661CrossRefPubMed Karnik BS, Davies SH, Baumann MJ, Masten SJ (2005) Fabrication of catalytic membranes for the treatment of drinking water using combined ozonation and ultrafiltration. Environ Sci Technol 39:7656–7661CrossRefPubMed
61.
go back to reference Rahaman M (1995) Ceramic processing and sintering. Marcel Dekker, New York, p 476 Rahaman M (1995) Ceramic processing and sintering. Marcel Dekker, New York, p 476
62.
go back to reference MaM Cortalezzi, Rose J, Wells GF, Bottero J-Y, Barron AR, Wiesner MR (2003) Ceramic membranes derived from ferroxane nanoparticles: a new route for the fabrication of iron oxide ultrafiltration membranes. J Membr Sci 227:207–217CrossRef MaM Cortalezzi, Rose J, Wells GF, Bottero J-Y, Barron AR, Wiesner MR (2003) Ceramic membranes derived from ferroxane nanoparticles: a new route for the fabrication of iron oxide ultrafiltration membranes. J Membr Sci 227:207–217CrossRef
63.
go back to reference Gu Y, Meng G (1999) A model for ceramic membrane formation by dip-coating. J Eur Ceram Soc 19:1961–1966CrossRef Gu Y, Meng G (1999) A model for ceramic membrane formation by dip-coating. J Eur Ceram Soc 19:1961–1966CrossRef
64.
go back to reference Bailey DA, Jones CD, Barron AR, Wiesner MR (2000) Characterization of alumoxane-derived ceramic membranes. J Membr Sci 176:1–9CrossRef Bailey DA, Jones CD, Barron AR, Wiesner MR (2000) Characterization of alumoxane-derived ceramic membranes. J Membr Sci 176:1–9CrossRef
65.
go back to reference Lv Y, Liu H, Wang Z, Liu S, Hao L, Sang Y (2009) Silver nanoparticle-decorated porous ceramic composite for water treatment. J Membr Sci 331:50–56CrossRef Lv Y, Liu H, Wang Z, Liu S, Hao L, Sang Y (2009) Silver nanoparticle-decorated porous ceramic composite for water treatment. J Membr Sci 331:50–56CrossRef
66.
go back to reference Qu X, Alvarez PJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946CrossRefPubMed Qu X, Alvarez PJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946CrossRefPubMed
67.
go back to reference Mahadik S (2017) Applications of nanotechnology in water and waste water treatment. AADYA Nat J Manag Technol 7:187–191 Mahadik S (2017) Applications of nanotechnology in water and waste water treatment. AADYA Nat J Manag Technol 7:187–191
68.
go back to reference Sharma Y, Srivastava V, Singh V, Kaul S, Weng C (2009) Nano-adsorbents for the removal of metallic pollutants from water and wastewater. Environ Technol 30:583–609CrossRefPubMed Sharma Y, Srivastava V, Singh V, Kaul S, Weng C (2009) Nano-adsorbents for the removal of metallic pollutants from water and wastewater. Environ Technol 30:583–609CrossRefPubMed
69.
go back to reference Rahaman MS, Vecitis CD, Elimelech M (2012) Electrochemical carbon-nanotube filter performance toward virus removal and inactivation in the presence of natural organic matter. Environ Sci Technol 46:1556–1564CrossRefPubMed Rahaman MS, Vecitis CD, Elimelech M (2012) Electrochemical carbon-nanotube filter performance toward virus removal and inactivation in the presence of natural organic matter. Environ Sci Technol 46:1556–1564CrossRefPubMed
70.
go back to reference Knoell T, Safarik J, Cormack T, Riley R, Lin S, Ridgway H (1999) Biofouling potentials of microporous polysulfone membranes containing a sulfonated polyether-ethersulfone/polyethersulfone block copolymer: correlation of membrane surface properties with bacterial attachment. J Membr Sci 157:117–138CrossRef Knoell T, Safarik J, Cormack T, Riley R, Lin S, Ridgway H (1999) Biofouling potentials of microporous polysulfone membranes containing a sulfonated polyether-ethersulfone/polyethersulfone block copolymer: correlation of membrane surface properties with bacterial attachment. J Membr Sci 157:117–138CrossRef
71.
go back to reference Kwak S-Y, Yeom M-O, Roh IJ, Kim DY, Kim J-J (1997) Correlations of chemical structure, atomic force microscopy (AFM) morphology, and reverse osmosis (RO) characteristics in aromatic polyester high-flux RO membranes. J Membr Sci 132:183–191CrossRef Kwak S-Y, Yeom M-O, Roh IJ, Kim DY, Kim J-J (1997) Correlations of chemical structure, atomic force microscopy (AFM) morphology, and reverse osmosis (RO) characteristics in aromatic polyester high-flux RO membranes. J Membr Sci 132:183–191CrossRef
72.
go back to reference Rana D, Matsuura T (2010) Surface modifications for antifouling membranes. Chem Rev 110:2448–2471CrossRefPubMed Rana D, Matsuura T (2010) Surface modifications for antifouling membranes. Chem Rev 110:2448–2471CrossRefPubMed
73.
go back to reference Vrijenhoek EM, Hong S, Elimelech M (2001) Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. J Membr Sci 188:115–128CrossRef Vrijenhoek EM, Hong S, Elimelech M (2001) Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. J Membr Sci 188:115–128CrossRef
Metadata
Title
Inorganic nanomaterials in polymeric water decontamination membranes
Author
Ayesha Kausar
Publication date
23-04-2019
Publisher
Springer India
Published in
International Journal of Plastics Technology / Issue 1/2019
Print ISSN: 0972-656X
Electronic ISSN: 0975-072X
DOI
https://doi.org/10.1007/s12588-019-09230-x

Other articles of this Issue 1/2019

International Journal of Plastics Technology 1/2019 Go to the issue

Premium Partners