Skip to main content
Top

2021 | OriginalPaper | Chapter

(Input) Size Matters for CNN Classifiers

Authors : Mats L. Richter, Wolf Byttner, Ulf Krumnack, Anna Wiedenroth, Ludwig Schallner, Justin Shenk

Published in: Artificial Neural Networks and Machine Learning – ICANN 2021

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fully convolutional neural networks (CNNs) can process input of arbitrary size by applying a combination of downsampling and pooling. However, we find that fully convolutional image classifiers are not agnostic to the input size but rather show significant differences in performance: presenting the same image at different scales can result in different outcomes. A closer look reveals that there is no simple relationship between input size and model performance (no ‘bigger is better’), but that each network has a preferred input size, for which it shows best results. We investigate this phenomenon by applying different methods, including spectral analysis of layer activations and probe classifiers, showing that there are characteristic features depending on the network architecture. From this we find that the size of discriminatory features is critically influencing how the inference process is distributed among the layers. Based on these findings we are able to derive basic design guidelines for optimizing neural architectures on specific datasets.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
In this work we refer to the height and width measured in pixels (absolute size) as “size”.
 
2
Technically a 2-tuple, however since square kernels are the norm we can make this simplification.
 
3
For the sake of consistency and comparability, when we talk about to ResNet models we specifically refer to the ImageNet versions of these architectures, unless specified.
 
5
Sudden drops of probe performance are caused by ResNet skipping layers [1, 9].
 
6
We define a simple architecture as a sequential architecture consisting only of convolutional, pooling and fully connected layers.
 
Literature
1.
go back to reference Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: ICLR 2017 Workshop (2016) Alain, G., Bengio, Y.: Understanding intermediate layers using linear classifier probes. In: ICLR 2017 Workshop (2016)
5.
go back to reference Iandola, F.N., Moskewicz, M.W., Karayev, S., Girshick, R.B., Darrell, T., Keutzer, K.: DenseNet: implementing efficient convnet descriptor pyramids. arXiv preprint arXiv:1404.1869 (2014) Iandola, F.N., Moskewicz, M.W., Karayev, S., Girshick, R.B., Darrell, T., Keutzer, K.: DenseNet: implementing efficient convnet descriptor pyramids. arXiv preprint arXiv:​1404.​1869 (2014)
6.
go back to reference Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Master’s thesis, Department of Computer Science, University of Toronto (2009) Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Master’s thesis, Department of Computer Science, University of Toronto (2009)
7.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc. (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc. (2012)
9.
go back to reference Richter, M.L., Shenk, J., Byttner, W., Arpteg, A., Huss, M.: Feature space saturation during training. arXiv preprint arXiv:2006.08679 (2020) Richter, M.L., Shenk, J., Byttner, W., Arpteg, A., Huss, M.: Feature space saturation during training. arXiv preprint arXiv:​2006.​08679 (2020)
11.
go back to reference Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations (ICLR) (2015) Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations (ICLR) (2015)
12.
go back to reference Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 6105–6114. PMLR (09–15 June 2019) Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 6105–6114. PMLR (09–15 June 2019)
Metadata
Title
(Input) Size Matters for CNN Classifiers
Authors
Mats L. Richter
Wolf Byttner
Ulf Krumnack
Anna Wiedenroth
Ludwig Schallner
Justin Shenk
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-86340-1_11

Premium Partner